mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-04 01:43:06 +00:00
20b0abc24f
long live interval that has low usage density. 1. Change order of coalescing to join physical registers with virtual registers first before virtual register intervals become too long. 2. Check size and usage density to determine if it's worthwhile to join. 3. If joining is aborted, assign virtual register live interval allocation preference field to the physical register. 4. Register allocator should try to allocate to the preferred register first (if available) to create identify moves that can be eliminated. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36218 91177308-0d34-0410-b5e6-96231b3b80d8
829 lines
30 KiB
C++
829 lines
30 KiB
C++
//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a linear scan register allocator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "PhysRegTracker.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
#include <queue>
|
|
#include <memory>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumIters , "Number of iterations performed");
|
|
STATISTIC(NumBacktracks, "Number of times we had to backtrack");
|
|
|
|
static RegisterRegAlloc
|
|
linearscanRegAlloc("linearscan", " linear scan register allocator",
|
|
createLinearScanRegisterAllocator);
|
|
|
|
namespace {
|
|
static unsigned numIterations = 0;
|
|
static unsigned numIntervals = 0;
|
|
|
|
struct VISIBILITY_HIDDEN RA : public MachineFunctionPass {
|
|
typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
|
|
typedef std::vector<IntervalPtr> IntervalPtrs;
|
|
private:
|
|
/// RelatedRegClasses - This structure is built the first time a function is
|
|
/// compiled, and keeps track of which register classes have registers that
|
|
/// belong to multiple classes or have aliases that are in other classes.
|
|
EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
|
|
std::map<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
|
|
|
|
MachineFunction* mf_;
|
|
const TargetMachine* tm_;
|
|
const MRegisterInfo* mri_;
|
|
LiveIntervals* li_;
|
|
bool *PhysRegsUsed;
|
|
|
|
/// handled_ - Intervals are added to the handled_ set in the order of their
|
|
/// start value. This is uses for backtracking.
|
|
std::vector<LiveInterval*> handled_;
|
|
|
|
/// fixed_ - Intervals that correspond to machine registers.
|
|
///
|
|
IntervalPtrs fixed_;
|
|
|
|
/// active_ - Intervals that are currently being processed, and which have a
|
|
/// live range active for the current point.
|
|
IntervalPtrs active_;
|
|
|
|
/// inactive_ - Intervals that are currently being processed, but which have
|
|
/// a hold at the current point.
|
|
IntervalPtrs inactive_;
|
|
|
|
typedef std::priority_queue<LiveInterval*,
|
|
std::vector<LiveInterval*>,
|
|
greater_ptr<LiveInterval> > IntervalHeap;
|
|
IntervalHeap unhandled_;
|
|
std::auto_ptr<PhysRegTracker> prt_;
|
|
std::auto_ptr<VirtRegMap> vrm_;
|
|
std::auto_ptr<Spiller> spiller_;
|
|
|
|
public:
|
|
virtual const char* getPassName() const {
|
|
return "Linear Scan Register Allocator";
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LiveIntervals>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// runOnMachineFunction - register allocate the whole function
|
|
bool runOnMachineFunction(MachineFunction&);
|
|
|
|
private:
|
|
/// linearScan - the linear scan algorithm
|
|
void linearScan();
|
|
|
|
/// initIntervalSets - initialize the interval sets.
|
|
///
|
|
void initIntervalSets();
|
|
|
|
/// processActiveIntervals - expire old intervals and move non-overlapping
|
|
/// ones to the inactive list.
|
|
void processActiveIntervals(unsigned CurPoint);
|
|
|
|
/// processInactiveIntervals - expire old intervals and move overlapping
|
|
/// ones to the active list.
|
|
void processInactiveIntervals(unsigned CurPoint);
|
|
|
|
/// assignRegOrStackSlotAtInterval - assign a register if one
|
|
/// is available, or spill.
|
|
void assignRegOrStackSlotAtInterval(LiveInterval* cur);
|
|
|
|
///
|
|
/// register handling helpers
|
|
///
|
|
|
|
/// getFreePhysReg - return a free physical register for this virtual
|
|
/// register interval if we have one, otherwise return 0.
