mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-30 15:10:33 +00:00
2b4e1b9abf
time. Do so. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228998 91177308-0d34-0410-b5e6-96231b3b80d8
10032 lines
398 KiB
C++
10032 lines
398 KiB
C++
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements the PPCISelLowering class.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "PPCISelLowering.h"
|
||
#include "MCTargetDesc/PPCPredicates.h"
|
||
#include "PPCCallingConv.h"
|
||
#include "PPCMachineFunctionInfo.h"
|
||
#include "PPCPerfectShuffle.h"
|
||
#include "PPCTargetMachine.h"
|
||
#include "PPCTargetObjectFile.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
#include "llvm/ADT/StringSwitch.h"
|
||
#include "llvm/ADT/Triple.h"
|
||
#include "llvm/CodeGen/CallingConvLower.h"
|
||
#include "llvm/CodeGen/MachineFrameInfo.h"
|
||
#include "llvm/CodeGen/MachineFunction.h"
|
||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||
#include "llvm/CodeGen/MachineLoopInfo.h"
|
||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||
#include "llvm/CodeGen/SelectionDAG.h"
|
||
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
||
#include "llvm/IR/CallingConv.h"
|
||
#include "llvm/IR/Constants.h"
|
||
#include "llvm/IR/DerivedTypes.h"
|
||
#include "llvm/IR/Function.h"
|
||
#include "llvm/IR/Intrinsics.h"
|
||
#include "llvm/Support/CommandLine.h"
|
||
#include "llvm/Support/ErrorHandling.h"
|
||
#include "llvm/Support/MathExtras.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include "llvm/Target/TargetOptions.h"
|
||
using namespace llvm;
|
||
|
||
// FIXME: Remove this once soft-float is supported.
|
||
static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic",
|
||
cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden);
|
||
|
||
static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
|
||
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
|
||
|
||
static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
|
||
cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
|
||
|
||
static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
|
||
cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
|
||
|
||
// FIXME: Remove this once the bug has been fixed!
|
||
extern cl::opt<bool> ANDIGlueBug;
|
||
|
||
PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
|
||
const PPCSubtarget &STI)
|
||
: TargetLowering(TM), Subtarget(STI) {
|
||
// Use _setjmp/_longjmp instead of setjmp/longjmp.
|
||
setUseUnderscoreSetJmp(true);
|
||
setUseUnderscoreLongJmp(true);
|
||
|
||
// On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
|
||
// arguments are at least 4/8 bytes aligned.
|
||
bool isPPC64 = Subtarget.isPPC64();
|
||
setMinStackArgumentAlignment(isPPC64 ? 8:4);
|
||
|
||
// Set up the register classes.
|
||
addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
|
||
addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
|
||
addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
|
||
|
||
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
|
||
for (MVT VT : MVT::integer_valuetypes()) {
|
||
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
|
||
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
|
||
}
|
||
|
||
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
||
|
||
// PowerPC has pre-inc load and store's.
|
||
setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
|
||
setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
|
||
setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
|
||
setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
|
||
setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
|
||
setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
|
||
setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
|
||
setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
|
||
setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
|
||
setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
|
||
setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
|
||
setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
|
||
setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
|
||
setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
|
||
|
||
if (Subtarget.useCRBits()) {
|
||
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
||
|
||
if (isPPC64 || Subtarget.hasFPCVT()) {
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
|
||
AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
|
||
isPPC64 ? MVT::i64 : MVT::i32);
|
||
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
|
||
AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
|
||
isPPC64 ? MVT::i64 : MVT::i32);
|
||
} else {
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
|
||
setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
|
||
}
|
||
|
||
// PowerPC does not support direct load / store of condition registers
|
||
setOperationAction(ISD::LOAD, MVT::i1, Custom);
|
||
setOperationAction(ISD::STORE, MVT::i1, Custom);
|
||
|
||
// FIXME: Remove this once the ANDI glue bug is fixed:
|
||
if (ANDIGlueBug)
|
||
setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
|
||
|
||
for (MVT VT : MVT::integer_valuetypes()) {
|
||
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
|
||
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
|
||
setTruncStoreAction(VT, MVT::i1, Expand);
|
||
}
|
||
|
||
addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
|
||
}
|
||
|
||
// This is used in the ppcf128->int sequence. Note it has different semantics
|
||
// from FP_ROUND: that rounds to nearest, this rounds to zero.
|
||
setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
|
||
|
||
// We do not currently implement these libm ops for PowerPC.
