llvm/lib/Support/StringMap.cpp
Mehdi Amini bf941ea066 Adjust initial size in StringMap constructor to guarantee no grow()
Summary:
StringMap ctor accepts an initialize size, but expect it to be
rounded to the next power of 2. The ctor can handle that directly
instead of expecting clients to round it. Also, since the map will
resize itself when 75% full, take this into account an initialize
a larger initial size to avoid any growth.

Reviewers: dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D18344

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264385 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-25 05:57:57 +00:00

260 lines
9.3 KiB
C++

//===--- StringMap.cpp - String Hash table map implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the StringMap class.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
using namespace llvm;
/// Returns the number of buckets to allocate to ensure that the DenseMap can
/// accommodate \p NumEntries without need to grow().
static unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
// Ensure that "NumEntries * 4 < NumBuckets * 3"
if (NumEntries == 0)
return 0;
// +1 is required because of the strict equality.
// For example if NumEntries is 48, we need to return 401.
return NextPowerOf2(NumEntries * 4 / 3 + 1);
}
StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
ItemSize = itemSize;
// If a size is specified, initialize the table with that many buckets.
if (InitSize) {
// The table will grow when the number of entries reach 3/4 of the number of
// buckets. To guarantee that "InitSize" number of entries can be inserted
// in the table without growing, we allocate just what is needed here.
init(getMinBucketToReserveForEntries(InitSize));
return;
}
// Otherwise, initialize it with zero buckets to avoid the allocation.
TheTable = nullptr;
NumBuckets = 0;
NumItems = 0;
NumTombstones = 0;
}
void StringMapImpl::init(unsigned InitSize) {
assert((InitSize & (InitSize-1)) == 0 &&
"Init Size must be a power of 2 or zero!");
NumBuckets = InitSize ? InitSize : 16;
NumItems = 0;
NumTombstones = 0;
TheTable = (StringMapEntryBase **)calloc(NumBuckets+1,
sizeof(StringMapEntryBase **) +
sizeof(unsigned));
// Allocate one extra bucket, set it to look filled so the iterators stop at
// end.
TheTable[NumBuckets] = (StringMapEntryBase*)2;
}
/// LookupBucketFor - Look up the bucket that the specified string should end
/// up in. If it already exists as a key in the map, the Item pointer for the
/// specified bucket will be non-null. Otherwise, it will be null. In either
/// case, the FullHashValue field of the bucket will be set to the hash value
/// of the string.
unsigned StringMapImpl::LookupBucketFor(StringRef Name) {
unsigned HTSize = NumBuckets;
if (HTSize == 0) { // Hash table unallocated so far?
init(16);
HTSize = NumBuckets;
}
unsigned FullHashValue = HashString(Name);
unsigned BucketNo = FullHashValue & (HTSize-1);
unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
unsigned ProbeAmt = 1;
int FirstTombstone = -1;
while (1) {
StringMapEntryBase *BucketItem = TheTable[BucketNo];
// If we found an empty bucket, this key isn't in the table yet, return it.
if (LLVM_LIKELY(!BucketItem)) {
// If we found a tombstone, we want to reuse the tombstone instead of an
// empty bucket. This reduces probing.
if (FirstTombstone != -1) {
HashTable[FirstTombstone] = FullHashValue;
return FirstTombstone;
}
HashTable[BucketNo] = FullHashValue;
return BucketNo;
}
if (BucketItem == getTombstoneVal()) {
// Skip over tombstones. However, remember the first one we see.
if (FirstTombstone == -1) FirstTombstone = BucketNo;
} else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
// If the full hash value matches, check deeply for a match. The common
// case here is that we are only looking at the buckets (for item info
// being non-null and for the full hash value) not at the items. This
// is important for cache locality.
// Do the comparison like this because Name isn't necessarily
// null-terminated!
char *ItemStr = (char*)BucketItem+ItemSize;
if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) {
// We found a match!
return BucketNo;
}
}
// Okay, we didn't find the item. Probe to the next bucket.
BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
// Use quadratic probing, it has fewer clumping artifacts than linear