|
|
unsigned getFreePhysReg(LiveInterval* cur);
|
|
|
|
/// assignVirt2StackSlot - assigns this virtual register to a
|
|
/// stack slot. returns the stack slot
|
|
int assignVirt2StackSlot(unsigned virtReg);
|
|
|
|
void ComputeRelatedRegClasses();
|
|
|
|
template <typename ItTy>
|
|
void printIntervals(const char* const str, ItTy i, ItTy e) const {
|
|
if (str) DOUT << str << " intervals:\n";
|
|
for (; i != e; ++i) {
|
|
DOUT << "\t" << *i->first << " -> ";
|
|
unsigned reg = i->first->reg;
|
|
if (MRegisterInfo::isVirtualRegister(reg)) {
|
|
reg = vrm_->getPhys(reg);
|
|
}
|
|
DOUT << mri_->getName(reg) << '\n';
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
void RA::ComputeRelatedRegClasses() {
|
|
const MRegisterInfo &MRI = *mri_;
|
|
|
|
// First pass, add all reg classes to the union, and determine at least one
|
|
// reg class that each register is in.
|
|
bool HasAliases = false;
|
|
for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(),
|
|
E = MRI.regclass_end(); RCI != E; ++RCI) {
|
|
RelatedRegClasses.insert(*RCI);
|
|
for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
|
|
I != E; ++I) {
|
|
HasAliases = HasAliases || *MRI.getAliasSet(*I) != 0;
|
|
|
|
const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
|
|
if (PRC) {
|
|
// Already processed this register. Just make sure we know that
|
|
// multiple register classes share a register.
|
|
RelatedRegClasses.unionSets(PRC, *RCI);
|
|
} else {
|
|
PRC = *RCI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Second pass, now that we know conservatively what register classes each reg
|
|
// belongs to, add info about aliases. We don't need to do this for targets
|
|
// without register aliases.
|
|
if (HasAliases)
|
|
for (std::map<unsigned, const TargetRegisterClass*>::iterator
|
|
I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
|
|
I != E; ++I)
|
|
for (const unsigned *AS = MRI.getAliasSet(I->first); *AS; ++AS)
|
|
RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
|
|
}
|
|
|
|
bool RA::runOnMachineFunction(MachineFunction &fn) {
|
|
mf_ = &fn;
|
|
tm_ = &fn.getTarget();
|
|
mri_ = tm_->getRegisterInfo();
|
|
li_ = &getAnalysis<LiveIntervals>();
|
|
|
|
// If this is the first function compiled, compute the related reg classes.
|
|
if (RelatedRegClasses.empty())
|
|
ComputeRelatedRegClasses();
|
|
|
|
PhysRegsUsed = new bool[mri_->getNumRegs()];
|
|
std::fill(PhysRegsUsed, PhysRegsUsed+mri_->getNumRegs(), false);
|
|
fn.setUsedPhysRegs(PhysRegsUsed);
|
|
|
|
if (!prt_.get()) prt_.reset(new PhysRegTracker(*mri_));
|
|
vrm_.reset(new VirtRegMap(*mf_));
|
|
if (!spiller_.get()) spiller_.reset(createSpiller());
|
|
|
|
initIntervalSets();
|
|
|
|
linearScan();
|
|
|
|
// Rewrite spill code and update the PhysRegsUsed set.
|
|
spiller_->runOnMachineFunction(*mf_, *vrm_);
|
|
|
|
vrm_.reset(); // Free the VirtRegMap
|
|
|
|
|
|
while (!unhandled_.empty()) unhandled_.pop();
|
|
fixed_.clear();
|
|
active_.clear();
|
|
inactive_.clear();
|
|
handled_.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// initIntervalSets - initialize the interval sets.
