mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-12 14:17:59 +00:00
42f75a926a
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29072 91177308-0d34-0410-b5e6-96231b3b80d8
1619 lines
63 KiB
C++
1619 lines
63 KiB
C++
//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the TargetLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
TargetLowering::TargetLowering(TargetMachine &tm)
|
|
: TM(tm), TD(TM.getTargetData()) {
|
|
assert(ISD::BUILTIN_OP_END <= 156 &&
|
|
"Fixed size array in TargetLowering is not large enough!");
|
|
// All operations default to being supported.
|
|
memset(OpActions, 0, sizeof(OpActions));
|
|
|
|
IsLittleEndian = TD->isLittleEndian();
|
|
ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
|
|
ShiftAmtHandling = Undefined;
|
|
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
|
|
memset(TargetDAGCombineArray, 0,
|
|
sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
|
|
maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
|
|
allowUnalignedMemoryAccesses = false;
|
|
UseUnderscoreSetJmpLongJmp = false;
|
|
IntDivIsCheap = false;
|
|
Pow2DivIsCheap = false;
|
|
StackPointerRegisterToSaveRestore = 0;
|
|
SchedPreferenceInfo = SchedulingForLatency;
|
|
}
|
|
|
|
TargetLowering::~TargetLowering() {}
|
|
|
|
/// setValueTypeAction - Set the action for a particular value type. This
|
|
/// assumes an action has not already been set for this value type.
|
|
static void SetValueTypeAction(MVT::ValueType VT,
|
|
TargetLowering::LegalizeAction Action,
|
|
TargetLowering &TLI,
|
|
MVT::ValueType *TransformToType,
|
|
TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
|
|
ValueTypeActions.setTypeAction(VT, Action);
|
|
if (Action == TargetLowering::Promote) {
|
|
MVT::ValueType PromoteTo;
|
|
if (VT == MVT::f32)
|
|
PromoteTo = MVT::f64;
|
|
else {
|
|
unsigned LargerReg = VT+1;
|
|
while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
|
|
++LargerReg;
|
|
assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
|
|
"Nothing to promote to??");
|
|
}
|
|
PromoteTo = (MVT::ValueType)LargerReg;
|
|
}
|
|
|
|
assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
|
|
MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
|
|
"Can only promote from int->int or fp->fp!");
|
|
assert(VT < PromoteTo && "Must promote to a larger type!");
|
|
TransformToType[VT] = PromoteTo;
|
|
} else if (Action == TargetLowering::Expand) {
|
|
assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
|
|
"Cannot expand this type: target must support SOME integer reg!");
|
|
// Expand to the next smaller integer type!
|
|
TransformToType[VT] = (MVT::ValueType)(VT-1);
|
|
}
|
|
}
|
|
|
|
|
|
/// computeRegisterProperties - Once all of the register classes are added,
|
|
/// this allows us to compute derived properties we expose.
|
|
void TargetLowering::computeRegisterProperties() {
|
|
assert(MVT::LAST_VALUETYPE <= 32 &&
|
|
"Too many value types for ValueTypeActions to hold!");
|
|
|
|
// Everything defaults to one.
|
|
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
|
|
NumElementsForVT[i] = 1;
|
|
|
|
// Find the largest integer register class.
|
|
unsigned LargestIntReg = MVT::i128;
|
|
for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
|
|
assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
|
|
|
|
// Every integer value type larger than this largest register takes twice as
|
|
// many registers to represent as the previous ValueType.
|
|
unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
|
|
for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
|
|
NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
|
|
|
|
// Inspect all of the ValueType's possible, deciding how to process them.
|
|
for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
|
|
// If we are expanding this type, expand it!
|
|
if (getNumElements((MVT::ValueType)IntReg) != 1)
|
|
SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
|
|
ValueTypeActions);
|
|
else if (!isTypeLegal((MVT::ValueType)IntReg))
|
|
// Otherwise, if we don't have native support, we must promote to a
|
|
// larger type.
|
|
SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
|
|
TransformToType, ValueTypeActions);
|
|
else
|
|
TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
|
|
|
|
// If the target does not have native support for F32, promote it to F64.
|
|
if (!isTypeLegal(MVT::f32))
|
|
SetValueTypeAction(MVT::f32, Promote, *this,
|
|
TransformToType, ValueTypeActions);
|
|
else
|
|
TransformToType[MVT::f32] = MVT::f32;
|
|
|
|
// Set MVT::Vector to always be Expanded
|
|
SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
|
|
ValueTypeActions);
|
|
|
|
// Loop over all of the legal vector value types, specifying an identity type
|
|
// transformation.
|
|
for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
|
|
if (isTypeLegal((MVT::ValueType)i))
|
|
TransformToType[i] = (MVT::ValueType)i;
|
|
}
|
|
|
|
assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
|
|
TransformToType[MVT::f64] = MVT::f64;
|
|
}
|
|
|
|
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
return NULL;
|
|
}
|
|
|
|
/// getPackedTypeBreakdown - Packed types are broken down into some number of
|
|
/// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
|
|
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
|
|
///
|
|
/// This method returns the number and type of the resultant breakdown.
|
|
///
|
|
unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy,
|
|
MVT::ValueType &PTyElementVT,
|
|
MVT::ValueType &PTyLegalElementVT) const {
|
|
// Figure out the right, legal destination reg to copy into.
|
|
unsigned NumElts = PTy->getNumElements();
|
|
MVT::ValueType EltTy = getValueType(PTy->getElementType());
|
|
|
|
unsigned NumVectorRegs = 1;
|
|
|
|
// Divide the input until we get to a supported size. This will always
|
|
// end with a scalar if the target doesn't support vectors.
|
|
while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
|
|
NumElts >>= 1;
|
|
NumVectorRegs <<= 1;
|
|
}
|
|
|
|
MVT::ValueType VT;
|
|
if (NumElts == 1) {
|
|
VT = EltTy;
|
|
} else {
|
|
VT = getVectorType(EltTy, NumElts);
|
|
}
|
|
PTyElementVT = VT;
|
|
|
|
MVT::ValueType DestVT = getTypeToTransformTo(VT);
|
|
PTyLegalElementVT = DestVT;
|
|
if (DestVT < VT) {
|
|
// Value is expanded, e.g. i64 -> i16.
