llvm/lib/Target/NVPTX/NVPTXUtilities.cpp
Chandler Carruth 1b279144ec [cleanup] Re-sort all the #include lines in LLVM using
utils/sort_includes.py.

I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 11:23:27 +00:00

545 lines
16 KiB
C++

//===- NVPTXUtilities.cpp - Utility Functions -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions
//===----------------------------------------------------------------------===//
#include "NVPTXUtilities.h"
#include "NVPTX.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MutexGuard.h"
#include <algorithm>
#include <cstring>
#include <map>
#include <string>
#include <vector>
using namespace llvm;
typedef std::map<std::string, std::vector<unsigned> > key_val_pair_t;
typedef std::map<const GlobalValue *, key_val_pair_t> global_val_annot_t;
typedef std::map<const Module *, global_val_annot_t> per_module_annot_t;
ManagedStatic<per_module_annot_t> annotationCache;
static sys::Mutex Lock;
void llvm::clearAnnotationCache(const llvm::Module *Mod) {
MutexGuard Guard(Lock);
annotationCache->erase(Mod);
}
static void cacheAnnotationFromMD(const MDNode *md, key_val_pair_t &retval) {
MutexGuard Guard(Lock);
assert(md && "Invalid mdnode for annotation");
assert((md->getNumOperands() % 2) == 1 && "Invalid number of operands");
// start index = 1, to skip the global variable key
// increment = 2, to skip the value for each property-value pairs
for (unsigned i = 1, e = md->getNumOperands(); i != e; i += 2) {
// property
const MDString *prop = dyn_cast<MDString>(md->getOperand(i));
assert(prop && "Annotation property not a string");
// value
ConstantInt *Val = mdconst::dyn_extract<ConstantInt>(md->getOperand(i + 1));
assert(Val && "Value operand not a constant int");
std::string keyname = prop->getString().str();
if (retval.find(keyname) != retval.end())
retval[keyname].push_back(Val->getZExtValue());
else {
std::vector<unsigned> tmp;
tmp.push_back(Val->getZExtValue());
retval[keyname] = tmp;
}
}
}
static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
MutexGuard Guard(Lock);
NamedMDNode *NMD = m->getNamedMetadata(llvm::NamedMDForAnnotations);
if (!NMD)
return;
key_val_pair_t tmp;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *elem = NMD->getOperand(i);
GlobalValue *entity =
mdconst::dyn_extract_or_null<GlobalValue>(elem->getOperand(0));
// entity may be null due to DCE
if (!entity)
continue;
if (entity != gv)
continue;
// accumulate annotations for entity in tmp
cacheAnnotationFromMD(elem, tmp);
}
if (tmp.empty()) // no annotations for this gv
return;
if ((*annotationCache).find(m) != (*annotationCache).end())
(*annotationCache)[m][gv] = std::move(tmp);
else {
global_val_annot_t tmp1;
tmp1[gv] = std::move(tmp);
(*annotationCache)[m] = std::move(tmp1);
}
}
bool llvm::findOneNVVMAnnotation(const GlobalValue *gv, std::string prop,
unsigned &retval) {
MutexGuard Guard(Lock);
const Module *m = gv->getParent();
if ((*annotationCache).find(m) == (*annotationCache).end())
cacheAnnotationFromMD(m, gv);
else if ((*annotationCache)[m].find(gv) == (*annotationCache)[m].end())
cacheAnnotationFromMD(m, gv);
if ((*annotationCache)[m][gv].find(prop) == (*annotationCache)[m][gv].end())
return false;
retval = (*annotationCache)[m][gv][prop][0];
return true;
}
bool llvm::findAllNVVMAnnotation(const GlobalValue *gv, std::string prop,
std::vector<unsigned> &retval) {
MutexGuard Guard(Lock);
const Module *m = gv->getParent();
if ((*annotationCache).find(m) == (*annotationCache).end())
cacheAnnotationFromMD(m, gv);
else if ((*annotationCache)[m].find(gv) == (*annotationCache)[m].end())
cacheAnnotationFromMD(m, gv);