|
||
setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
|
||
setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
|
||
setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
|
||
setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
|
||
setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
|
||
setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
|
||
|
||
// PowerPC has no SREM/UREM instructions
|
||
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
||
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
||
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
||
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
||
|
||
// Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
|
||
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
||
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
||
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
|
||
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
|
||
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
||
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
||
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
|
||
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
|
||
|
||
// We don't support sin/cos/sqrt/fmod/pow
|
||
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
||
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
||
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
||
setOperationAction(ISD::FREM , MVT::f64, Expand);
|
||
setOperationAction(ISD::FPOW , MVT::f64, Expand);
|
||
setOperationAction(ISD::FMA , MVT::f64, Legal);
|
||
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
||
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
||
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
||
setOperationAction(ISD::FREM , MVT::f32, Expand);
|
||
setOperationAction(ISD::FPOW , MVT::f32, Expand);
|
||
setOperationAction(ISD::FMA , MVT::f32, Legal);
|
||
|
||
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
|
||
|
||
// If we're enabling GP optimizations, use hardware square root
|
||
if (!Subtarget.hasFSQRT() &&
|
||
!(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
|
||
Subtarget.hasFRE()))
|
||
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
|
||
|
||
if (!Subtarget.hasFSQRT() &&
|
||
!(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
|
||
Subtarget.hasFRES()))
|
||
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
|
||
|
||
if (Subtarget.hasFCPSGN()) {
|
||
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
|
||
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
|
||
} else {
|
||
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
||
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
||
}
|
||
|
||
if (Subtarget.hasFPRND()) {
|
||
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
|
||
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
|
||
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
|
||
setOperationAction(ISD::FROUND, MVT::f64, Legal);
|
||
|
||
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
|
||
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
|
||
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
|
||
setOperationAction(ISD::FROUND, MVT::f32, Legal);
|
||
}
|
||
|
||
// PowerPC does not have BSWAP, CTPOP or CTTZ
|
||
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
|
||
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
|
||
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
|
||
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
|
||
setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
|
||
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
|
||
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
|
||
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
|
||
|
||
if (Subtarget.hasPOPCNTD()) {
|
||
setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
|
||
setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
|
||
} else {
|
||
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
|
||
setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
|
||
}
|
||
|
||
// PowerPC does not have ROTR
|
||
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
|
||
setOperationAction(ISD::ROTR, MVT::i64 , Expand);
|
||
|
||
if (!Subtarget.useCRBits()) {
|
||
// PowerPC does not have Select
|
||
setOperationAction(ISD::SELECT, MVT::i32, Expand);
|
||
setOperationAction(ISD::SELECT, MVT::i64, Expand);
|
||
setOperationAction(ISD::SELECT, MVT::f32, Expand);
|
||
setOperationAction(ISD::SELECT, MVT::f64, Expand);
|
||
}
|
||
|
||
// PowerPC wants to turn select_cc of FP into fsel when possible.
|
||
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
||
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
||
|
||
// PowerPC wants to optimize integer setcc a bit
|
||
if (!Subtarget.useCRBits())
|
||
setOperationAction(ISD::SETCC, MVT::i32, Custom);
|
||
|
||
// PowerPC does not have BRCOND which requires SetCC
|
||
if (!Subtarget.useCRBits())
|
||
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
||
|
||
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
||
|
||
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
|
||
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
||
|
||
// PowerPC does not have [U|S]INT_TO_FP
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
|
||
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
||
|
||
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
|
||
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
|
||
setOperationAction(ISD::BITCAST, MVT::i64, Expand);
|
||
setOperationAction(ISD::BITCAST, MVT::f64, Expand);
|
||
|
||
// We cannot sextinreg(i1). Expand to shifts.
|
||
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
||
|
||
// NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
|
||
// SjLj exception handling but a light-weight setjmp/longjmp replacement to
|
||
// support continuation, user-level threading, and etc.. As a result, no
|
||
// other SjLj exception interfaces are implemented and please don't build
|
||
// your own exception handling based on them.
|
||
// LLVM/Clang supports zero-cost DWARF exception handling.
|
||
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
|
||
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
|
||
|
||
// We want to legalize GlobalAddress and ConstantPool nodes into the
|
||
// appropriate instructions to materialize the address.
|
||
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
||
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
||
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
||
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
||
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
||
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
||
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
||
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
|
||
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
|
||
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
|
||
|
||
// TRAP is legal.
|
||
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
||
|
||
// TRAMPOLINE is custom lowered.