|
|
///
|
|
void RA::initIntervalSets()
|
|
{
|
|
assert(unhandled_.empty() && fixed_.empty() &&
|
|
active_.empty() && inactive_.empty() &&
|
|
"interval sets should be empty on initialization");
|
|
|
|
for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
|
|
if (MRegisterInfo::isPhysicalRegister(i->second.reg)) {
|
|
PhysRegsUsed[i->second.reg] = true;
|
|
fixed_.push_back(std::make_pair(&i->second, i->second.begin()));
|
|
} else
|
|
unhandled_.push(&i->second);
|
|
}
|
|
}
|
|
|
|
void RA::linearScan()
|
|
{
|
|
// linear scan algorithm
|
|
DOUT << "********** LINEAR SCAN **********\n";
|
|
DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n';
|
|
|
|
// DEBUG(printIntervals("unhandled", unhandled_.begin(), unhandled_.end()));
|
|
DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
|
|
DEBUG(printIntervals("active", active_.begin(), active_.end()));
|
|
DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
|
|
|
|
while (!unhandled_.empty()) {
|
|
// pick the interval with the earliest start point
|
|
LiveInterval* cur = unhandled_.top();
|
|
unhandled_.pop();
|
|
++numIterations;
|
|
DOUT << "\n*** CURRENT ***: " << *cur << '\n';
|
|
|
|
processActiveIntervals(cur->beginNumber());
|
|
processInactiveIntervals(cur->beginNumber());
|
|
|
|
assert(MRegisterInfo::isVirtualRegister(cur->reg) &&
|
|
"Can only allocate virtual registers!");
|
|
|
|
// Allocating a virtual register. try to find a free
|
|
// physical register or spill an interval (possibly this one) in order to
|
|
// assign it one.
|
|
assignRegOrStackSlotAtInterval(cur);
|
|
|
|
DEBUG(printIntervals("active", active_.begin(), active_.end()));
|
|
DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
|
|
}
|
|
numIntervals += li_->getNumIntervals();
|
|
NumIters += numIterations;
|
|
|
|
// expire any remaining active intervals
|
|
for (IntervalPtrs::reverse_iterator
|
|
i = active_.rbegin(); i != active_.rend(); ) {
|
|
unsigned reg = i->first->reg;
|
|
DOUT << "\tinterval " << *i->first << " expired\n";
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
prt_->delRegUse(reg);
|
|
i = IntervalPtrs::reverse_iterator(active_.erase(i.base()-1));
|
|
}
|
|
|
|
// expire any remaining inactive intervals
|
|
for (IntervalPtrs::reverse_iterator
|
|
i = inactive_.rbegin(); i != inactive_.rend(); ) {
|
|
DOUT << "\tinterval " << *i->first << " expired\n";
|
|
i = IntervalPtrs::reverse_iterator(inactive_.erase(i.base()-1));
|
|
}
|
|
|
|
// A brute force way of adding live-ins to every BB.
|
|
MachineFunction::iterator MBB = mf_->begin();
|
|
++MBB; // Skip entry MBB.
|
|
for (MachineFunction::iterator E = mf_->end(); MBB != E; ++MBB) {
|
|
unsigned StartIdx = li_->getMBBStartIdx(MBB->getNumber());
|
|
for (IntervalPtrs::iterator i = fixed_.begin(), e = fixed_.end();
|
|
i != e; ++i)
|
|
if (i->first->liveAt(StartIdx))
|
|
MBB->addLiveIn(i->first->reg);
|
|
|
|
for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
|
|
LiveInterval *HI = handled_[i];
|
|
unsigned Reg = HI->reg;
|
|
if (!vrm_->hasStackSlot(Reg) && HI->liveAt(StartIdx)) {
|
|
assert(MRegisterInfo::isVirtualRegister(Reg));
|
|
Reg = vrm_->getPhys(Reg);
|
|
MBB->addLiveIn(Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
DOUT << *vrm_;
|
|
}
|
|
|
|
/// processActiveIntervals - expire old intervals and move non-overlapping ones
|
|
/// to the inactive list.
|
|
void RA::processActiveIntervals(unsigned CurPoint)
|
|
{
|
|
DOUT << "\tprocessing active intervals:\n";
|
|
|
|
for (unsigned i = 0, e = active_.size(); i != e; ++i) {
|
|
LiveInterval *Interval = active_[i].first;
|
|
LiveInterval::iterator IntervalPos = active_[i].second;
|
|
unsigned reg = Interval->reg;
|
|
|
|
IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
|
|
|
|
if (IntervalPos == Interval->end()) { // Remove expired intervals.