if ((*annotationCache)[m][gv].find(prop) == (*annotationCache)[m][gv].end())
return false;
retval = (*annotationCache)[m][gv][prop];
return true;
}
bool llvm::isTexture(const llvm::Value &val) {
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned annot;
if (llvm::findOneNVVMAnnotation(
gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISTEXTURE],
annot)) {
assert((annot == 1) && "Unexpected annotation on a texture symbol");
return true;
}
}
return false;
}
bool llvm::isSurface(const llvm::Value &val) {
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned annot;
if (llvm::findOneNVVMAnnotation(
gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSURFACE],
annot)) {
assert((annot == 1) && "Unexpected annotation on a surface symbol");
return true;
}
}
return false;
}
bool llvm::isSampler(const llvm::Value &val) {
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned annot;
if (llvm::findOneNVVMAnnotation(
gv, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSAMPLER],
annot)) {
assert((annot == 1) && "Unexpected annotation on a sampler symbol");
return true;
}
}
if (const Argument *arg = dyn_cast<Argument>(&val)) {
const Function *func = arg->getParent();
std::vector<unsigned> annot;
if (llvm::findAllNVVMAnnotation(
func, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISSAMPLER],
annot)) {
if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
return true;
}
}
return false;
}
bool llvm::isImageReadOnly(const llvm::Value &val) {
if (const Argument *arg = dyn_cast<Argument>(&val)) {
const Function *func = arg->getParent();
std::vector<unsigned> annot;
if (llvm::findAllNVVMAnnotation(func,
llvm::PropertyAnnotationNames[
llvm::PROPERTY_ISREADONLY_IMAGE_PARAM],
annot)) {
if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
return true;
}
}
return false;
}
bool llvm::isImageWriteOnly(const llvm::Value &val) {
if (const Argument *arg = dyn_cast<Argument>(&val)) {
const Function *func = arg->getParent();
std::vector<unsigned> annot;
if (llvm::findAllNVVMAnnotation(func,
llvm::PropertyAnnotationNames[
llvm::PROPERTY_ISWRITEONLY_IMAGE_PARAM],
annot)) {
if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
return true;
}
}
return false;
}
bool llvm::isImageReadWrite(const llvm::Value &val) {
if (const Argument *arg = dyn_cast<Argument>(&val)) {
const Function *func = arg->getParent();
std::vector<unsigned> annot;
if (llvm::findAllNVVMAnnotation(func,
llvm::PropertyAnnotationNames[
llvm::PROPERTY_ISREADWRITE_IMAGE_PARAM],
annot)) {
if (std::find(annot.begin(), annot.end(), arg->getArgNo()) != annot.end())
return true;
}
}
return false;
}
bool llvm::isImage(const llvm::Value &val) {
return llvm::isImageReadOnly(val) || llvm::isImageWriteOnly(val) ||
llvm::isImageReadWrite(val);
}
bool llvm::isManaged(const llvm::Value &val) {
if(const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned annot;
if(llvm::findOneNVVMAnnotation(gv,
llvm::PropertyAnnotationNames[llvm::PROPERTY_MANAGED],
annot)) {
assert((annot == 1) && "Unexpected annotation on a managed symbol");
return true;
}
}
return false;
}
std::string llvm::getTextureName(const llvm::Value &val) {
assert(val.hasName() && "Found texture variable with no name");
return val.getName();
}
std::string llvm::getSurfaceName(const llvm::Value &val) {
assert(val.hasName() && "Found surface variable with no name");
return val.getName();
}
std::string llvm::getSamplerName(const llvm::Value &val) {
assert(val.hasName() && "Found sampler variable with no name");
return val.getName();
}
bool llvm::getMaxNTIDx(const Function &F, unsigned &x) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_X], x));
}