|
||
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
|
||
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
|
||
|
||
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
|
||
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
||
|
||
if (Subtarget.isSVR4ABI()) {
|
||
if (isPPC64) {
|
||
// VAARG always uses double-word chunks, so promote anything smaller.
|
||
setOperationAction(ISD::VAARG, MVT::i1, Promote);
|
||
AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
|
||
setOperationAction(ISD::VAARG, MVT::i8, Promote);
|
||
AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
|
||
setOperationAction(ISD::VAARG, MVT::i16, Promote);
|
||
AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
|
||
setOperationAction(ISD::VAARG, MVT::i32, Promote);
|
||
AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
|
||
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
||
} else {
|
||
// VAARG is custom lowered with the 32-bit SVR4 ABI.
|
||
setOperationAction(ISD::VAARG, MVT::Other, Custom);
|
||
setOperationAction(ISD::VAARG, MVT::i64, Custom);
|
||
}
|
||
} else
|
||
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
||
|
||
if (Subtarget.isSVR4ABI() && !isPPC64)
|
||
// VACOPY is custom lowered with the 32-bit SVR4 ABI.
|
||
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
|
||
else
|
||
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
||
|
||
// Use the default implementation.
|
||
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
||
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
|
||
setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
|
||
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
|
||
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
|
||
|
||
// We want to custom lower some of our intrinsics.
|
||
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
||
|
||
// To handle counter-based loop conditions.
|
||
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
|
||
|
||
// Comparisons that require checking two conditions.
|
||
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
|
||
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
|
||
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
|
||
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
|
||
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
|
||
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
|
||
setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
|
||
setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
|
||
setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
|
||
setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
|
||
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
|
||
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
|
||
|
||
if (Subtarget.has64BitSupport()) {
|
||
// They also have instructions for converting between i64 and fp.
|
||
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
||
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
||
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
|
||
// This is just the low 32 bits of a (signed) fp->i64 conversion.
|
||
// We cannot do this with Promote because i64 is not a legal type.
|
||
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
||
|
||
if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
||
} else {
|
||
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
|
||
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
||
}
|
||
|
||
// With the instructions enabled under FPCVT, we can do everything.
|
||
if (Subtarget.hasFPCVT()) {
|
||
if (Subtarget.has64BitSupport()) {
|
||
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
||
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
||
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
|
||
}
|
||
|
||
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
||
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
||
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
||
}
|
||
|
||
if (Subtarget.use64BitRegs()) {
|
||
// 64-bit PowerPC implementations can support i64 types directly
|
||
addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
|
||
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
|
||
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
|
||
// 64-bit PowerPC wants to expand i128 shifts itself.
|
||
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
|
||
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
|
||
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
|
||
} else {
|
||
// 32-bit PowerPC wants to expand i64 shifts itself.
|
||
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
||
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
||
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
||
}
|
||
|
||
if (Subtarget.hasAltivec()) {
|
||
// First set operation action for all vector types to expand. Then we
|
||
// will selectively turn on ones that can be effectively codegen'd.
|
||
for (MVT VT : MVT::vector_valuetypes()) {
|
||
// add/sub are legal for all supported vector VT's.
|
||
setOperationAction(ISD::ADD , VT, Legal);
|
||
setOperationAction(ISD::SUB , VT, Legal);
|
||
|
||
// Vector instructions introduced in P8
|
||
if (Subtarget.hasP8Altivec()) {
|
||
setOperationAction(ISD::CTPOP, VT, Legal);
|
||
setOperationAction(ISD::CTLZ, VT, Legal);
|
||
}
|
||
else {
|
||
setOperationAction(ISD::CTPOP, VT, Expand);
|
||
setOperationAction(ISD::CTLZ, VT, Expand);
|
||
}
|
||
|
||
// We promote all shuffles to v16i8.
|
||
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
|
||
AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
|
||
|
||
// We promote all non-typed operations to v4i32.
|
||
setOperationAction(ISD::AND , VT, Promote);
|
||
AddPromotedToType (ISD::AND , VT, MVT::v4i32);
|
||
setOperationAction(ISD::OR , VT, Promote);
|
||
AddPromotedToType (ISD::OR , VT, MVT::v4i32);
|
||
setOperationAction(ISD::XOR , VT, Promote);
|
||
AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
|
||
setOperationAction(ISD::LOAD , VT, Promote);
|
||
AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
|
||
setOperationAction(ISD::SELECT, VT, Promote);
|
||
AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
|
||
setOperationAction(ISD::STORE, VT, Promote);
|
||
AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
|
||
|
||
// No other operations are legal.