|
|
return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
|
|
} else {
|
|
// Otherwise, promotion or legal types use the same number of registers as
|
|
// the vector decimated to the appropriate level.
|
|
return NumVectorRegs;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Optimization Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ShrinkDemandedConstant - Check to see if the specified operand of the
|
|
/// specified instruction is a constant integer. If so, check to see if there
|
|
/// are any bits set in the constant that are not demanded. If so, shrink the
|
|
/// constant and return true.
|
|
bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
|
|
uint64_t Demanded) {
|
|
// FIXME: ISD::SELECT, ISD::SELECT_CC
|
|
switch(Op.getOpcode()) {
|
|
default: break;
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
|
if ((~Demanded & C->getValue()) != 0) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
|
|
DAG.getConstant(Demanded & C->getValue(),
|
|
VT));
|
|
return CombineTo(Op, New);
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
|
|
/// DemandedMask bits of the result of Op are ever used downstream. If we can
|
|
/// use this information to simplify Op, create a new simplified DAG node and
|
|
/// return true, returning the original and new nodes in Old and New. Otherwise,
|
|
/// analyze the expression and return a mask of KnownOne and KnownZero bits for
|
|
/// the expression (used to simplify the caller). The KnownZero/One bits may
|
|
/// only be accurate for those bits in the DemandedMask.
|
|
bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
|
|
uint64_t &KnownZero,
|
|
uint64_t &KnownOne,
|
|
TargetLoweringOpt &TLO,
|
|
unsigned Depth) const {
|
|
KnownZero = KnownOne = 0; // Don't know anything.
|
|
// Other users may use these bits.
|
|
if (!Op.Val->hasOneUse()) {
|
|
if (Depth != 0) {
|
|
// If not at the root, Just compute the KnownZero/KnownOne bits to
|
|
// simplify things downstream.
|
|
ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
|
|
return false;
|
|
}
|
|
// If this is the root being simplified, allow it to have multiple uses,
|
|
// just set the DemandedMask to all bits.
|
|
DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
|
|
} else if (DemandedMask == 0) {
|
|
// Not demanding any bits from Op.
|
|
if (Op.getOpcode() != ISD::UNDEF)
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
|
|
return false;
|
|
} else if (Depth == 6) { // Limit search depth.
|
|
return false;
|
|
}
|
|
|
|
uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
|
|
switch (Op.getOpcode()) {
|
|
case ISD::Constant:
|
|
// We know all of the bits for a constant!
|
|
KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
|
|
KnownZero = ~KnownOne & DemandedMask;
|
|
return false; // Don't fall through, will infinitely loop.
|
|
case ISD::AND:
|
|
// If the RHS is a constant, check to see if the LHS would be zero without
|
|
// using the bits from the RHS. Below, we use knowledge about the RHS to
|
|
// simplify the LHS, here we're using information from the LHS to simplify
|
|
// the RHS.
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
uint64_t LHSZero, LHSOne;
|
|
ComputeMaskedBits(Op.getOperand(0), DemandedMask,
|
|
LHSZero, LHSOne, Depth+1);
|
|
// If the LHS already has zeros where RHSC does, this and is dead.
|
|
if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
// If any of the set bits in the RHS are known zero on the LHS, shrink
|
|
// the constant.
|
|
if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
|
|
return true;
|
|
}
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
|
KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
|
|
KnownZero2, KnownOne2, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If all of the demanded bits are known one on one side, return the other.
|
|
// These bits cannot contribute to the result of the 'and'.
|
|
if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
|
|
return TLO.CombineTo(Op, Op.getOperand(1));
|
|
// If all of the demanded bits in the inputs are known zeros, return zero.
|
|
if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
|
|
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
|
|
// If the RHS is a constant, see if we can simplify it.
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
|
|
return true;
|
|
|
|
// Output known-1 bits are only known if set in both the LHS & RHS.
|
|
KnownOne &= KnownOne2;
|
|
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
|
KnownZero |= KnownZero2;
|
|
break;
|
|
case ISD::OR:
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
|
KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
|
|
KnownZero2, KnownOne2, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If all of the demanded bits are known zero on one side, return the other.
|
|
// These bits cannot contribute to the result of the 'or'.
|
|
if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
|
|
return TLO.CombineTo(Op, Op.getOperand(1));
|
|
// If all of the potentially set bits on one side are known to be set on
|
|
// the other side, just use the 'other' side.
|
|
if ((DemandedMask & (~KnownZero) & KnownOne2) ==
|
|
(DemandedMask & (~KnownZero)))
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
if ((DemandedMask & (~KnownZero2) & KnownOne) ==
|
|
(DemandedMask & (~KnownZero2)))
|
|
return TLO.CombineTo(Op, Op.getOperand(1));
|
|
// If the RHS is a constant, see if we can simplify it.
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
|
return true;
|
|
|
|
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
|
KnownZero &= KnownZero2;
|
|
// Output known-1 are known to be set if set in either the LHS | RHS.
|
|
KnownOne |= KnownOne2;
|
|
break;
|
|
case ISD::XOR:
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
|
KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
|
|
KnownOne2, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If all of the demanded bits are known zero on one side, return the other.
|
|
// These bits cannot contribute to the result of the 'xor'.
|
|
if ((DemandedMask & KnownZero) == DemandedMask)
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
if ((DemandedMask & KnownZero2) == DemandedMask)
|
|
return TLO.CombineTo(Op, Op.getOperand(1));
|
|
|
|
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
|
KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
|
|
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
|
KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
|
|
|
|
// If all of the unknown bits are known to be zero on one side or the other
|
|
// (but not both) turn this into an *inclusive* or.
|
|
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
|
|
if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
|
|
if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
|
|
Op.getOperand(0),
|
|
Op.getOperand(1)));
|
|
// If all of the demanded bits on one side are known, and all of the set
|
|
// bits on that side are also known to be set on the other side, turn this
|
|
// into an AND, as we know the bits will be cleared.
|
|
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
|
|
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
|
|
if ((KnownOne & KnownOne2) == KnownOne) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
|
|
ANDC));
|
|
}
|
|
}
|
|
|
|
// If the RHS is a constant, see if we can simplify it.
|
|
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
|
return true;
|
|
|
|
KnownZero = KnownZeroOut;
|
|
KnownOne = KnownOneOut;
|
|
break;
|
|
case ISD::SETCC:
|
|
// If we know the result of a setcc has the top bits zero, use this info.
|
|
if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
|
|
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
|
break;
|
|
case ISD::SELECT:
|
|
if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
|
|
KnownOne, TLO, Depth+1))
|
|
return true;
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
|
|
KnownOne2, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If the operands are constants, see if we can simplify them.