bool llvm::getMaxNTIDy(const Function &F, unsigned &y) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_Y], y));
}
bool llvm::getMaxNTIDz(const Function &F, unsigned &z) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MAXNTID_Z], z));
}
bool llvm::getReqNTIDx(const Function &F, unsigned &x) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_X], x));
}
bool llvm::getReqNTIDy(const Function &F, unsigned &y) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_Y], y));
}
bool llvm::getReqNTIDz(const Function &F, unsigned &z) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_REQNTID_Z], z));
}
bool llvm::getMinCTASm(const Function &F, unsigned &x) {
return (llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_MINNCTAPERSM], x));
}
bool llvm::isKernelFunction(const Function &F) {
unsigned x = 0;
bool retval = llvm::findOneNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_ISKERNEL_FUNCTION], x);
if (retval == false) {
// There is no NVVM metadata, check the calling convention
if (F.getCallingConv() == llvm::CallingConv::PTX_Kernel)
return true;
else
return false;
}
return (x == 1);
}
bool llvm::getAlign(const Function &F, unsigned index, unsigned &align) {
std::vector<unsigned> Vs;
bool retval = llvm::findAllNVVMAnnotation(
&F, llvm::PropertyAnnotationNames[llvm::PROPERTY_ALIGN], Vs);
if (retval == false)
return false;
for (int i = 0, e = Vs.size(); i < e; i++) {
unsigned v = Vs[i];
if ((v >> 16) == index) {
align = v & 0xFFFF;
return true;
}
}
return false;
}
bool llvm::getAlign(const CallInst &I, unsigned index, unsigned &align) {
if (MDNode *alignNode = I.getMetadata("callalign")) {
for (int i = 0, n = alignNode->getNumOperands(); i < n; i++) {
if (const ConstantInt *CI =
mdconst::dyn_extract<ConstantInt>(alignNode->getOperand(i))) {
unsigned v = CI->getZExtValue();
if ((v >> 16) == index) {
align = v & 0xFFFF;
return true;
}
if ((v >> 16) > index) {
return false;
}
}
}
}
return false;
}
bool llvm::isBarrierIntrinsic(Intrinsic::ID id) {
if ((id == Intrinsic::nvvm_barrier0) ||
(id == Intrinsic::nvvm_barrier0_popc) ||
(id == Intrinsic::nvvm_barrier0_and) ||
(id == Intrinsic::nvvm_barrier0_or) ||
(id == Intrinsic::cuda_syncthreads))
return true;
return false;
}
// Interface for checking all memory space transfer related intrinsics
bool llvm::isMemorySpaceTransferIntrinsic(Intrinsic::ID id) {
if (id == Intrinsic::nvvm_ptr_local_to_gen ||
id == Intrinsic::nvvm_ptr_shared_to_gen ||
id == Intrinsic::nvvm_ptr_global_to_gen ||
id == Intrinsic::nvvm_ptr_constant_to_gen ||
id == Intrinsic::nvvm_ptr_gen_to_global ||
id == Intrinsic::nvvm_ptr_gen_to_shared ||
id == Intrinsic::nvvm_ptr_gen_to_local ||
id == Intrinsic::nvvm_ptr_gen_to_constant ||
id == Intrinsic::nvvm_ptr_gen_to_param) {
return true;
}
return false;
}
// consider several special intrinsics in striping pointer casts, and
// provide an option to ignore GEP indicies for find out the base address only
// which could be used in simple alias disambigurate.
const Value *
llvm::skipPointerTransfer(const Value *V, bool ignore_GEP_indices) {
V = V->stripPointerCasts();
while (true) {
if (const IntrinsicInst *IS = dyn_cast<IntrinsicInst>(V)) {
if (isMemorySpaceTransferIntrinsic(IS->getIntrinsicID())) {
V = IS->getArgOperand(0)->stripPointerCasts();
continue;
}
} else if (ignore_GEP_indices)
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
V = GEP->getPointerOperand()->stripPointerCasts();
continue;
}
break;
}
return V;
}
// consider several special intrinsics in striping pointer casts, and
// - ignore GEP indicies for find out the base address only, and
// - tracking PHINode
// which could be used in simple alias disambigurate.