|
||
setOperationAction(ISD::MUL , VT, Expand);
|
||
setOperationAction(ISD::SDIV, VT, Expand);
|
||
setOperationAction(ISD::SREM, VT, Expand);
|
||
setOperationAction(ISD::UDIV, VT, Expand);
|
||
setOperationAction(ISD::UREM, VT, Expand);
|
||
setOperationAction(ISD::FDIV, VT, Expand);
|
||
setOperationAction(ISD::FREM, VT, Expand);
|
||
setOperationAction(ISD::FNEG, VT, Expand);
|
||
setOperationAction(ISD::FSQRT, VT, Expand);
|
||
setOperationAction(ISD::FLOG, VT, Expand);
|
||
setOperationAction(ISD::FLOG10, VT, Expand);
|
||
setOperationAction(ISD::FLOG2, VT, Expand);
|
||
setOperationAction(ISD::FEXP, VT, Expand);
|
||
setOperationAction(ISD::FEXP2, VT, Expand);
|
||
setOperationAction(ISD::FSIN, VT, Expand);
|
||
setOperationAction(ISD::FCOS, VT, Expand);
|
||
setOperationAction(ISD::FABS, VT, Expand);
|
||
setOperationAction(ISD::FPOWI, VT, Expand);
|
||
setOperationAction(ISD::FFLOOR, VT, Expand);
|
||
setOperationAction(ISD::FCEIL, VT, Expand);
|
||
setOperationAction(ISD::FTRUNC, VT, Expand);
|
||
setOperationAction(ISD::FRINT, VT, Expand);
|
||
setOperationAction(ISD::FNEARBYINT, VT, Expand);
|
||
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
|
||
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
|
||
setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
|
||
setOperationAction(ISD::MULHU, VT, Expand);
|
||
setOperationAction(ISD::MULHS, VT, Expand);
|
||
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
||
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
||
setOperationAction(ISD::UDIVREM, VT, Expand);
|
||
setOperationAction(ISD::SDIVREM, VT, Expand);
|
||
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
|
||
setOperationAction(ISD::FPOW, VT, Expand);
|
||
setOperationAction(ISD::BSWAP, VT, Expand);
|
||
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
|
||
setOperationAction(ISD::CTTZ, VT, Expand);
|
||
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
|
||
setOperationAction(ISD::VSELECT, VT, Expand);
|
||
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
|
||
|
||
for (MVT InnerVT : MVT::vector_valuetypes()) {
|
||
setTruncStoreAction(VT, InnerVT, Expand);
|
||
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
|
||
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
|
||
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
|
||
}
|
||
}
|
||
|
||
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
|
||
// with merges, splats, etc.
|
||
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
|
||
|
||
setOperationAction(ISD::AND , MVT::v4i32, Legal);
|
||
setOperationAction(ISD::OR , MVT::v4i32, Legal);
|
||
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
|
||
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
|
||
setOperationAction(ISD::SELECT, MVT::v4i32,
|
||
Subtarget.useCRBits() ? Legal : Expand);
|
||
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
|
||
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
|
||
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
|
||
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
|
||
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
|
||
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
|
||
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
|
||
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
|
||
|
||
addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
|
||
addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
|
||
addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
|
||
addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
|
||
|
||
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
|
||
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
|
||
|
||
if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
|
||
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
|
||
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
|
||
}
|
||
|
||
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
||
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
||
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
|
||
|
||
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
|
||
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
|
||
|
||
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
|
||
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
|
||
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
|
||
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
|
||
|
||
// Altivec does not contain unordered floating-point compare instructions
|
||
setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
|
||
setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
|
||
setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
|
||
setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
|
||
|
||
if (Subtarget.hasVSX()) {
|
||
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
|
||
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
|
||
|
||
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
|
||
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
|
||
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
|
||
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
|
||
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
|
||
|
||
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
|
||
|
||
setOperationAction(ISD::MUL, MVT::v2f64, Legal);
|
||
setOperationAction(ISD::FMA, MVT::v2f64, Legal);
|
||
|
||
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
|
||
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
|
||
|
||
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
|
||
setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
|
||
setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
|
||
setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
|
||
setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
|
||
|
||
// Share the Altivec comparison restrictions.
|
||
setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
|
||
setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
|
||
setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
|
||
setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
|
||
|
||
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
|
||
setOperationAction(ISD::STORE, MVT::v2f64, Legal);
|
||
|
||
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
|
||
|
||
addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
|
||
|
||
addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
|
||
addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
|
||
|
||
// VSX v2i64 only supports non-arithmetic operations.