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
|
return true;
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
KnownOne &= KnownOne2;
|
|
KnownZero &= KnownZero2;
|
|
break;
|
|
case ISD::SELECT_CC:
|
|
if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
|
|
KnownOne, TLO, Depth+1))
|
|
return true;
|
|
if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
|
|
KnownOne2, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If the operands are constants, see if we can simplify them.
|
|
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
|
return true;
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
KnownOne &= KnownOne2;
|
|
KnownZero &= KnownZero2;
|
|
break;
|
|
case ISD::SHL:
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
return true;
|
|
KnownZero <<= SA->getValue();
|
|
KnownOne <<= SA->getValue();
|
|
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
|
|
}
|
|
break;
|
|
case ISD::SRL:
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned ShAmt = SA->getValue();
|
|
|
|
// Compute the new bits that are at the top now.
|
|
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
|
if (SimplifyDemandedBits(Op.getOperand(0),
|
|
(DemandedMask << ShAmt) & TypeMask,
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero &= TypeMask;
|
|
KnownOne &= TypeMask;
|
|
KnownZero >>= ShAmt;
|
|
KnownOne >>= ShAmt;
|
|
|
|
uint64_t HighBits = (1ULL << ShAmt)-1;
|
|
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
|
|
KnownZero |= HighBits; // High bits known zero.
|
|
}
|
|
break;
|
|
case ISD::SRA:
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned ShAmt = SA->getValue();
|
|
|
|
// Compute the new bits that are at the top now.
|
|
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
|
|
|
uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
|
|
|
|
// If any of the demanded bits are produced by the sign extension, we also
|
|
// demand the input sign bit.
|
|
uint64_t HighBits = (1ULL << ShAmt)-1;
|
|
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
|
|
if (HighBits & DemandedMask)
|
|
InDemandedMask |= MVT::getIntVTSignBit(VT);
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero &= TypeMask;
|
|
KnownOne &= TypeMask;
|
|
KnownZero >>= ShAmt;
|
|
KnownOne >>= ShAmt;
|
|
|
|
// Handle the sign bits.
|
|
uint64_t SignBit = MVT::getIntVTSignBit(VT);
|
|
SignBit >>= ShAmt; // Adjust to where it is now in the mask.
|
|
|
|
// If the input sign bit is known to be zero, or if none of the top bits
|
|
// are demanded, turn this into an unsigned shift right.
|
|
if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
|
|
Op.getOperand(1)));
|
|
} else if (KnownOne & SignBit) { // New bits are known one.
|
|
KnownOne |= HighBits;
|
|
}
|
|
}
|
|
break;
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
// Sign extension. Compute the demanded bits in the result that are not
|
|
// present in the input.
|
|
uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
|
|
|
|
// If none of the extended bits are demanded, eliminate the sextinreg.
|
|
if (NewBits == 0)
|
|
return TLO.CombineTo(Op, Op.getOperand(0));
|
|
|
|
uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
|
|
int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
|
|
|
|
// Since the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
InputDemandedBits |= InSignBit;
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If the sign bit of the input is known set or clear, then we know the
|
|
// top bits of the result.
|
|
|
|
// If the input sign bit is known zero, convert this into a zero extension.
|
|
if (KnownZero & InSignBit)
|
|
return TLO.CombineTo(Op,
|
|
TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
|
|
|
|
if (KnownOne & InSignBit) { // Input sign bit known set
|
|
KnownOne |= NewBits;
|
|
KnownZero &= ~NewBits;
|
|
} else { // Input sign bit unknown
|
|
KnownZero &= ~NewBits;
|
|
KnownOne &= ~NewBits;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::CTTZ:
|
|
case ISD::CTLZ:
|
|
case ISD::CTPOP: {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
|
|
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
|
|
KnownOne = 0;
|
|
break;
|
|
}
|
|
case ISD::ZEXTLOAD: {
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
|
|
KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
|
|
break;
|
|
}
|
|
case ISD::ZERO_EXTEND: {
|
|
uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
|
|
|
|
// If none of the top bits are demanded, convert this into an any_extend.
|
|
uint64_t NewBits = (~InMask) & DemandedMask;
|
|
if (NewBits == 0)
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
|
|
Op.getValueType(),
|
|
Op.getOperand(0)));
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero |= NewBits;
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND: {
|
|
MVT::ValueType InVT = Op.getOperand(0).getValueType();
|
|
uint64_t InMask = MVT::getIntVTBitMask(InVT);
|
|
uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
|
|
uint64_t NewBits = (~InMask) & DemandedMask;
|
|
|
|
// If none of the top bits are demanded, convert this into an any_extend.
|
|
if (NewBits == 0)
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
|
|
Op.getOperand(0)));
|
|
|
|
// Since some of the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
uint64_t InDemandedBits = DemandedMask & InMask;
|
|
InDemandedBits |= InSignBit;
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
|
|
KnownOne, TLO, Depth+1))
|
|
return true;
|
|
|
|
// If the sign bit is known zero, convert this to a zero extend.
|
|
if (KnownZero & InSignBit)
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
|
|
Op.getValueType(),
|
|
Op.getOperand(0)));
|
|
|
|
// If the sign bit is known one, the top bits match.
|
|
if (KnownOne & InSignBit) {
|
|
KnownOne |= NewBits;
|
|
KnownZero &= ~NewBits;
|
|
} else { // Otherwise, top bits aren't known.
|
|
KnownOne &= ~NewBits;
|
|
KnownZero &= ~NewBits;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::ANY_EXTEND: {
|
|
uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
break;
|
|
}
|
|
case ISD::TRUNCATE: {
|
|
// Simplify the input, using demanded bit information, and compute the known
|
|
// zero/one bits live out.
