llvm/lib/ProfileData/InstrProfWriter.cpp
Xinliang David Li 61c7e68339 [PGO] Value profiling (index format) code cleanup and testing
1. Added a set of public interfaces in InstrProfRecord
    class to access (read/write) value profile data.
 2. Changed IndexedProfile reader and writer code to 
    use the newly defined interfaces and hide implementation
    details.
 3. Added a couple of unittests for value profiling:
   - Test new interfaces to get and set value profile data
   - Test value profile data merging with various scenarios.

 No functional change is expected. The new interfaces will also
 make it possible to change on-disk format of value prof data
 to be more compact (to be submitted). 



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251771 91177308-0d34-0410-b5e6-96231b3b80d8
2015-11-02 05:08:23 +00:00

232 lines
8.0 KiB
C++

//=-- InstrProfWriter.cpp - Instrumented profiling writer -------------------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/OnDiskHashTable.h"
using namespace llvm;
namespace {
class InstrProfRecordTrait {
public:
typedef StringRef key_type;
typedef StringRef key_type_ref;
typedef const InstrProfWriter::ProfilingData *const data_type;
typedef const InstrProfWriter::ProfilingData *const data_type_ref;
typedef uint64_t hash_value_type;
typedef uint64_t offset_type;
static hash_value_type ComputeHash(key_type_ref K) {
return IndexedInstrProf::ComputeHash(IndexedInstrProf::HashType, K);
}
static std::pair<offset_type, offset_type>
EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
offset_type N = K.size();
LE.write<offset_type>(N);
offset_type M = 0;
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
M += sizeof(uint64_t); // The function hash
M += sizeof(uint64_t); // The size of the Counts vector
M += ProfRecord.Counts.size() * sizeof(uint64_t);
// Value data
M += sizeof(uint64_t); // Number of value kinds with value sites.
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
uint32_t NumValueSites = ProfRecord.getNumValueSites(Kind);
if (NumValueSites == 0) continue;
M += sizeof(uint64_t); // Value kind
M += sizeof(uint64_t); // The number of value sites for given value kind
for (uint32_t I = 0; I < NumValueSites; I++) {
M += sizeof(uint64_t); // Number of value data pairs at a value site
uint64_t NumValueDataForSite =
ProfRecord.getNumValueDataForSite(Kind, I);
M += 2 * sizeof(uint64_t) * NumValueDataForSite; // Value data pairs
}
}
}
LE.write<offset_type>(M);
return std::make_pair(N, M);
}
static void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N){
Out.write(K.data(), N);
}
static void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V,
offset_type) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
LE.write<uint64_t>(ProfileData.first); // Function hash
LE.write<uint64_t>(ProfRecord.Counts.size());
for (uint64_t I : ProfRecord.Counts) LE.write<uint64_t>(I);
// Compute the number of value kinds with value sites.
uint64_t NumValueKinds = ProfRecord.getNumValueKinds();
LE.write<uint64_t>(NumValueKinds);
// Write value data
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
uint32_t NumValueSites = ProfRecord.getNumValueSites(Kind);
if (NumValueSites == 0) continue;
LE.write<uint64_t>(Kind); // Write value kind
// Write number of value sites for current value kind
LE.write<uint64_t>(NumValueSites);
for (uint32_t I = 0; I < NumValueSites; I++) {
// Write number of value data pairs at this value site
uint64_t NumValueDataForSite =
ProfRecord.getNumValueDataForSite(Kind, I);
LE.write<uint64_t>(NumValueDataForSite);
std::unique_ptr<InstrProfValueData[]> VD =
ProfRecord.getValueForSite(Kind, I);
for (uint32_t V = 0; V < NumValueDataForSite; V++) {