|
|
DOUT << "\t\tinterval " << *Interval << " expired\n";
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
prt_->delRegUse(reg);
|
|
|
|
// Pop off the end of the list.
|
|
active_[i] = active_.back();
|
|
active_.pop_back();
|
|
--i; --e;
|
|
|
|
} else if (IntervalPos->start > CurPoint) {
|
|
// Move inactive intervals to inactive list.
|
|
DOUT << "\t\tinterval " << *Interval << " inactive\n";
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
prt_->delRegUse(reg);
|
|
// add to inactive.
|
|
inactive_.push_back(std::make_pair(Interval, IntervalPos));
|
|
|
|
// Pop off the end of the list.
|
|
active_[i] = active_.back();
|
|
active_.pop_back();
|
|
--i; --e;
|
|
} else {
|
|
// Otherwise, just update the iterator position.
|
|
active_[i].second = IntervalPos;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// processInactiveIntervals - expire old intervals and move overlapping
|
|
/// ones to the active list.
|
|
void RA::processInactiveIntervals(unsigned CurPoint)
|
|
{
|
|
DOUT << "\tprocessing inactive intervals:\n";
|
|
|
|
for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
|
|
LiveInterval *Interval = inactive_[i].first;
|
|
LiveInterval::iterator IntervalPos = inactive_[i].second;
|
|
unsigned reg = Interval->reg;
|
|
|
|
IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
|
|
|
|
if (IntervalPos == Interval->end()) { // remove expired intervals.
|
|
DOUT << "\t\tinterval " << *Interval << " expired\n";
|
|
|
|
// Pop off the end of the list.
|
|
inactive_[i] = inactive_.back();
|
|
inactive_.pop_back();
|
|
--i; --e;
|
|
} else if (IntervalPos->start <= CurPoint) {
|
|
// move re-activated intervals in active list
|
|
DOUT << "\t\tinterval " << *Interval << " active\n";
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
prt_->addRegUse(reg);
|
|
// add to active
|
|
active_.push_back(std::make_pair(Interval, IntervalPos));
|
|
|
|
// Pop off the end of the list.
|
|
inactive_[i] = inactive_.back();
|
|
inactive_.pop_back();
|
|
--i; --e;
|
|
} else {
|
|
// Otherwise, just update the iterator position.
|
|
inactive_[i].second = IntervalPos;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// updateSpillWeights - updates the spill weights of the specifed physical
|
|
/// register and its weight.
|
|
static void updateSpillWeights(std::vector<float> &Weights,
|
|
unsigned reg, float weight,
|
|
const MRegisterInfo *MRI) {
|
|
Weights[reg] += weight;
|
|
for (const unsigned* as = MRI->getAliasSet(reg); *as; ++as)
|
|
Weights[*as] += weight;
|
|
}
|
|
|
|
static RA::IntervalPtrs::iterator FindIntervalInVector(RA::IntervalPtrs &IP,
|
|
LiveInterval *LI) {
|
|
for (RA::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); I != E; ++I)
|
|
if (I->first == LI) return I;
|
|
return IP.end();
|
|
}
|
|
|
|
static void RevertVectorIteratorsTo(RA::IntervalPtrs &V, unsigned Point) {
|
|
for (unsigned i = 0, e = V.size(); i != e; ++i) {
|
|
RA::IntervalPtr &IP = V[i];
|
|
LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
|
|
IP.second, Point);
|
|
if (I != IP.first->begin()) --I;
|
|
IP.second = I;
|
|
}
|
|
}
|
|
|
|
/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
|
|
/// spill.
|
|
void RA::assignRegOrStackSlotAtInterval(LiveInterval* cur)
|
|
{
|
|
DOUT << "\tallocating current interval: ";
|
|
|
|
PhysRegTracker backupPrt = *prt_;
|
|
|
|
std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
|
|
unsigned StartPosition = cur->beginNumber();
|
|
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(cur->reg);
|
|
const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
|
|
|
|
// for every interval in inactive we overlap with, mark the
|
|
// register as not free and update spill weights.