|
||
setOperationAction(ISD::ADD, MVT::v2i64, Expand);
|
||
setOperationAction(ISD::SUB, MVT::v2i64, Expand);
|
||
|
||
setOperationAction(ISD::SHL, MVT::v2i64, Expand);
|
||
setOperationAction(ISD::SRA, MVT::v2i64, Expand);
|
||
setOperationAction(ISD::SRL, MVT::v2i64, Expand);
|
||
|
||
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
|
||
|
||
setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
|
||
AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
|
||
setOperationAction(ISD::STORE, MVT::v2i64, Promote);
|
||
AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
|
||
|
||
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
|
||
|
||
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
|
||
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
|
||
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
|
||
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
|
||
|
||
// Vector operation legalization checks the result type of
|
||
// SIGN_EXTEND_INREG, overall legalization checks the inner type.
|
||
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
|
||
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
|
||
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
|
||
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
|
||
|
||
addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
|
||
}
|
||
|
||
if (Subtarget.hasP8Altivec())
|
||
addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
|
||
}
|
||
|
||
if (Subtarget.has64BitSupport())
|
||
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
|
||
|
||
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
|
||
|
||
if (!isPPC64) {
|
||
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
|
||
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
|
||
}
|
||
|
||
setBooleanContents(ZeroOrOneBooleanContent);
|
||
// Altivec instructions set fields to all zeros or all ones.
|
||
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
||
|
||
if (!isPPC64) {
|
||
// These libcalls are not available in 32-bit.
|
||
setLibcallName(RTLIB::SHL_I128, nullptr);
|
||
setLibcallName(RTLIB::SRL_I128, nullptr);
|
||
setLibcallName(RTLIB::SRA_I128, nullptr);
|
||
}
|
||
|
||
if (isPPC64) {
|
||
setStackPointerRegisterToSaveRestore(PPC::X1);
|
||
setExceptionPointerRegister(PPC::X3);
|
||
setExceptionSelectorRegister(PPC::X4);
|
||
} else {
|
||
setStackPointerRegisterToSaveRestore(PPC::R1);
|
||
setExceptionPointerRegister(PPC::R3);
|
||
setExceptionSelectorRegister(PPC::R4);
|
||
}
|
||
|
||
// We have target-specific dag combine patterns for the following nodes:
|
||
setTargetDAGCombine(ISD::SINT_TO_FP);
|
||
if (Subtarget.hasFPCVT())
|
||
setTargetDAGCombine(ISD::UINT_TO_FP);
|
||
setTargetDAGCombine(ISD::LOAD);
|
||
setTargetDAGCombine(ISD::STORE);
|
||
setTargetDAGCombine(ISD::BR_CC);
|
||
if (Subtarget.useCRBits())
|
||
setTargetDAGCombine(ISD::BRCOND);
|
||
setTargetDAGCombine(ISD::BSWAP);
|
||
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
||
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
|
||
setTargetDAGCombine(ISD::INTRINSIC_VOID);
|
||
|
||
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
||
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
||
setTargetDAGCombine(ISD::ANY_EXTEND);
|
||
|
||
if (Subtarget.useCRBits()) {
|
||
setTargetDAGCombine(ISD::TRUNCATE);
|
||
setTargetDAGCombine(ISD::SETCC);
|
||
setTargetDAGCombine(ISD::SELECT_CC);
|
||
}
|
||
|
||
// Use reciprocal estimates.
|
||
if (TM.Options.UnsafeFPMath) {
|
||
setTargetDAGCombine(ISD::FDIV);
|
||
setTargetDAGCombine(ISD::FSQRT);
|
||
}
|
||
|
||
// Darwin long double math library functions have $LDBL128 appended.
|
||
if (Subtarget.isDarwin()) {
|
||
setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
|
||
setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
|
||
setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
|
||
setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
|
||
setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
|
||
setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
|
||
setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
|
||
setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
|
||
setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
|
||
setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
|
||
}
|
||
|
||
// With 32 condition bits, we don't need to sink (and duplicate) compares
|
||
// aggressively in CodeGenPrep.