const Value *
llvm::skipPointerTransfer(const Value *V, std::set<const Value *> &processed) {
if (processed.find(V) != processed.end())
return nullptr;
processed.insert(V);
const Value *V2 = V->stripPointerCasts();
if (V2 != V && processed.find(V2) != processed.end())
return nullptr;
processed.insert(V2);
V = V2;
while (true) {
if (const IntrinsicInst *IS = dyn_cast<IntrinsicInst>(V)) {
if (isMemorySpaceTransferIntrinsic(IS->getIntrinsicID())) {
V = IS->getArgOperand(0)->stripPointerCasts();
continue;
}
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
V = GEP->getPointerOperand()->stripPointerCasts();
continue;
} else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
if (V != V2 && processed.find(V) != processed.end())
return nullptr;
processed.insert(PN);
const Value *common = nullptr;
for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
const Value *pv = PN->getIncomingValue(i);
const Value *base = skipPointerTransfer(pv, processed);
if (base) {
if (!common)
common = base;
else if (common != base)
return PN;
}
}
if (!common)
return PN;
V = common;
}
break;
}
return V;
}
// The following are some useful utilities for debuggung
BasicBlock *llvm::getParentBlock(Value *v) {
if (BasicBlock *B = dyn_cast<BasicBlock>(v))
return B;
if (Instruction *I = dyn_cast<Instruction>(v))
return I->getParent();
return nullptr;
}
Function *llvm::getParentFunction(Value *v) {
if (Function *F = dyn_cast<Function>(v))
return F;
if (Instruction *I = dyn_cast<Instruction>(v))
return I->getParent()->getParent();
if (BasicBlock *B = dyn_cast<BasicBlock>(v))
return B->getParent();
return nullptr;
}
// Dump a block by name
void llvm::dumpBlock(Value *v, char *blockName) {
Function *F = getParentFunction(v);
if (!F)
return;
for (Function::iterator it = F->begin(), ie = F->end(); it != ie; ++it) {
BasicBlock *B = it;
if (strcmp(B->getName().data(), blockName) == 0) {
B->dump();
return;
}
}
}
// Find an instruction by name
Instruction *llvm::getInst(Value *base, char *instName) {
Function *F = getParentFunction(base);
if (!F)
return nullptr;
for (inst_iterator it = inst_begin(F), ie = inst_end(F); it != ie; ++it) {
Instruction *I = &*it;
if (strcmp(I->getName().data(), instName) == 0) {
return I;
}
}
return nullptr;
}
// Dump an instruction by nane
void llvm::dumpInst(Value *base, char *instName) {
Instruction *I = getInst(base, instName);
if (I)
I->dump();
}
// Dump an instruction and all dependent instructions
void llvm::dumpInstRec(Value *v, std::set<Instruction *> *visited) {
if (Instruction *I = dyn_cast<Instruction>(v)) {
if (visited->find(I) != visited->end())
return;
visited->insert(I);
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
dumpInstRec(I->getOperand(i), visited);
I->dump();
}
}
// Dump an instruction and all dependent instructions
void llvm::dumpInstRec(Value *v) {
std::set<Instruction *> visited;
//BasicBlock *B = getParentBlock(v);
dumpInstRec(v, &visited);
}
// Dump the parent for Instruction, block or function
void llvm::dumpParent(Value *v) {
if (Instruction *I = dyn_cast<Instruction>(v)) {
I->getParent()->dump();
return;
}
if (BasicBlock *B = dyn_cast<BasicBlock>(v)) {
B->getParent()->dump();
return;
}
if (Function *F = dyn_cast<Function>(v)) {
F->getParent()->dump();
return;
}
}