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
return true;
|
|
|
|
// If the input is only used by this truncate, see if we can shrink it based
|
|
// on the known demanded bits.
|
|
if (Op.getOperand(0).Val->hasOneUse()) {
|
|
SDOperand In = Op.getOperand(0);
|
|
switch (In.getOpcode()) {
|
|
default: break;
|
|
case ISD::SRL:
|
|
// Shrink SRL by a constant if none of the high bits shifted in are
|
|
// demanded.
|
|
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
|
|
uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
|
|
HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
|
|
HighBits >>= ShAmt->getValue();
|
|
|
|
if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
|
|
(DemandedMask & HighBits) == 0) {
|
|
// None of the shifted in bits are needed. Add a truncate of the
|
|
// shift input, then shift it.
|
|
SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
|
|
Op.getValueType(),
|
|
In.getOperand(0));
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
|
|
NewTrunc, In.getOperand(1)));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
|
|
KnownZero &= OutMask;
|
|
KnownOne &= OutMask;
|
|
break;
|
|
}
|
|
case ISD::AssertZext: {
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
uint64_t InMask = MVT::getIntVTBitMask(VT);
|
|
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
|
|
KnownZero, KnownOne, TLO, Depth+1))
|
|
return true;
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero |= ~InMask & DemandedMask;
|
|
break;
|
|
}
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_VOID:
|
|
// Just use ComputeMaskedBits to compute output bits.
|
|
ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
|
|
break;
|
|
}
|
|
|
|
// If we know the value of all of the demanded bits, return this as a
|
|
// constant.
|
|
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
|
|
return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
|
|
|
|
return false;
|
|
}
|
|
|
|
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
|
|
/// this predicate to simplify operations downstream. Mask is known to be zero
|
|
/// for bits that V cannot have.
|
|
bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
|
|
unsigned Depth) const {
|
|
uint64_t KnownZero, KnownOne;
|
|
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
return (KnownZero & Mask) == Mask;
|
|
}
|
|
|
|
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
|
|
/// known to be either zero or one and return them in the KnownZero/KnownOne
|
|
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
|
|
/// processing.
|
|
void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
|
|
uint64_t &KnownZero, uint64_t &KnownOne,
|
|
unsigned Depth) const {
|
|
KnownZero = KnownOne = 0; // Don't know anything.
|
|
if (Depth == 6 || Mask == 0)
|
|
return; // Limit search depth.
|
|
|
|
uint64_t KnownZero2, KnownOne2;
|
|
|
|
switch (Op.getOpcode()) {
|
|
case ISD::Constant:
|
|
// We know all of the bits for a constant!
|
|
KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
|
|
KnownZero = ~KnownOne & Mask;
|
|
return;
|
|
case ISD::AND:
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
Mask &= ~KnownZero;
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-1 bits are only known if set in both the LHS & RHS.
|
|
KnownOne &= KnownOne2;
|
|
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
|
KnownZero |= KnownZero2;
|
|
return;
|
|
case ISD::OR:
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
Mask &= ~KnownOne;
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
|
KnownZero &= KnownZero2;
|
|
// Output known-1 are known to be set if set in either the LHS | RHS.
|
|
KnownOne |= KnownOne2;
|
|
return;
|
|
case ISD::XOR: {
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
|
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
|
|
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
|
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
|
|
KnownZero = KnownZeroOut;
|
|
return;
|
|
}
|
|
case ISD::SELECT:
|
|
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
KnownOne &= KnownOne2;
|
|
KnownZero &= KnownZero2;
|
|
return;
|
|
case ISD::SELECT_CC:
|
|
ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
KnownOne &= KnownOne2;
|
|
KnownZero &= KnownZero2;
|
|
return;
|
|
case ISD::SETCC:
|
|
// If we know the result of a setcc has the top bits zero, use this info.
|
|
if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
|
|
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
|
return;
|
|
case ISD::SHL:
|
|
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero <<= SA->getValue();
|
|
KnownOne <<= SA->getValue();
|
|
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
|
|
}
|
|
return;
|
|
case ISD::SRL:
|
|
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned ShAmt = SA->getValue();
|
|
|
|
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero &= TypeMask;
|
|
KnownOne &= TypeMask;
|
|
KnownZero >>= ShAmt;
|
|
KnownOne >>= ShAmt;
|
|
|
|
uint64_t HighBits = (1ULL << ShAmt)-1;
|
|
HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
|
|
KnownZero |= HighBits; // High bits known zero.
|
|
}
|
|
return;
|
|
case ISD::SRA:
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned ShAmt = SA->getValue();
|
|
|
|
// Compute the new bits that are at the top now.
|
|
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
|
|
|
uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
|
|
// If any of the demanded bits are produced by the sign extension, we also
|
|
// demand the input sign bit.
|
|
uint64_t HighBits = (1ULL << ShAmt)-1;
|
|
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
|
|
if (HighBits & Mask)
|
|
InDemandedMask |= MVT::getIntVTSignBit(VT);
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
|
|
Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero &= TypeMask;
|
|
KnownOne &= TypeMask;
|
|
KnownZero >>= ShAmt;
|
|
KnownOne >>= ShAmt;
|
|
|
|
// Handle the sign bits.
|
|
uint64_t SignBit = MVT::getIntVTSignBit(VT);
|
|
SignBit >>= ShAmt; // Adjust to where it is now in the mask.
|
|
|
|
if (KnownZero & SignBit) {
|
|
KnownZero |= HighBits; // New bits are known zero.
|
|
} else if (KnownOne & SignBit) {
|
|
KnownOne |= HighBits; // New bits are known one.
|
|
}
|
|
}
|
|
return;
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
|
|
// Sign extension. Compute the demanded bits in the result that are not
|
|
// present in the input.
|
|
uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
|
|
|
|
uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
|
|
int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
|
|
|
|
// If the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
if (NewBits)
|
|
InputDemandedBits |= InSignBit;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If the sign bit of the input is known set or clear, then we know the
|
|
// top bits of the result.