if (Kind == IPVK_IndirectCallTarget)
LE.write<uint64_t>(ComputeHash((const char *)VD[V].Value));
else
LE.write<uint64_t>(VD[V].Value);
LE.write<uint64_t>(VD[V].Count);
}
}
}
}
}
};
}
static std::error_code combineInstrProfRecords(InstrProfRecord &Dest,
InstrProfRecord &Source,
uint64_t &MaxFunctionCount) {
// If the number of counters doesn't match we either have bad data
// or a hash collision.
if (Dest.Counts.size() != Source.Counts.size())
return instrprof_error::count_mismatch;
for (size_t I = 0, E = Source.Counts.size(); I < E; ++I) {
if (Dest.Counts[I] + Source.Counts[I] < Dest.Counts[I])
return instrprof_error::counter_overflow;
Dest.Counts[I] += Source.Counts[I];
}
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
if (std::error_code EC = Dest.mergeValueProfData(Kind, Source)) return EC;
}
// We keep track of the max function count as we go for simplicity.
if (Dest.Counts[0] > MaxFunctionCount)
MaxFunctionCount = Dest.Counts[0];
return instrprof_error::success;
}
void InstrProfWriter::updateStringTableReferences(InstrProfRecord &I) {
I.updateStrings(&StringTable);
}
std::error_code InstrProfWriter::addRecord(InstrProfRecord &&I) {
updateStringTableReferences(I);
auto &ProfileDataMap = FunctionData[I.Name];
auto Where = ProfileDataMap.find(I.Hash);
if (Where == ProfileDataMap.end()) {
// We've never seen a function with this name and hash, add it.
ProfileDataMap[I.Hash] = I;
// We keep track of the max function count as we go for simplicity.
if (I.Counts[0] > MaxFunctionCount)
MaxFunctionCount = I.Counts[0];
return instrprof_error::success;
}
// We're updating a function we've seen before.
return combineInstrProfRecords(Where->second, I, MaxFunctionCount);
}
std::pair<uint64_t, uint64_t> InstrProfWriter::writeImpl(raw_ostream &OS) {
OnDiskChainedHashTableGenerator<InstrProfRecordTrait> Generator;
// Populate the hash table generator.
for (const auto &I : FunctionData)
Generator.insert(I.getKey(), &I.getValue());
using namespace llvm::support;
endian::Writer<little> LE(OS);
// Write the header.
IndexedInstrProf::Header Header;
Header.Magic = IndexedInstrProf::Magic;
Header.Version = IndexedInstrProf::Version;
Header.MaxFunctionCount = MaxFunctionCount;
Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
Header.HashOffset = 0;
int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);
// Only write out all the fields execpt 'HashOffset'. We need
// to remember the offset of that field to allow back patching
// later.
for (int I = 0; I < N - 1; I++)
LE.write<uint64_t>(reinterpret_cast<uint64_t *>(&Header)[I]);
// Save a space to write the hash table start location.
uint64_t HashTableStartLoc = OS.tell();
// Reserve the space for HashOffset field.
LE.write<uint64_t>(0);
// Write the hash table.
uint64_t HashTableStart = Generator.Emit(OS);
return std::make_pair(HashTableStartLoc, HashTableStart);
}
void InstrProfWriter::write(raw_fd_ostream &OS) {
// Write the hash table.
auto TableStart = writeImpl(OS);
// Go back and fill in the hash table start.
using namespace support;
OS.seek(TableStart.first);
// Now patch the HashOffset field previously reserved.
endian::Writer<little>(OS).write<uint64_t>(TableStart.second);
}
std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
std::string Data;
llvm::raw_string_ostream OS(Data);
// Write the hash table.
auto TableStart = writeImpl(OS);
OS.flush();
// Go back and fill in the hash table start.
using namespace support;
uint64_t Bytes = endian::byte_swap<uint64_t, little>(TableStart.second);
Data.replace(TableStart.first, sizeof(uint64_t), (const char *)&Bytes,
sizeof(uint64_t));
// Return this in an aligned memory buffer.
return MemoryBuffer::getMemBufferCopy(Data);
}