llvm/unittests/Bitcode/BitstreamReaderTest.cpp
Duncan P. N. Exon Smith 75f9dc9b05 Explicitly test BitstreamReader::setArtificialByteLimit, NFC
Explicitly check that artificial byte limit is rounded correctly by
exposing BitstreamReader::Size through a new accessor, getSizeIfKnown.

The original code for rounding (from r264547) wasn't obviously correct,
and even though r264623 cleaned it up (by calling llvm::alignTo) I think
it's worth testing.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264650 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-28 20:39:41 +00:00

242 lines
7.4 KiB
C++

//===- BitstreamReaderTest.cpp - Tests for BitstreamReader ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Support/StreamingMemoryObject.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class BufferStreamer : public DataStreamer {
StringRef Buffer;
public:
BufferStreamer(StringRef Buffer) : Buffer(Buffer) {}
size_t GetBytes(unsigned char *OutBuffer, size_t Length) override {
if (Length >= Buffer.size())
Length = Buffer.size();
std::copy(Buffer.begin(), Buffer.begin() + Length, OutBuffer);
Buffer = Buffer.drop_front(Length);
return Length;
}
};
TEST(BitstreamReaderTest, AtEndOfStream) {
uint8_t Bytes[4] = {
0x00, 0x01, 0x02, 0x03
};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
BitstreamCursor Cursor(Reader);
EXPECT_FALSE(Cursor.AtEndOfStream());
(void)Cursor.Read(8);
EXPECT_FALSE(Cursor.AtEndOfStream());
(void)Cursor.Read(24);
EXPECT_TRUE(Cursor.AtEndOfStream());
Cursor.JumpToBit(0);
EXPECT_FALSE(Cursor.AtEndOfStream());
Cursor.JumpToBit(32);
EXPECT_TRUE(Cursor.AtEndOfStream());
}
TEST(BitstreamReaderTest, AtEndOfStreamJump) {
uint8_t Bytes[4] = {
0x00, 0x01, 0x02, 0x03
};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
BitstreamCursor Cursor(Reader);
Cursor.JumpToBit(32);
EXPECT_TRUE(Cursor.AtEndOfStream());
}
TEST(BitstreamReaderTest, AtEndOfStreamEmpty) {
uint8_t Dummy = 0xFF;
BitstreamReader Reader(&Dummy, &Dummy);
BitstreamCursor Cursor(Reader);
EXPECT_TRUE(Cursor.AtEndOfStream());
}
TEST(BitstreamReaderTest, getCurrentByteNo) {
uint8_t Bytes[] = {0x00, 0x01, 0x02, 0x03};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
SimpleBitstreamCursor Cursor(Reader);
for (unsigned I = 0, E = 33; I != E; ++I) {
EXPECT_EQ(I / 8, Cursor.getCurrentByteNo());
(void)Cursor.Read(1);
}
EXPECT_EQ(4u, Cursor.getCurrentByteNo());
}
TEST(BitstreamReaderTest, getPointerToByte) {
uint8_t Bytes[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
SimpleBitstreamCursor Cursor(Reader);
for (unsigned I = 0, E = 8; I != E; ++I) {
EXPECT_EQ(Bytes + I, Cursor.getPointerToByte(I, 1));
}
}
TEST(BitstreamReaderTest, getPointerToBit) {
uint8_t Bytes[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
SimpleBitstreamCursor Cursor(Reader);
for (unsigned I = 0, E = 8; I != E; ++I) {
EXPECT_EQ(Bytes + I, Cursor.getPointerToBit(I * 8, 1));
}
}
TEST(BitstreamReaderTest, jumpToPointer) {
uint8_t Bytes[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
SimpleBitstreamCursor Cursor(Reader);
for (unsigned I : {0, 6, 2, 7}) {
Cursor.jumpToPointer(Bytes + I);
EXPECT_EQ(I, Cursor.getCurrentByteNo());
}
}
TEST(BitstreamReaderTest, setArtificialByteLimit) {
uint8_t Bytes[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
SimpleBitstreamCursor Cursor(Reader);
Cursor.setArtificialByteLimit(8);
