llvm/lib/Target/ARM/MLxExpansionPass.cpp
Bob Wilson 84c5eed15b This patch combines several changes from Evan Cheng for rdar://8659675.
Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
   of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
   additional pipeline stall. So it's frequently better to single codegen
   vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
   stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
   vmla + vmla is very bad. But this isn't ideal either:
     vmul
     vadd
     vmla
   Instead, we want to expand the second vmla:
     vmla
     vmul
     vadd
   Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
   faster.

Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.

A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
   compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
   fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
   vmla / vmls will trigger one of the special hazards.

Enable these fp vmlx codegen changes for Cortex-A9.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129775 91177308-0d34-0410-b5e6-96231b3b80d8
2011-04-19 18:11:57 +00:00

332 lines
9.8 KiB
C++

//===-- MLxExpansionPass.cpp - Expand MLx instrs to avoid hazards ----------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Expand VFP / NEON floating point MLA / MLS instructions (each to a pair of
// multiple and add / sub instructions) when special VMLx hazards are detected.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mlx-expansion"
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMSubtarget.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static cl::opt<bool>
ForceExapnd("expand-all-fp-mlx", cl::init(false), cl::Hidden);
static cl::opt<unsigned>
ExpandLimit("expand-limit", cl::init(~0U), cl::Hidden);
STATISTIC(NumExpand, "Number of fp MLA / MLS instructions expanded");
namespace {
struct MLxExpansion : public MachineFunctionPass {
static char ID;
MLxExpansion() : MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "ARM MLA / MLS expansion pass";
}
private:
const ARMBaseInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
bool isA9;
unsigned MIIdx;
MachineInstr* LastMIs[4];
SmallPtrSet<MachineInstr*, 4> IgnoreStall;
void clearStack();
void pushStack(MachineInstr *MI);
MachineInstr *getAccDefMI(MachineInstr *MI) const;
unsigned getDefReg(MachineInstr *MI) const;
bool hasRAWHazard(unsigned Reg, MachineInstr *MI) const;
bool FindMLxHazard(MachineInstr *MI);
void ExpandFPMLxInstruction(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned MulOpc, unsigned AddSubOpc,
bool NegAcc, bool HasLane);
bool ExpandFPMLxInstructions(MachineBasicBlock &MBB);
};
char MLxExpansion::ID = 0;
}
void MLxExpansion::clearStack() {
std::fill(LastMIs, LastMIs + 4, (MachineInstr*)0);
MIIdx = 0;
}
void MLxExpansion::pushStack(MachineInstr *MI) {
LastMIs[MIIdx] = MI;
if (++MIIdx == 4)
MIIdx = 0;
}
MachineInstr *MLxExpansion::getAccDefMI(MachineInstr *MI) const {
// Look past COPY and INSERT_SUBREG instructions to find the
// real definition MI. This is important for _sfp instructions.
unsigned Reg = MI->getOperand(1).getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return 0;
MachineBasicBlock *MBB = MI->getParent();
MachineInstr *DefMI = MRI->getVRegDef(Reg);
while (true) {
if (DefMI->getParent() != MBB)
break;
if (DefMI->isCopyLike()) {
Reg = DefMI->getOperand(1).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
DefMI = MRI->getVRegDef(Reg);
continue;
}
} else if (DefMI->isInsertSubreg()) {
Reg = DefMI->getOperand(2).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
DefMI = MRI->getVRegDef(Reg);
continue;
}
}
break;
}
return DefMI;
}
unsigned MLxExpansion::getDefReg(MachineInstr *MI) const {
unsigned Reg = MI->getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
!MRI->hasOneNonDBGUse(Reg))
return Reg;
MachineBasicBlock *MBB = MI->getParent();
MachineInstr *UseMI = &*MRI->use_nodbg_begin(Reg);
if (UseMI->getParent() != MBB)
return Reg;
while (UseMI->isCopy() || UseMI->isInsertSubreg()) {
Reg = UseMI->getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
!MRI->hasOneNonDBGUse(Reg))
return Reg;
UseMI = &*MRI->use_nodbg_begin(Reg);
if (UseMI->getParent() != MBB)
return Reg;
}
return Reg;
}
bool MLxExpansion::hasRAWHazard(unsigned Reg, MachineInstr *MI) const {
// FIXME: Detect integer instructions properly.
const TargetInstrDesc &TID = MI->getDesc();
unsigned Domain = TID.TSFlags & ARMII::DomainMask;
if (TID.mayStore())
return false;
unsigned Opcode = TID.getOpcode();
if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
return false;
if ((Domain & ARMII::DomainVFP) || (Domain & ARMII::DomainNEON))
