llvm/lib/CodeGen/PHIElimination.h
Jakob Stoklund Olesen 1222287543 Fix PHIElimination optimization that uses MBB->getBasicBlock.
The BasicBlock associated with a MachineBasicBlock does not necessarily
correspond to the code in the MBB.

Don't insert a new IR BasicBlock when splitting critical edges. We are not
supposed to modify the IR during codegen, and we should be able to do just
fine with a NULL BB.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88707 91177308-0d34-0410-b5e6-96231b3b80d8
2009-11-13 21:56:15 +00:00

148 lines
5.7 KiB
C++

//===-- lib/CodeGen/PHIElimination.h ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PHIELIMINATION_HPP
#define LLVM_CODEGEN_PHIELIMINATION_HPP
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <map>
namespace llvm {
/// Lower PHI instructions to copies.
class PHIElimination : public MachineFunctionPass {
MachineRegisterInfo *MRI; // Machine register information
private:
typedef SmallSet<MachineBasicBlock*, 4> PHIKillList;
typedef DenseMap<unsigned, PHIKillList> PHIKillMap;
typedef DenseMap<unsigned, MachineBasicBlock*> PHIDefMap;
public:
typedef PHIKillList::iterator phi_kill_iterator;
typedef PHIKillList::const_iterator const_phi_kill_iterator;
static char ID; // Pass identification, replacement for typeid
PHIElimination() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
/// Return true if the given vreg was defined by a PHI intsr prior to
/// lowering.
bool hasPHIDef(unsigned vreg) const {
return PHIDefs.count(vreg);
}
/// Returns the block in which the PHI instruction which defined the
/// given vreg used to reside.
MachineBasicBlock* getPHIDefBlock(unsigned vreg) {
PHIDefMap::iterator phiDefItr = PHIDefs.find(vreg);
assert(phiDefItr != PHIDefs.end() && "vreg has no phi-def.");
return phiDefItr->second;
}
/// Returns true if the given vreg was killed by a PHI instr.
bool hasPHIKills(unsigned vreg) const {
return PHIKills.count(vreg);
}
/// Returns an iterator over the BasicBlocks which contained PHI
/// kills of this register prior to lowering.
phi_kill_iterator phiKillsBegin(unsigned vreg) {
PHIKillMap::iterator phiKillItr = PHIKills.find(vreg);
assert(phiKillItr != PHIKills.end() && "vreg has no phi-kills.");
return phiKillItr->second.begin();
}
phi_kill_iterator phiKillsEnd(unsigned vreg) {
PHIKillMap::iterator phiKillItr = PHIKills.find(vreg);
assert(phiKillItr != PHIKills.end() && "vreg has no phi-kills.");
return phiKillItr->second.end();
}
private:
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
///
bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
void LowerAtomicPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt);
/// analyzePHINodes - Gather information about the PHI nodes in
/// here. In particular, we want to map the number of uses of a virtual
/// register which is used in a PHI node. We map that to the BB the
/// vreg is coming from. This is used later to determine when the vreg
/// is killed in the BB.
///
void analyzePHINodes(const MachineFunction& Fn);
/// Split critical edges where necessary for good coalescer performance.
bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB);
/// isLiveOut - Determine if Reg is live out from MBB, when not
/// considering PHI nodes. This means that Reg is either killed by
/// a successor block or passed through one.
bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB,
LiveVariables &LV);
/// isLiveIn - Determine if Reg is live in to MBB, not considering PHI
/// source registers. This means that Reg is either killed by MBB or passes
/// through it.
bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB,
LiveVariables &LV);
/// SplitCriticalEdge - Split a critical edge from A to B by
/// inserting a new MBB. Update branches in A and PHI instructions
/// in B. Return the new block.
MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *A,
MachineBasicBlock *B);
/// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from
/// SrcReg when following the CFG edge to SuccMBB. This needs to be after
/// any def of SrcReg, but before any subsequent point where control flow
/// might jump out of the basic block.
MachineBasicBlock::iterator FindCopyInsertPoint(MachineBasicBlock &MBB,
MachineBasicBlock &SuccMBB,
unsigned SrcReg);
// SkipPHIsAndLabels - Copies need to be inserted after phi nodes and
// also after any exception handling labels: in landing pads execution
// starts at the label, so any copies placed before it won't be executed!
MachineBasicBlock::iterator SkipPHIsAndLabels(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
// Rather than assuming that EH labels come before other kinds of labels,
// just skip all labels.
while (I != MBB.end() &&
(I->getOpcode() == TargetInstrInfo::PHI || I->isLabel()))
++I;
return I;
}
typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
VRegPHIUse VRegPHIUseCount;
PHIDefMap PHIDefs;
PHIKillMap PHIKills;
// Defs of PHI sources which are implicit_def.
SmallPtrSet<MachineInstr*, 4> ImpDefs;
};
}
#endif /* LLVM_CODEGEN_PHIELIMINATION_HPP */