|
|
if (KnownZero & InSignBit) { // Input sign bit known clear
|
|
KnownZero |= NewBits;
|
|
KnownOne &= ~NewBits;
|
|
} else if (KnownOne & InSignBit) { // Input sign bit known set
|
|
KnownOne |= NewBits;
|
|
KnownZero &= ~NewBits;
|
|
} else { // Input sign bit unknown
|
|
KnownZero &= ~NewBits;
|
|
KnownOne &= ~NewBits;
|
|
}
|
|
return;
|
|
}
|
|
case ISD::CTTZ:
|
|
case ISD::CTLZ:
|
|
case ISD::CTPOP: {
|
|
MVT::ValueType VT = Op.getValueType();
|
|
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
|
|
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
|
|
KnownOne = 0;
|
|
return;
|
|
}
|
|
case ISD::ZEXTLOAD: {
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
|
|
KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
|
|
return;
|
|
}
|
|
case ISD::ZERO_EXTEND: {
|
|
uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
|
|
uint64_t NewBits = (~InMask) & Mask;
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
|
|
KnownOne, Depth+1);
|
|
KnownZero |= NewBits & Mask;
|
|
KnownOne &= ~NewBits;
|
|
return;
|
|
}
|
|
case ISD::SIGN_EXTEND: {
|
|
MVT::ValueType InVT = Op.getOperand(0).getValueType();
|
|
unsigned InBits = MVT::getSizeInBits(InVT);
|
|
uint64_t InMask = MVT::getIntVTBitMask(InVT);
|
|
uint64_t InSignBit = 1ULL << (InBits-1);
|
|
uint64_t NewBits = (~InMask) & Mask;
|
|
uint64_t InDemandedBits = Mask & InMask;
|
|
|
|
// If any of the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
if (NewBits & Mask)
|
|
InDemandedBits |= InSignBit;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
|
|
KnownOne, Depth+1);
|
|
// If the sign bit is known zero or one, the top bits match.
|
|
if (KnownZero & InSignBit) {
|
|
KnownZero |= NewBits;
|
|
KnownOne &= ~NewBits;
|
|
} else if (KnownOne & InSignBit) {
|
|
KnownOne |= NewBits;
|
|
KnownZero &= ~NewBits;
|
|
} else { // Otherwise, top bits aren't known.
|
|
KnownOne &= ~NewBits;
|
|
KnownZero &= ~NewBits;
|
|
}
|
|
return;
|
|
}
|
|
case ISD::ANY_EXTEND: {
|
|
MVT::ValueType VT = Op.getOperand(0).getValueType();
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
|
|
KnownZero, KnownOne, Depth+1);
|
|
return;
|
|
}
|
|
case ISD::TRUNCATE: {
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
|
|
KnownZero &= OutMask;
|
|
KnownOne &= OutMask;
|
|
break;
|
|
}
|
|
case ISD::AssertZext: {
|
|
MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
uint64_t InMask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
|
|
KnownOne, Depth+1);
|
|
KnownZero |= (~InMask) & Mask;
|
|
return;
|
|
}
|
|
case ISD::ADD: {
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-0 bits are known if clear or set in both the low clear bits
|
|
// common to both LHS & RHS. For example, 8+(X<<3) is known to have the
|
|
// low 3 bits clear.
|
|
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
|
|
CountTrailingZeros_64(~KnownZero2));
|
|
|
|
KnownZero = (1ULL << KnownZeroOut) - 1;
|
|
KnownOne = 0;
|
|
return;
|
|
}
|
|
case ISD::SUB: {
|
|
ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
|
|
if (!CLHS) return;
|
|
|
|
// We know that the top bits of C-X are clear if X contains less bits
|
|
// than C (i.e. no wrap-around can happen). For example, 20-X is
|
|
// positive if we can prove that X is >= 0 and < 16.
|
|
MVT::ValueType VT = CLHS->getValueType(0);
|
|
if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
|
|
unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
|
|
uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
|
|
MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
|
|
|
|
// If all of the MaskV bits are known to be zero, then we know the output
|
|
// top bits are zero, because we now know that the output is from [0-C].
|
|
if ((KnownZero & MaskV) == MaskV) {
|
|
unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
|
|
KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
|
|
KnownOne = 0; // No one bits known.
|
|
} else {
|
|
KnownZero = KnownOne = 0; // Otherwise, nothing known.
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
// Allow the target to implement this method for its nodes.
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_VOID:
|
|
computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
|
|
/// in Mask are known to be either zero or one and return them in the
|
|
/// KnownZero/KnownOne bitsets.
|
|
void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
|
|
uint64_t Mask,
|
|
uint64_t &KnownZero,
|
|
uint64_t &KnownOne,
|
|
unsigned Depth) const {
|
|
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
|
|
"Should use MaskedValueIsZero if you don't know whether Op"
|
|
" is a target node!");
|
|
KnownZero = 0;
|
|
KnownOne = 0;
|
|
}
|
|
|
|
/// ComputeNumSignBits - Return the number of times the sign bit of the
|
|
/// register is replicated into the other bits. We know that at least 1 bit
|
|
/// is always equal to the sign bit (itself), but other cases can give us
|
|
/// information. For example, immediately after an "SRA X, 2", we know that
|
|
/// the top 3 bits are all equal to each other, so we return 3.
|
|
unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
|
|
MVT::ValueType VT = Op.getValueType();
|
|
assert(MVT::isInteger(VT) && "Invalid VT!");
|
|
unsigned VTBits = MVT::getSizeInBits(VT);
|
|
unsigned Tmp, Tmp2;
|
|
|
|
if (Depth == 6)
|
|
return 1; // Limit search depth.
|
|
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ISD::AssertSext:
|
|
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
|
|
return VTBits-Tmp+1;
|
|
case ISD::AssertZext:
|
|
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
|
|
return VTBits-Tmp;
|
|
|
|
case ISD::SEXTLOAD: // '17' bits known
|
|
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
|
|
return VTBits-Tmp+1;
|
|
case ISD::ZEXTLOAD: // '16' bits known
|
|
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
|
|
return VTBits-Tmp;
|
|
|
|
case ISD::Constant: {
|
|
uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
|
|
// If negative, invert the bits, then look at it.
|
|
if (Val & MVT::getIntVTSignBit(VT))
|
|
Val = ~Val;
|
|
|
|
// Shift the bits so they are the leading bits in the int64_t.
|
|
Val <<= 64-VTBits;
|
|
|
|
// Return # leading zeros. We use 'min' here in case Val was zero before
|
|
// shifting. We don't want to return '64' as for an i32 "0".