|
|
for (IntervalPtrs::const_iterator i = inactive_.begin(),
|
|
e = inactive_.end(); i != e; ++i) {
|
|
unsigned Reg = i->first->reg;
|
|
assert(MRegisterInfo::isVirtualRegister(Reg) &&
|
|
"Can only allocate virtual registers!");
|
|
const TargetRegisterClass *RegRC = mf_->getSSARegMap()->getRegClass(Reg);
|
|
// If this is not in a related reg class to the register we're allocating,
|
|
// don't check it.
|
|
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
|
|
cur->overlapsFrom(*i->first, i->second-1)) {
|
|
Reg = vrm_->getPhys(Reg);
|
|
prt_->addRegUse(Reg);
|
|
SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
|
|
}
|
|
}
|
|
|
|
// Speculatively check to see if we can get a register right now. If not,
|
|
// we know we won't be able to by adding more constraints. If so, we can
|
|
// check to see if it is valid. Doing an exhaustive search of the fixed_ list
|
|
// is very bad (it contains all callee clobbered registers for any functions
|
|
// with a call), so we want to avoid doing that if possible.
|
|
unsigned physReg = getFreePhysReg(cur);
|
|
if (physReg) {
|
|
// We got a register. However, if it's in the fixed_ list, we might
|
|
// conflict with it. Check to see if we conflict with it or any of its
|
|
// aliases.
|
|
std::set<unsigned> RegAliases;
|
|
for (const unsigned *AS = mri_->getAliasSet(physReg); *AS; ++AS)
|
|
RegAliases.insert(*AS);
|
|
|
|
bool ConflictsWithFixed = false;
|
|
for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
|
|
IntervalPtr &IP = fixed_[i];
|
|
if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
|
|
// Okay, this reg is on the fixed list. Check to see if we actually
|
|
// conflict.
|
|
LiveInterval *I = IP.first;
|
|
if (I->endNumber() > StartPosition) {
|
|
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
|
|
IP.second = II;
|
|
if (II != I->begin() && II->start > StartPosition)
|
|
--II;
|
|
if (cur->overlapsFrom(*I, II)) {
|
|
ConflictsWithFixed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Okay, the register picked by our speculative getFreePhysReg call turned
|
|
// out to be in use. Actually add all of the conflicting fixed registers to
|
|
// prt so we can do an accurate query.
|
|
if (ConflictsWithFixed) {
|
|
// For every interval in fixed we overlap with, mark the register as not
|
|
// free and update spill weights.
|
|
for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
|
|
IntervalPtr &IP = fixed_[i];
|
|
LiveInterval *I = IP.first;
|
|
|
|
const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
|
|
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
|
|
I->endNumber() > StartPosition) {
|
|
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
|
|
IP.second = II;
|
|
if (II != I->begin() && II->start > StartPosition)
|
|
--II;
|
|
if (cur->overlapsFrom(*I, II)) {
|
|
unsigned reg = I->reg;
|
|
prt_->addRegUse(reg);
|
|
SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Using the newly updated prt_ object, which includes conflicts in the
|
|
// future, see if there are any registers available.
|
|
physReg = getFreePhysReg(cur);
|
|
}
|
|
}
|
|
|
|
// Restore the physical register tracker, removing information about the
|
|
// future.
|
|
*prt_ = backupPrt;
|
|
|
|
// if we find a free register, we are done: assign this virtual to
|
|
// the free physical register and add this interval to the active
|
|
// list.
|
|
if (physReg) {
|
|
DOUT << mri_->getName(physReg) << '\n';
|
|
vrm_->assignVirt2Phys(cur->reg, physReg);
|
|
prt_->addRegUse(physReg);
|
|
active_.push_back(std::make_pair(cur, cur->begin()));
|
|
handled_.push_back(cur);
|
|
return;
|
|
}
|
|
DOUT << "no free registers\n";
|
|
|
|
// Compile the spill weights into an array that is better for scanning.
|
|
std::vector<float> SpillWeights(mri_->getNumRegs(), 0.0);
|
|
for (std::vector<std::pair<unsigned, float> >::iterator
|
|
I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
|
|
updateSpillWeights(SpillWeights, I->first, I->second, mri_);
|
|
|
|
// for each interval in active, update spill weights.