return MI->readsRegister(Reg, TRI);
return false;
}
bool MLxExpansion::FindMLxHazard(MachineInstr *MI) {
if (NumExpand >= ExpandLimit)
return false;
if (ForceExapnd)
return true;
MachineInstr *DefMI = getAccDefMI(MI);
if (TII->isFpMLxInstruction(DefMI->getOpcode())) {
// r0 = vmla
// r3 = vmla r0, r1, r2
// takes 16 - 17 cycles
//
// r0 = vmla
// r4 = vmul r1, r2
// r3 = vadd r0, r4
// takes about 14 - 15 cycles even with vmul stalling for 4 cycles.
IgnoreStall.insert(DefMI);
return true;
}
if (IgnoreStall.count(MI))
return false;
// If a VMLA.F is followed by an VADD.F or VMUL.F with no RAW hazard, the
// VADD.F or VMUL.F will stall 4 cycles before issue. The 4 cycle stall
// preserves the in-order retirement of the instructions.
// Look at the next few instructions, if *most* of them can cause hazards,
// then the scheduler can't *fix* this, we'd better break up the VMLA.
unsigned Limit1 = isA9 ? 1 : 4;
unsigned Limit2 = isA9 ? 1 : 4;
for (unsigned i = 1; i <= 4; ++i) {
int Idx = ((int)MIIdx - i + 4) % 4;
MachineInstr *NextMI = LastMIs[Idx];
if (!NextMI)
continue;
if (TII->canCauseFpMLxStall(NextMI->getOpcode())) {
if (i <= Limit1)
return true;
}
// Look for VMLx RAW hazard.
if (i <= Limit2 && hasRAWHazard(getDefReg(MI), NextMI))
return true;
}
return false;
}
/// ExpandFPMLxInstructions - Expand a MLA / MLS instruction into a pair
/// of MUL + ADD / SUB instructions.
void
MLxExpansion::ExpandFPMLxInstruction(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned MulOpc, unsigned AddSubOpc,
bool NegAcc, bool HasLane) {
unsigned DstReg = MI->getOperand(0).getReg();
bool DstDead = MI->getOperand(0).isDead();
unsigned AccReg = MI->getOperand(1).getReg();
unsigned Src1Reg = MI->getOperand(2).getReg();
unsigned Src2Reg = MI->getOperand(3).getReg();
bool Src1Kill = MI->getOperand(2).isKill();
bool Src2Kill = MI->getOperand(3).isKill();
unsigned LaneImm = HasLane ? MI->getOperand(4).getImm() : 0;
unsigned NextOp = HasLane ? 5 : 4;
ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NextOp).getImm();
unsigned PredReg = MI->getOperand(++NextOp).getReg();
const TargetInstrDesc &TID1 = TII->get(MulOpc);
const TargetInstrDesc &TID2 = TII->get(AddSubOpc);
unsigned TmpReg = MRI->createVirtualRegister(TID1.getRegClass(0, TRI));
MachineInstrBuilder MIB = BuildMI(MBB, *MI, MI->getDebugLoc(), TID1, TmpReg)
.addReg(Src1Reg, getKillRegState(Src1Kill))
.addReg(Src2Reg, getKillRegState(Src2Kill));
if (HasLane)
MIB.addImm(LaneImm);
MIB.addImm(Pred).addReg(PredReg);
MIB = BuildMI(MBB, *MI, MI->getDebugLoc(), TID2)
.addReg(DstReg, getDefRegState(true) | getDeadRegState(DstDead));
if (NegAcc) {
bool AccKill = MRI->hasOneNonDBGUse(AccReg);
MIB.addReg(TmpReg, getKillRegState(true))
.addReg(AccReg, getKillRegState(AccKill));
} else {
MIB.addReg(AccReg).addReg(TmpReg, getKillRegState(true));
}
MIB.addImm(Pred).addReg(PredReg);
DEBUG({
dbgs() << "Expanding: " << *MI;
dbgs() << " to:\n";
MachineBasicBlock::iterator MII = MI;
MII = llvm::prior(MII);
MachineInstr &MI2 = *MII;
MII = llvm::prior(MII);
MachineInstr &MI1 = *MII;
dbgs() << " " << MI1;
dbgs() << " " << MI2;
});
MI->eraseFromParent();
++NumExpand;
}
bool MLxExpansion::ExpandFPMLxInstructions(MachineBasicBlock &MBB) {
bool Changed = false;
clearStack();
IgnoreStall.clear();
unsigned Skip = 0;
MachineBasicBlock::reverse_iterator MII = MBB.rbegin(), E = MBB.rend();
while (MII != E) {
MachineInstr *MI = &*MII;
if (MI->isLabel() || MI->isImplicitDef() || MI->isCopy()) {
++MII;
continue;
}
const TargetInstrDesc &TID = MI->getDesc();
if (TID.isBarrier()) {
clearStack();
Skip = 0;
++MII;
continue;
}
unsigned Domain = TID.TSFlags & ARMII::DomainMask;
if (Domain == ARMII::DomainGeneral) {
if (++Skip == 2)
// Assume dual issues of non-VFP / NEON instructions.
pushStack(0);
} else {
Skip = 0;
unsigned MulOpc, AddSubOpc;
bool NegAcc, HasLane;
if (!TII->isFpMLxInstruction(TID.getOpcode(),
MulOpc, AddSubOpc, NegAcc, HasLane) ||
!FindMLxHazard(MI))
pushStack(MI);
else {
ExpandFPMLxInstruction(MBB, MI, MulOpc, AddSubOpc, NegAcc, HasLane);
E = MBB.rend(); // May have changed if MI was the 1st instruction.
Changed = true;
continue;
}
}
++MII;
}
return Changed;
}
bool MLxExpansion::runOnMachineFunction(MachineFunction &Fn) {
TII = static_cast<const ARMBaseInstrInfo*>(Fn.getTarget().getInstrInfo());
TRI = Fn.getTarget().getRegisterInfo();
MRI = &Fn.getRegInfo();
const ARMSubtarget *STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
isA9 = STI->isCortexA9();
bool Modified = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock &MBB = *MFI;
Modified |= ExpandFPMLxInstructions(MBB);
}
return Modified;
}
FunctionPass *llvm::createMLxExpansionPass() {
return new MLxExpansion();
}