|
|
return std::min(VTBits, CountLeadingZeros_64(Val));
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND:
|
|
Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
|
|
return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
|
|
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
// Max of the input and what this extends.
|
|
Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
|
|
Tmp = VTBits-Tmp+1;
|
|
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
return std::max(Tmp, Tmp2);
|
|
|
|
case ISD::SRA:
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
// SRA X, C -> adds C sign bits.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
Tmp += C->getValue();
|
|
if (Tmp > VTBits) Tmp = VTBits;
|
|
}
|
|
return Tmp;
|
|
case ISD::SHL:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
// shl destroys sign bits.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (C->getValue() >= VTBits || // Bad shift.
|
|
C->getValue() >= Tmp) break; // Shifted all sign bits out.
|
|
return Tmp - C->getValue();
|
|
}
|
|
break;
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: // NOT is handled here.
|
|
// Logical binary ops preserve the number of sign bits.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
return std::min(Tmp, Tmp2);
|
|
|
|
case ISD::SELECT:
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
return std::min(Tmp, Tmp2);
|
|
|
|
case ISD::SETCC:
|
|
// If setcc returns 0/-1, all bits are sign bits.
|
|
if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
|
|
return VTBits;
|
|
break;
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
unsigned RotAmt = C->getValue() & (VTBits-1);
|
|
|
|
// Handle rotate right by N like a rotate left by 32-N.
|
|
if (Op.getOpcode() == ISD::ROTR)
|
|
RotAmt = (VTBits-RotAmt) & (VTBits-1);
|
|
|
|
// If we aren't rotating out all of the known-in sign bits, return the
|
|
// number that are left. This handles rotl(sext(x), 1) for example.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp > RotAmt+1) return Tmp-RotAmt;
|
|
}
|
|
break;
|
|
case ISD::ADD:
|
|
// Add can have at most one carry bit. Thus we know that the output
|
|
// is, at worst, one more bit than the inputs.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
|
|
// Special case decrementing a value (ADD X, -1):
|
|
if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
|
|
if (CRHS->isAllOnesValue()) {
|
|
uint64_t KnownZero, KnownOne;
|
|
uint64_t Mask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
// If the input is known to be 0 or 1, the output is 0/-1, which is all
|
|
// sign bits set.
|
|
if ((KnownZero|1) == Mask)
|
|
return VTBits;
|
|
|
|
// If we are subtracting one from a positive number, there is no carry
|
|
// out of the result.
|
|
if (KnownZero & MVT::getIntVTSignBit(VT))
|
|
return Tmp;
|
|
}
|
|
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
if (Tmp2 == 1) return 1;
|
|
return std::min(Tmp, Tmp2)-1;
|
|
break;
|
|
|
|
case ISD::SUB:
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
if (Tmp2 == 1) return 1;
|
|
|
|
// Handle NEG.
|
|
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
|
|
if (CLHS->getValue() == 0) {
|
|
uint64_t KnownZero, KnownOne;
|
|
uint64_t Mask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
// If the input is known to be 0 or 1, the output is 0/-1, which is all
|
|
// sign bits set.
|
|
if ((KnownZero|1) == Mask)
|
|
return VTBits;
|
|
|
|
// If the input is known to be positive (the sign bit is known clear),
|
|
// the output of the NEG has the same number of sign bits as the input.
|
|
if (KnownZero & MVT::getIntVTSignBit(VT))
|
|
return Tmp2;
|
|
|
|
// Otherwise, we treat this like a SUB.
|
|
}
|
|
|
|
// Sub can have at most one carry bit. Thus we know that the output
|
|
// is, at worst, one more bit than the inputs.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
return std::min(Tmp, Tmp2)-1;
|
|
break;
|
|
case ISD::TRUNCATE:
|
|
// FIXME: it's tricky to do anything useful for this, but it is an important
|
|
// case for targets like X86.
|
|
break;
|
|
}
|
|
|
|
// Allow the target to implement this method for its nodes.
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) {
|
|
unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
|
|
if (NumBits > 1) return NumBits;
|
|
}
|
|
|
|
// Finally, if we can prove that the top bits of the result are 0's or 1's,
|
|
// use this information.
|
|
uint64_t KnownZero, KnownOne;
|
|
uint64_t Mask = MVT::getIntVTBitMask(VT);
|
|
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
|
|
|
|
uint64_t SignBit = MVT::getIntVTSignBit(VT);
|
|
if (KnownZero & SignBit) { // SignBit is 0
|
|
Mask = KnownZero;
|
|
} else if (KnownOne & SignBit) { // SignBit is 1;
|
|
Mask = KnownOne;
|
|
} else {
|
|
// Nothing known.
|
|
return 1;
|
|
}
|
|
|
|
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
|
|
// the number of identical bits in the top of the input value.
|
|
Mask ^= ~0ULL;
|
|
Mask <<= 64-VTBits;
|
|
// Return # leading zeros. We use 'min' here in case Val was zero before
|
|
// shifting. We don't want to return '64' as for an i32 "0".
|
|
return std::min(VTBits, CountLeadingZeros_64(Mask));
|
|
}
|
|
|
|
|
|
|
|
/// ComputeNumSignBitsForTargetNode - This method can be implemented by
|
|
/// targets that want to expose additional information about sign bits to the
|
|
/// DAG Combiner.
|
|
unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
|
|
unsigned Depth) const {
|
|
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
|
|
"Should use ComputeNumSignBits if you don't know whether Op"
|
|
" is a target node!");
|
|
return 1;
|
|
}
|
|
|
|
|
|
SDOperand TargetLowering::
|
|
PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
|
|
// Default implementation: no optimization.
|
|
return SDOperand();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inline Assembler Implementation Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetLowering::ConstraintType
|
|
TargetLowering::getConstraintType(char ConstraintLetter) const {
|
|
// FIXME: lots more standard ones to handle.
|
|
switch (ConstraintLetter) {
|
|
default: return C_Unknown;
|
|
case 'r': return C_RegisterClass;
|
|
case 'm': // memory
|
|
case 'o': // offsetable
|
|
case 'V': // not offsetable
|
|
return C_Memory;
|
|
case 'i': // Simple Integer or Relocatable Constant
|
|
case 'n': // Simple Integer
|
|
case 's': // Relocatable Constant
|
|
case 'I': // Target registers.
