mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-30 00:15:55 +00:00
66e7cd0eea
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16295 91177308-0d34-0410-b5e6-96231b3b80d8
189 lines
5.5 KiB
C++
189 lines
5.5 KiB
C++
//===--- examples/Fibonacci/fibonacci.cpp - An example use of the JIT -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Valery A. Khamenya and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This small program provides an example of how to build quickly a small
|
|
// module with function Fibonacci and execute it with the JIT.
|
|
//
|
|
// This simple example shows as well 30% speed up with LLVM 1.3
|
|
// in comparison to gcc 3.3.3 at AMD Athlon XP 1500+ .
|
|
//
|
|
// (Modified from HowToUseJIT.cpp and Stacker/lib/compiler/StackerCompiler.cpp)
|
|
//
|
|
//===------------------------------------------------------------------------===
|
|
// Goal:
|
|
// The goal of this snippet is to create in the memory
|
|
// the LLVM module consisting of one function as follow:
|
|
//
|
|
// int fib(int x) {
|
|
// if(x<=2) return 1;
|
|
// return fib(x-1)+fib(x-2);
|
|
// }
|
|
//
|
|
// then compile the module via JIT, then execute the `fib'
|
|
// function and return result to a driver, i.e. to a "host program".
|
|
//
|
|
|
|
#include <iostream>
|
|
|
|
#include <llvm/Module.h>
|
|
#include <llvm/DerivedTypes.h>
|
|
#include <llvm/Constants.h>
|
|
#include <llvm/Instructions.h>
|
|
#include <llvm/ModuleProvider.h>
|
|
#include <llvm/Analysis/Verifier.h>
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
int main(int argc, char**argv) {
|
|
|
|
int n = argc > 1 ? atol(argv[1]) : 44;
|
|
|
|
// Create some module to put our function into it.
|
|
Module *M = new Module("test");
|
|
|
|
|
|
// We are about to create the "fib" function:
|
|
Function *FibF;
|
|
|
|
{
|
|
// first create type for the single argument of fib function:
|
|
// the type is 'int ()'
|
|
std::vector<const Type*> ArgT(1);
|
|
ArgT[0] = Type::IntTy;
|
|
|
|
// now create full type of the "fib" function:
|
|
FunctionType *FibT = FunctionType::get(Type::IntTy, // type of result
|
|
ArgT,
|
|
/*not vararg*/false);
|
|
|
|
// Now create the fib function entry and
|
|
// insert this entry into module M
|
|
// (By passing a module as the last parameter to the Function constructor,
|
|
// it automatically gets appended to the Module.)
|
|
FibF = new Function(FibT,
|
|
Function::ExternalLinkage, // maybe too much
|
|
"fib", M);
|
|
|
|
// Add a basic block to the function... (again, it automatically inserts
|
|
// because of the last argument.)
|
|
BasicBlock *BB = new BasicBlock("EntryBlock of fib function", FibF);
|
|
|
|
// Get pointers to the constants ...
|
|
Value *One = ConstantSInt::get(Type::IntTy, 1);
|
|
Value *Two = ConstantSInt::get(Type::IntTy, 2);
|
|
|
|
// Get pointers to the integer argument of the add1 function...
|
|
assert(FibF->abegin() != FibF->aend()); // Make sure there's an arg
|
|
|
|
Argument &ArgX = FibF->afront(); // Get the arg
|
|
ArgX.setName("AnArg"); // Give it a nice symbolic name for fun.
|
|
|
|
SetCondInst* CondInst
|
|
= new SetCondInst( Instruction::SetLE,
|
|
&ArgX, Two );
|
|
|
|
BB->getInstList().push_back(CondInst);
|
|
|
|
// Create the true_block
|
|
BasicBlock* true_bb = new BasicBlock("arg<=2");
|
|
|
|
|
|
// Create the return instruction and add it
|
|
// to the basic block for true case:
|
|
true_bb->getInstList().push_back(new ReturnInst(One));
|
|
|
|
// Create an exit block
|
|
BasicBlock* exit_bb = new BasicBlock("arg>2");
|
|
|
|
{
|
|
|
|
// create fib(x-1)
|
|
CallInst* CallFibX1;
|
|
{
|
|
// Create the sub instruction... does not insert...
|
|
Instruction *Sub
|
|
= BinaryOperator::create(Instruction::Sub, &ArgX, One,
|
|
"arg");
|
|
|
|
exit_bb->getInstList().push_back(Sub);
|
|
|
|
CallFibX1 = new CallInst(FibF, Sub, "fib(x-1)");
|
|
exit_bb->getInstList().push_back(CallFibX1);
|
|
|
|
}
|
|
|
|
// create fib(x-2)
|
|
CallInst* CallFibX2;
|
|
{
|
|
// Create the sub instruction... does not insert...
|
|
Instruction * Sub
|
|
= BinaryOperator::create(Instruction::Sub, &ArgX, Two,
|
|
"arg");
|
|
|
|
exit_bb->getInstList().push_back(Sub);
|
|
CallFibX2 = new CallInst(FibF, Sub, "fib(x-2)");
|
|
exit_bb->getInstList().push_back(CallFibX2);
|
|
|
|
}
|
|
|
|
// Create the add instruction... does not insert...
|
|
Instruction *Add =
|
|
BinaryOperator::create(Instruction::Add,
|
|
CallFibX1, CallFibX2, "addresult");
|
|
|
|
// explicitly insert it into the basic block...
|
|
exit_bb->getInstList().push_back(Add);
|
|
|
|
// Create the return instruction and add it to the basic block
|
|
exit_bb->getInstList().push_back(new ReturnInst(Add));
|
|
}
|
|
|
|
// Create a branch on the SetCond
|
|
BranchInst* br_inst =
|
|
new BranchInst( true_bb, exit_bb, CondInst );
|
|
|
|
BB->getInstList().push_back( br_inst );
|
|
FibF->getBasicBlockList().push_back(true_bb);
|
|
FibF->getBasicBlockList().push_back(exit_bb);
|
|
}
|
|
|
|
// Now we going to create JIT
|
|
ExistingModuleProvider* MP = new ExistingModuleProvider(M);
|
|
ExecutionEngine* EE = ExecutionEngine::create( MP, false );
|
|
|
|
// Call the `foo' function with argument n:
|
|
std::vector<GenericValue> args(1);
|
|
args[0].IntVal = n;
|
|
|
|
|
|
std::clog << "verifying... ";
|
|
if (verifyModule(*M)) {
|
|
std::cerr << argv[0]
|
|
<< ": assembly parsed, but does not verify as correct!\n";
|
|
return 1;
|
|
}
|
|
else
|
|
std::clog << "OK\n";
|
|
|
|
|
|
std::clog << "We just constructed this LLVM module:\n\n---------\n" << *M;
|
|
std::clog << "---------\nstarting fibonacci("
|
|
<< n << ") with JIT...\n" << std::flush;
|
|
|
|
GenericValue gv = EE->runFunction(FibF, args);
|
|
|
|
// import result of execution:
|
|
std::cout << "Result: " << gv.IntVal << std:: endl;
|
|
|
|
return 0;
|
|
}
|