|
|
for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
|
|
i != e; ++i) {
|
|
unsigned reg = i->first->reg;
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
reg = vrm_->getPhys(reg);
|
|
updateSpillWeights(SpillWeights, reg, i->first->weight, mri_);
|
|
}
|
|
|
|
DOUT << "\tassigning stack slot at interval "<< *cur << ":\n";
|
|
|
|
// Find a register to spill.
|
|
float minWeight = HUGE_VALF;
|
|
unsigned minReg = cur->preference; // Try the preferred register first.
|
|
|
|
if (!minReg || SpillWeights[minReg] == HUGE_VALF)
|
|
for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
|
|
e = RC->allocation_order_end(*mf_); i != e; ++i) {
|
|
unsigned reg = *i;
|
|
if (minWeight > SpillWeights[reg]) {
|
|
minWeight = SpillWeights[reg];
|
|
minReg = reg;
|
|
}
|
|
}
|
|
|
|
// If we didn't find a register that is spillable, try aliases?
|
|
if (!minReg) {
|
|
for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
|
|
e = RC->allocation_order_end(*mf_); i != e; ++i) {
|
|
unsigned reg = *i;
|
|
// No need to worry about if the alias register size < regsize of RC.
|
|
// We are going to spill all registers that alias it anyway.
|
|
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) {
|
|
if (minWeight > SpillWeights[*as]) {
|
|
minWeight = SpillWeights[*as];
|
|
minReg = *as;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All registers must have inf weight. Just grab one!
|
|
if (!minReg)
|
|
minReg = *RC->allocation_order_begin(*mf_);
|
|
}
|
|
|
|
DOUT << "\t\tregister with min weight: "
|
|
<< mri_->getName(minReg) << " (" << minWeight << ")\n";
|
|
|
|
// if the current has the minimum weight, we need to spill it and
|
|
// add any added intervals back to unhandled, and restart
|
|
// linearscan.
|
|
if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
|
|
DOUT << "\t\t\tspilling(c): " << *cur << '\n';
|
|
// if the current interval is re-materializable, remember so and don't
|
|
// assign it a spill slot.
|
|
if (cur->remat)
|
|
vrm_->setVirtIsReMaterialized(cur->reg, cur->remat);
|
|
int slot = cur->remat ? vrm_->assignVirtReMatId(cur->reg)
|
|
: vrm_->assignVirt2StackSlot(cur->reg);
|
|
std::vector<LiveInterval*> added =
|
|
li_->addIntervalsForSpills(*cur, *vrm_, slot);
|
|
if (added.empty())
|
|
return; // Early exit if all spills were folded.
|
|
|
|
// Merge added with unhandled. Note that we know that
|
|
// addIntervalsForSpills returns intervals sorted by their starting
|
|
// point.
|
|
for (unsigned i = 0, e = added.size(); i != e; ++i)
|
|
unhandled_.push(added[i]);
|
|
return;
|
|
}
|
|
|
|
++NumBacktracks;
|
|
|
|
// push the current interval back to unhandled since we are going
|
|
// to re-run at least this iteration. Since we didn't modify it it
|
|
// should go back right in the front of the list
|
|
unhandled_.push(cur);
|
|
|
|
// otherwise we spill all intervals aliasing the register with
|
|
// minimum weight, rollback to the interval with the earliest
|
|
// start point and let the linear scan algorithm run again
|
|
std::vector<LiveInterval*> added;
|
|
assert(MRegisterInfo::isPhysicalRegister(minReg) &&
|
|
"did not choose a register to spill?");
|
|
BitVector toSpill(mri_->getNumRegs());
|
|
|
|
// We are going to spill minReg and all its aliases.
|
|
toSpill[minReg] = true;
|
|
for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as)
|
|
toSpill[*as] = true;
|
|
|
|
// the earliest start of a spilled interval indicates up to where
|
|
// in handled we need to roll back
|
|
unsigned earliestStart = cur->beginNumber();
|
|
|
|
// set of spilled vregs (used later to rollback properly)
|
|
std::set<unsigned> spilled;
|
|
|
|
// spill live intervals of virtual regs mapped to the physical register we
|
|
// want to clear (and its aliases). We only spill those that overlap with the
|
|
// current interval as the rest do not affect its allocation. we also keep
|
|
// track of the earliest start of all spilled live intervals since this will
|
|
// mark our rollback point.