// probing and has good cache behavior in the common case.
++ProbeAmt;
}
}
/// FindKey - Look up the bucket that contains the specified key. If it exists
/// in the map, return the bucket number of the key. Otherwise return -1.
/// This does not modify the map.
int StringMapImpl::FindKey(StringRef Key) const {
unsigned HTSize = NumBuckets;
if (HTSize == 0) return -1; // Really empty table?
unsigned FullHashValue = HashString(Key);
unsigned BucketNo = FullHashValue & (HTSize-1);
unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
unsigned ProbeAmt = 1;
while (1) {
StringMapEntryBase *BucketItem = TheTable[BucketNo];
// If we found an empty bucket, this key isn't in the table yet, return.
if (LLVM_LIKELY(!BucketItem))
return -1;
if (BucketItem == getTombstoneVal()) {
// Ignore tombstones.
} else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
// If the full hash value matches, check deeply for a match. The common
// case here is that we are only looking at the buckets (for item info
// being non-null and for the full hash value) not at the items. This
// is important for cache locality.
// Do the comparison like this because NameStart isn't necessarily
// null-terminated!
char *ItemStr = (char*)BucketItem+ItemSize;
if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) {
// We found a match!
return BucketNo;
}
}
// Okay, we didn't find the item. Probe to the next bucket.
BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
// Use quadratic probing, it has fewer clumping artifacts than linear
// probing and has good cache behavior in the common case.
++ProbeAmt;
}
}
/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
/// delete it. This aborts if the value isn't in the table.
void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
const char *VStr = (char*)V + ItemSize;
StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
(void)V2;
assert(V == V2 && "Didn't find key?");
}
/// RemoveKey - Remove the StringMapEntry for the specified key from the
/// table, returning it. If the key is not in the table, this returns null.
StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) {
int Bucket = FindKey(Key);
if (Bucket == -1) return nullptr;
StringMapEntryBase *Result = TheTable[Bucket];
TheTable[Bucket] = getTombstoneVal();
--NumItems;
++NumTombstones;
assert(NumItems + NumTombstones <= NumBuckets);
return Result;
}
/// RehashTable - Grow the table, redistributing values into the buckets with
/// the appropriate mod-of-hashtable-size.
unsigned StringMapImpl::RehashTable(unsigned BucketNo) {
unsigned NewSize;
unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
// If the hash table is now more than 3/4 full, or if fewer than 1/8 of
// the buckets are empty (meaning that many are filled with tombstones),
// grow/rehash the table.
if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) {
NewSize = NumBuckets*2;
} else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <=
NumBuckets / 8)) {
NewSize = NumBuckets;
} else {
return BucketNo;
}
unsigned NewBucketNo = BucketNo;
// Allocate one extra bucket which will always be non-empty. This allows the
// iterators to stop at end.
StringMapEntryBase **NewTableArray =
(StringMapEntryBase **)calloc(NewSize+1, sizeof(StringMapEntryBase *) +
sizeof(unsigned));
unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1);
NewTableArray[NewSize] = (StringMapEntryBase*)2;
// Rehash all the items into their new buckets. Luckily :) we already have
// the hash values available, so we don't have to rehash any strings.
for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
StringMapEntryBase *Bucket = TheTable[I];
if (Bucket && Bucket != getTombstoneVal()) {
// Fast case, bucket available.
unsigned FullHash = HashTable[I];
unsigned NewBucket = FullHash & (NewSize-1);
if (!NewTableArray[NewBucket]) {
NewTableArray[FullHash & (NewSize-1)] = Bucket;
NewHashArray[FullHash & (NewSize-1)] = FullHash;
if (I == BucketNo)
NewBucketNo = NewBucket;
continue;
}
// Otherwise probe for a spot.
unsigned ProbeSize = 1;
do {
NewBucket = (NewBucket + ProbeSize++) & (NewSize-1);
} while (NewTableArray[NewBucket]);
// Finally found a slot. Fill it in.
NewTableArray[NewBucket] = Bucket;
NewHashArray[NewBucket] = FullHash;
if (I == BucketNo)
NewBucketNo = NewBucket;
}
}
free(TheTable);
TheTable = NewTableArray;
NumBuckets = NewSize;
NumTombstones = 0;
return NewBucketNo;
}