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'O':
|
|
case 'P':
|
|
return C_Other;
|
|
}
|
|
}
|
|
|
|
bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
|
|
char ConstraintLetter) {
|
|
switch (ConstraintLetter) {
|
|
default: return false;
|
|
case 'i': // Simple Integer or Relocatable Constant
|
|
case 'n': // Simple Integer
|
|
case 's': // Relocatable Constant
|
|
return true; // FIXME: not right.
|
|
}
|
|
}
|
|
|
|
|
|
std::vector<unsigned> TargetLowering::
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT::ValueType VT) const {
|
|
return std::vector<unsigned>();
|
|
}
|
|
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
|
|
getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT::ValueType VT) const {
|
|
if (Constraint[0] != '{')
|
|
return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
|
|
assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
|
|
|
|
// Remove the braces from around the name.
|
|
std::string RegName(Constraint.begin()+1, Constraint.end()-1);
|
|
|
|
// Figure out which register class contains this reg.
|
|
const MRegisterInfo *RI = TM.getRegisterInfo();
|
|
for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
|
|
E = RI->regclass_end(); RCI != E; ++RCI) {
|
|
const TargetRegisterClass *RC = *RCI;
|
|
|
|
// If none of the the value types for this register class are valid, we
|
|
// can't use it. For example, 64-bit reg classes on 32-bit targets.
|
|
bool isLegal = false;
|
|
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
|
|
I != E; ++I) {
|
|
if (isTypeLegal(*I)) {
|
|
isLegal = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!isLegal) continue;
|
|
|
|
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
|
|
I != E; ++I) {
|
|
if (StringsEqualNoCase(RegName, RI->get(*I).Name))
|
|
return std::make_pair(*I, RC);
|
|
}
|
|
}
|
|
|
|
return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop Strength Reduction hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value or
|
|
/// GlobalValue can be used as the offset of the target addressing mode.
|
|
bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
|
|
return false;
|
|
}
|
|
bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
|
|
return false;
|
|
}
|
|
|
|
|
|
// Magic for divide replacement
|
|
|
|
struct ms {
|
|
int64_t m; // magic number
|
|
int64_t s; // shift amount
|
|
};
|
|
|
|
struct mu {
|
|
uint64_t m; // magic number
|
|
int64_t a; // add indicator
|
|
int64_t s; // shift amount
|
|
};
|
|
|
|
/// magic - calculate the magic numbers required to codegen an integer sdiv as
|
|
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
|
|
/// or -1.
|
|
static ms magic32(int32_t d) {
|
|
int32_t p;
|
|
uint32_t ad, anc, delta, q1, r1, q2, r2, t;
|
|
const uint32_t two31 = 0x80000000U;
|
|
struct ms mag;
|
|
|
|
ad = abs(d);
|
|
t = two31 + ((uint32_t)d >> 31);
|
|
anc = t - 1 - t%ad; // absolute value of nc
|
|
p = 31; // initialize p
|
|
q1 = two31/anc; // initialize q1 = 2p/abs(nc)
|
|
r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
|
|
q2 = two31/ad; // initialize q2 = 2p/abs(d)
|
|
r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
|
|
do {
|
|
p = p + 1;
|
|
q1 = 2*q1; // update q1 = 2p/abs(nc)
|
|
r1 = 2*r1; // update r1 = rem(2p/abs(nc))
|
|
if (r1 >= anc) { // must be unsigned comparison
|
|
q1 = q1 + 1;
|
|
r1 = r1 - anc;
|
|
}
|
|
q2 = 2*q2; // update q2 = 2p/abs(d)
|
|
r2 = 2*r2; // update r2 = rem(2p/abs(d))
|
|
if (r2 >= ad) { // must be unsigned comparison
|
|
q2 = q2 + 1;
|
|
r2 = r2 - ad;
|
|
}
|
|
delta = ad - r2;
|
|
} while (q1 < delta || (q1 == delta && r1 == 0));
|
|
|
|
mag.m = (int32_t)(q2 + 1); // make sure to sign extend
|
|
if (d < 0) mag.m = -mag.m; // resulting magic number
|
|
mag.s = p - 32; // resulting shift
|
|
return mag;
|
|
}
|
|
|
|
/// magicu - calculate the magic numbers required to codegen an integer udiv as
|
|
/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
|
|
static mu magicu32(uint32_t d) {
|
|
int32_t p;
|
|
uint32_t nc, delta, q1, r1, q2, r2;
|
|
struct mu magu;
|
|
magu.a = 0; // initialize "add" indicator
|
|
nc = - 1 - (-d)%d;
|
|
p = 31; // initialize p
|
|
q1 = 0x80000000/nc; // initialize q1 = 2p/nc
|
|
r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
|
|
q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
|
|
r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
|
|
do {
|
|
p = p + 1;
|
|
if (r1 >= nc - r1 ) {
|
|
q1 = 2*q1 + 1; // update q1
|
|
r1 = 2*r1 - nc; // update r1
|
|
}
|
|
else {
|
|
q1 = 2*q1; // update q1
|
|
r1 = 2*r1; // update r1
|
|
}
|
|
if (r2 + 1 >= d - r2) {
|
|
if (q2 >= 0x7FFFFFFF) magu.a = 1;
|
|
q2 = 2*q2 + 1; // update q2
|
|
r2 = 2*r2 + 1 - d; // update r2
|
|
}
|
|
else {
|
|
if (q2 >= 0x80000000) magu.a = 1;
|
|
q2 = 2*q2; // update q2
|
|
r2 = 2*r2 + 1; // update r2
|
|
}
|
|
delta = d - 1 - r2;
|
|
} while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
|
|
magu.m = q2 + 1; // resulting magic number
|
|
magu.s = p - 32; // resulting shift
|
|
return magu;
|
|
}
|
|
|
|
/// magic - calculate the magic numbers required to codegen an integer sdiv as
|
|
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
|
|
/// or -1.