|
|
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
|
|
unsigned reg = i->first->reg;
|
|
if (//MRegisterInfo::isVirtualRegister(reg) &&
|
|
toSpill[vrm_->getPhys(reg)] &&
|
|
cur->overlapsFrom(*i->first, i->second)) {
|
|
DOUT << "\t\t\tspilling(a): " << *i->first << '\n';
|
|
earliestStart = std::min(earliestStart, i->first->beginNumber());
|
|
if (i->first->remat)
|
|
vrm_->setVirtIsReMaterialized(reg, i->first->remat);
|
|
int slot = i->first->remat ? vrm_->assignVirtReMatId(reg)
|
|
: vrm_->assignVirt2StackSlot(reg);
|
|
std::vector<LiveInterval*> newIs =
|
|
li_->addIntervalsForSpills(*i->first, *vrm_, slot);
|
|
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
|
|
spilled.insert(reg);
|
|
}
|
|
}
|
|
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
|
|
unsigned reg = i->first->reg;
|
|
if (//MRegisterInfo::isVirtualRegister(reg) &&
|
|
toSpill[vrm_->getPhys(reg)] &&
|
|
cur->overlapsFrom(*i->first, i->second-1)) {
|
|
DOUT << "\t\t\tspilling(i): " << *i->first << '\n';
|
|
earliestStart = std::min(earliestStart, i->first->beginNumber());
|
|
if (i->first->remat)
|
|
vrm_->setVirtIsReMaterialized(reg, i->first->remat);
|
|
int slot = i->first->remat ? vrm_->assignVirtReMatId(reg)
|
|
: vrm_->assignVirt2StackSlot(reg);
|
|
std::vector<LiveInterval*> newIs =
|
|
li_->addIntervalsForSpills(*i->first, *vrm_, slot);
|
|
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
|
|
spilled.insert(reg);
|
|
}
|
|
}
|
|
|
|
DOUT << "\t\trolling back to: " << earliestStart << '\n';
|
|
|
|
// Scan handled in reverse order up to the earliest start of a
|
|
// spilled live interval and undo each one, restoring the state of
|
|
// unhandled.
|
|
while (!handled_.empty()) {
|
|
LiveInterval* i = handled_.back();
|
|
// If this interval starts before t we are done.
|
|
if (i->beginNumber() < earliestStart)
|
|
break;
|
|
DOUT << "\t\t\tundo changes for: " << *i << '\n';
|
|
handled_.pop_back();
|
|
|
|
// When undoing a live interval allocation we must know if it is active or
|
|
// inactive to properly update the PhysRegTracker and the VirtRegMap.
|
|
IntervalPtrs::iterator it;
|
|
if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
|
|
active_.erase(it);
|
|
assert(!MRegisterInfo::isPhysicalRegister(i->reg));
|
|
if (!spilled.count(i->reg))
|
|
unhandled_.push(i);
|
|
prt_->delRegUse(vrm_->getPhys(i->reg));
|
|
vrm_->clearVirt(i->reg);
|
|
} else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
|
|
inactive_.erase(it);
|
|
assert(!MRegisterInfo::isPhysicalRegister(i->reg));
|
|
if (!spilled.count(i->reg))
|
|
unhandled_.push(i);
|
|
vrm_->clearVirt(i->reg);
|
|
} else {
|
|
assert(MRegisterInfo::isVirtualRegister(i->reg) &&
|
|
"Can only allocate virtual registers!");
|
|
vrm_->clearVirt(i->reg);
|
|
unhandled_.push(i);
|
|
}
|
|
}
|
|
|
|
// Rewind the iterators in the active, inactive, and fixed lists back to the
|
|
// point we reverted to.