EXPECT_EQ(8u, Cursor.getSizeIfKnown());
while (!Cursor.AtEndOfStream())
(void)Cursor.Read(1);
EXPECT_EQ(8u, Cursor.getCurrentByteNo());
}
TEST(BitstreamReaderTest, setArtificialByteLimitNotWordBoundary) {
uint8_t Bytes[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
SimpleBitstreamCursor Cursor(Reader);
Cursor.setArtificialByteLimit(5);
EXPECT_EQ(8u, Cursor.getSizeIfKnown());
while (!Cursor.AtEndOfStream())
(void)Cursor.Read(1);
EXPECT_EQ(8u, Cursor.getCurrentByteNo());
}
TEST(BitstreamReaderTest, setArtificialByteLimitPastTheEnd) {
uint8_t Bytes[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
SimpleBitstreamCursor Cursor(Reader);
// The size of the memory object isn't known yet. Set it too high and
// confirm that we don't read too far.
Cursor.setArtificialByteLimit(24);
EXPECT_EQ(24u, Cursor.getSizeIfKnown());
while (!Cursor.AtEndOfStream())
(void)Cursor.Read(1);
EXPECT_EQ(12u, Cursor.getCurrentByteNo());
EXPECT_EQ(12u, Cursor.getSizeIfKnown());
}
TEST(BitstreamReaderTest, setArtificialByteLimitPastTheEndKnown) {
uint8_t Bytes[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b};
BitstreamReader Reader(std::begin(Bytes), std::end(Bytes));
SimpleBitstreamCursor Cursor(Reader);
// Save the size of the memory object in the cursor.
while (!Cursor.AtEndOfStream())
(void)Cursor.Read(1);
EXPECT_EQ(12u, Cursor.getCurrentByteNo());
EXPECT_EQ(12u, Cursor.getSizeIfKnown());
Cursor.setArtificialByteLimit(20);
EXPECT_TRUE(Cursor.AtEndOfStream());
EXPECT_EQ(12u, Cursor.getSizeIfKnown());
}
TEST(BitstreamReaderTest, readRecordWithBlobWhileStreaming) {
SmallVector<uint8_t, 1> BlobData;
for (unsigned I = 0, E = 1024; I != E; ++I)
BlobData.push_back(I);
// Try a bunch of different sizes.
const unsigned Magic = 0x12345678;
const unsigned BlockID = bitc::FIRST_APPLICATION_BLOCKID;
const unsigned RecordID = 1;
for (unsigned I = 0, BlobSize = 0, E = BlobData.size(); BlobSize < E;
BlobSize += ++I) {
StringRef BlobIn((const char *)BlobData.begin(), BlobSize);
// Write the bitcode.
SmallVector<char, 1> Buffer;
unsigned AbbrevID;
{
BitstreamWriter Stream(Buffer);
Stream.Emit(Magic, 32);
Stream.EnterSubblock(BlockID, 3);
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(RecordID));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
AbbrevID = Stream.EmitAbbrev(Abbrev);
unsigned Record[] = {RecordID};
Stream.EmitRecordWithBlob(AbbrevID, makeArrayRef(Record), BlobIn);
Stream.ExitBlock();
}
// Stream the buffer into the reader.
BitstreamReader R(llvm::make_unique<StreamingMemoryObject>(
llvm::make_unique<BufferStreamer>(
StringRef(Buffer.begin(), Buffer.size()))));
BitstreamCursor Stream(R);
// Header. Included in test so that we can run llvm-bcanalyzer to debug
// when there are problems.
ASSERT_EQ(Magic, Stream.Read(32));
// Block.
BitstreamEntry Entry =
Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
ASSERT_EQ(BitstreamEntry::SubBlock, Entry.Kind);
ASSERT_EQ(BlockID, Entry.ID);
ASSERT_FALSE(Stream.EnterSubBlock(BlockID));
// Abbreviation.
Entry = Stream.advance();
ASSERT_EQ(BitstreamEntry::Record, Entry.Kind);
ASSERT_EQ(AbbrevID, Entry.ID);
// Record.
StringRef BlobOut;
SmallVector<uint64_t, 1> Record;
ASSERT_EQ(RecordID, Stream.readRecord(Entry.ID, Record, &BlobOut));
EXPECT_TRUE(Record.empty());
EXPECT_EQ(BlobIn, BlobOut);
}
}
} // end anonymous namespace