|
|
static ms magic64(int64_t d) {
|
|
int64_t p;
|
|
uint64_t ad, anc, delta, q1, r1, q2, r2, t;
|
|
const uint64_t two63 = 9223372036854775808ULL; // 2^63
|
|
struct ms mag;
|
|
|
|
ad = d >= 0 ? d : -d;
|
|
t = two63 + ((uint64_t)d >> 63);
|
|
anc = t - 1 - t%ad; // absolute value of nc
|
|
p = 63; // initialize p
|
|
q1 = two63/anc; // initialize q1 = 2p/abs(nc)
|
|
r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
|
|
q2 = two63/ad; // initialize q2 = 2p/abs(d)
|
|
r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
|
|
do {
|
|
p = p + 1;
|
|
q1 = 2*q1; // update q1 = 2p/abs(nc)
|
|
r1 = 2*r1; // update r1 = rem(2p/abs(nc))
|
|
if (r1 >= anc) { // must be unsigned comparison
|
|
q1 = q1 + 1;
|
|
r1 = r1 - anc;
|
|
}
|
|
q2 = 2*q2; // update q2 = 2p/abs(d)
|
|
r2 = 2*r2; // update r2 = rem(2p/abs(d))
|
|
if (r2 >= ad) { // must be unsigned comparison
|
|
q2 = q2 + 1;
|
|
r2 = r2 - ad;
|
|
}
|
|
delta = ad - r2;
|
|
} while (q1 < delta || (q1 == delta && r1 == 0));
|
|
|
|
mag.m = q2 + 1;
|
|
if (d < 0) mag.m = -mag.m; // resulting magic number
|
|
mag.s = p - 64; // resulting shift
|
|
return mag;
|
|
}
|
|
|
|
/// magicu - calculate the magic numbers required to codegen an integer udiv as
|
|
/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
|
|
static mu magicu64(uint64_t d)
|
|
{
|
|
int64_t p;
|
|
uint64_t nc, delta, q1, r1, q2, r2;
|
|
struct mu magu;
|
|
magu.a = 0; // initialize "add" indicator
|
|
nc = - 1 - (-d)%d;
|
|
p = 63; // initialize p
|
|
q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
|
|
r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
|
|
q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
|
|
r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
|
|
do {
|
|
p = p + 1;
|
|
if (r1 >= nc - r1 ) {
|
|
q1 = 2*q1 + 1; // update q1
|
|
r1 = 2*r1 - nc; // update r1
|
|
}
|
|
else {
|
|
q1 = 2*q1; // update q1
|
|
r1 = 2*r1; // update r1
|
|
}
|
|
if (r2 + 1 >= d - r2) {
|
|
if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
|
|
q2 = 2*q2 + 1; // update q2
|
|
r2 = 2*r2 + 1 - d; // update r2
|
|
}
|
|
else {
|
|
if (q2 >= 0x8000000000000000ull) magu.a = 1;
|
|
q2 = 2*q2; // update q2
|
|
r2 = 2*r2 + 1; // update r2
|
|
}
|
|
delta = d - 1 - r2;
|
|
} while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
|
|
magu.m = q2 + 1; // resulting magic number
|
|
magu.s = p - 64; // resulting shift
|
|
return magu;
|
|
}
|
|
|
|
/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
|
|
/// return a DAG expression to select that will generate the same value by
|
|
/// multiplying by a magic number. See:
|
|
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
|
|
SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
|
|
std::vector<SDNode*>* Created) const {
|
|
MVT::ValueType VT = N->getValueType(0);
|
|
|
|
// Check to see if we can do this.
|
|
if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
|
|
return SDOperand(); // BuildSDIV only operates on i32 or i64
|
|
if (!isOperationLegal(ISD::MULHS, VT))
|
|
return SDOperand(); // Make sure the target supports MULHS.
|
|
|
|
int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
|
|
ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
|
|
|
|
// Multiply the numerator (operand 0) by the magic value
|
|
SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
|
|
DAG.getConstant(magics.m, VT));
|
|
// If d > 0 and m < 0, add the numerator
|
|
if (d > 0 && magics.m < 0) {
|
|
Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
|
|
if (Created)
|
|
Created->push_back(Q.Val);
|
|
}
|
|
// If d < 0 and m > 0, subtract the numerator.
|
|
if (d < 0 && magics.m > 0) {
|
|
Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
|
|
if (Created)
|
|
Created->push_back(Q.Val);
|
|
}
|
|
// Shift right algebraic if shift value is nonzero
|
|
if (magics.s > 0) {
|
|
Q = DAG.getNode(ISD::SRA, VT, Q,
|
|
DAG.getConstant(magics.s, getShiftAmountTy()));
|
|
if (Created)
|
|
Created->push_back(Q.Val);
|
|
}
|
|
// Extract the sign bit and add it to the quotient
|
|
SDOperand T =
|
|
DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
|
|
getShiftAmountTy()));
|
|
if (Created)
|
|
Created->push_back(T.Val);
|
|
return DAG.getNode(ISD::ADD, VT, Q, T);
|
|
}
|
|
|
|
/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
|
|
/// return a DAG expression to select that will generate the same value by
|
|
/// multiplying by a magic number. See:
|
|
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
|
|
SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
|
|
std::vector<SDNode*>* Created) const {
|
|
MVT::ValueType VT = N->getValueType(0);
|
|
|
|
// Check to see if we can do this.
|
|
if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
|
|
return SDOperand(); // BuildUDIV only operates on i32 or i64
|
|
if (!isOperationLegal(ISD::MULHU, VT))
|
|
return SDOperand(); // Make sure the target supports MULHU.
|
|
|
|
uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
|
|
mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
|
|
|
|
// Multiply the numerator (operand 0) by the magic value
|
|
SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
|
|
DAG.getConstant(magics.m, VT));
|
|
if (Created)
|
|
Created->push_back(Q.Val);
|
|
|
|
if (magics.a == 0) {
|
|
return DAG.getNode(ISD::SRL, VT, Q,
|
|
DAG.getConstant(magics.s, getShiftAmountTy()));
|
|
} else {
|
|
SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
|
|
if (Created)
|
|
Created->push_back(NPQ.Val);
|
|
NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
|
|
DAG.getConstant(1, getShiftAmountTy()));
|
|
if (Created)
|
|
Created->push_back(NPQ.Val);
|
|
NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
|
|
if (Created)
|
|
Created->push_back(NPQ.Val);
|
|
return DAG.getNode(ISD::SRL, VT, NPQ,
|
|
DAG.getConstant(magics.s-1, getShiftAmountTy()));
|
|
}
|
|
}
|