|
|
RevertVectorIteratorsTo(active_, earliestStart);
|
|
RevertVectorIteratorsTo(inactive_, earliestStart);
|
|
RevertVectorIteratorsTo(fixed_, earliestStart);
|
|
|
|
// scan the rest and undo each interval that expired after t and
|
|
// insert it in active (the next iteration of the algorithm will
|
|
// put it in inactive if required)
|
|
for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
|
|
LiveInterval *HI = handled_[i];
|
|
if (!HI->expiredAt(earliestStart) &&
|
|
HI->expiredAt(cur->beginNumber())) {
|
|
DOUT << "\t\t\tundo changes for: " << *HI << '\n';
|
|
active_.push_back(std::make_pair(HI, HI->begin()));
|
|
assert(!MRegisterInfo::isPhysicalRegister(HI->reg));
|
|
prt_->addRegUse(vrm_->getPhys(HI->reg));
|
|
}
|
|
}
|
|
|
|
// merge added with unhandled
|
|
for (unsigned i = 0, e = added.size(); i != e; ++i)
|
|
unhandled_.push(added[i]);
|
|
}
|
|
|
|
/// getFreePhysReg - return a free physical register for this virtual register
|
|
/// interval if we have one, otherwise return 0.
|
|
unsigned RA::getFreePhysReg(LiveInterval *cur) {
|
|
std::vector<unsigned> inactiveCounts(mri_->getNumRegs(), 0);
|
|
unsigned MaxInactiveCount = 0;
|
|
|
|
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(cur->reg);
|
|
const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
|
|
|
|
for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
|
|
i != e; ++i) {
|
|
unsigned reg = i->first->reg;
|
|
assert(MRegisterInfo::isVirtualRegister(reg) &&
|
|
"Can only allocate virtual registers!");
|
|
|
|
// If this is not in a related reg class to the register we're allocating,
|
|
// don't check it.
|
|
const TargetRegisterClass *RegRC = mf_->getSSARegMap()->getRegClass(reg);
|
|
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
|
|
reg = vrm_->getPhys(reg);
|
|
++inactiveCounts[reg];
|
|
MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
|
|
}
|
|
}
|
|
|
|
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
|
|
|
|
unsigned FreeReg = 0;
|
|
unsigned FreeRegInactiveCount = 0;
|
|
|
|
// If copy coalescer has assigned a "preferred" register, check if it's
|
|
// available first.
|
|
if (cur->preference)
|
|
if (prt_->isRegAvail(cur->preference)) {
|
|
DOUT << "\t\tassigned the preferred register: "
|
|
<< mri_->getName(cur->preference) << "\n";
|
|
return cur->preference;
|
|
} else
|
|
DOUT << "\t\tunable to assign the preferred register: "
|
|
<< mri_->getName(cur->preference) << "\n";
|
|
|
|
// Scan for the first available register.
|
|
TargetRegisterClass::iterator I = rc->allocation_order_begin(*mf_);
|
|
TargetRegisterClass::iterator E = rc->allocation_order_end(*mf_);
|
|
for (; I != E; ++I)
|
|
if (prt_->isRegAvail(*I)) {
|
|
FreeReg = *I;
|
|
FreeRegInactiveCount = inactiveCounts[FreeReg];
|
|
break;
|
|
}
|
|
|
|
// If there are no free regs, or if this reg has the max inactive count,
|
|
// return this register.
|
|
if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) return FreeReg;
|
|
|
|
// Continue scanning the registers, looking for the one with the highest
|
|
// inactive count. Alkis found that this reduced register pressure very
|
|
// slightly on X86 (in rev 1.94 of this file), though this should probably be
|
|
// reevaluated now.
|
|
for (; I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
if (prt_->isRegAvail(Reg) && FreeRegInactiveCount < inactiveCounts[Reg]) {
|
|
FreeReg = Reg;
|
|
FreeRegInactiveCount = inactiveCounts[Reg];
|
|
if (FreeRegInactiveCount == MaxInactiveCount)
|
|
break; // We found the one with the max inactive count.
|
|
}
|
|
}
|
|
|
|
return FreeReg;
|
|
}
|
|
|
|
FunctionPass* llvm::createLinearScanRegisterAllocator() {
|
|
return new RA();
|
|
}
|