|
||
if (Subtarget.useCRBits()) {
|
||
setHasMultipleConditionRegisters();
|
||
setJumpIsExpensive();
|
||
}
|
||
|
||
setMinFunctionAlignment(2);
|
||
if (Subtarget.isDarwin())
|
||
setPrefFunctionAlignment(4);
|
||
|
||
switch (Subtarget.getDarwinDirective()) {
|
||
default: break;
|
||
case PPC::DIR_970:
|
||
case PPC::DIR_A2:
|
||
case PPC::DIR_E500mc:
|
||
case PPC::DIR_E5500:
|
||
case PPC::DIR_PWR4:
|
||
case PPC::DIR_PWR5:
|
||
case PPC::DIR_PWR5X:
|
||
case PPC::DIR_PWR6:
|
||
case PPC::DIR_PWR6X:
|
||
case PPC::DIR_PWR7:
|
||
case PPC::DIR_PWR8:
|
||
setPrefFunctionAlignment(4);
|
||
setPrefLoopAlignment(4);
|
||
break;
|
||
}
|
||
|
||
setInsertFencesForAtomic(true);
|
||
|
||
if (Subtarget.enableMachineScheduler())
|
||
setSchedulingPreference(Sched::Source);
|
||
else
|
||
setSchedulingPreference(Sched::Hybrid);
|
||
|
||
computeRegisterProperties();
|
||
|
||
// The Freescale cores do better with aggressive inlining of memcpy and
|
||
// friends. GCC uses same threshold of 128 bytes (= 32 word stores).
|
||
if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
|
||
Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
|
||
MaxStoresPerMemset = 32;
|
||
MaxStoresPerMemsetOptSize = 16;
|
||
MaxStoresPerMemcpy = 32;
|
||
MaxStoresPerMemcpyOptSize = 8;
|
||
MaxStoresPerMemmove = 32;
|
||
MaxStoresPerMemmoveOptSize = 8;
|
||
}
|
||
}
|
||
|
||
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
|
||
/// the desired ByVal argument alignment.
|
||
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
|
||
unsigned MaxMaxAlign) {
|
||
if (MaxAlign == MaxMaxAlign)
|
||
return;
|
||
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
||
if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
|
||
MaxAlign = 32;
|
||
else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
|
||
MaxAlign = 16;
|
||
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
||
unsigned EltAlign = 0;
|
||
getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
|
||
if (EltAlign > MaxAlign)
|
||
MaxAlign = EltAlign;
|
||
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
||
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
||
unsigned EltAlign = 0;
|
||
getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
|
||
if (EltAlign > MaxAlign)
|
||
MaxAlign = EltAlign;
|
||
if (MaxAlign == MaxMaxAlign)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
||
/// function arguments in the caller parameter area.
|
||
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
|
||
// Darwin passes everything on 4 byte boundary.
|
||
if (Subtarget.isDarwin())
|
||
return 4;
|
||
|
||
// 16byte and wider vectors are passed on 16byte boundary.
|
||
// The rest is 8 on PPC64 and 4 on PPC32 boundary.
|
||
unsigned Align = Subtarget.isPPC64() ? 8 : 4;
|
||
if (Subtarget.hasAltivec() || Subtarget.hasQPX())
|
||
getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
|
||
return Align;
|
||
}
|
||
|
||
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
||
switch (Opcode) {
|
||
default: return nullptr;
|
||
case PPCISD::FSEL: return "PPCISD::FSEL";
|
||
case PPCISD::FCFID: return "PPCISD::FCFID";
|
||
case PPCISD::FCFIDU: return "PPCISD::FCFIDU";
|
||
case PPCISD::FCFIDS: return "PPCISD::FCFIDS";
|
||
case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS";
|
||
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
|
||
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
|
||
case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ";
|
||
case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ";
|
||
case PPCISD::FRE: return "PPCISD::FRE";
|
||
case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
|
||
case PPCISD::STFIWX: return "PPCISD::STFIWX";
|
||
case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
|
||
case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
|
||
case PPCISD::VPERM: return "PPCISD::VPERM";
|
||
case PPCISD::CMPB: return "PPCISD::CMPB";
|
||
case PPCISD::Hi: return "PPCISD::Hi";
|
||
case PPCISD::Lo: return "PPCISD::Lo";
|
||
case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
|
||
case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
|
||
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
|
||
case PPCISD::SRL: return "PPCISD::SRL";
|
||
case PPCISD::SRA: return "PPCISD::SRA";
|
||
case PPCISD::SHL: return "PPCISD::SHL";
|
||
case PPCISD::CALL: return "PPCISD::CALL";
|
||
case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
|
||
case PPCISD::MTCTR: return "PPCISD::MTCTR";
|
||
case PPCISD::BCTRL: return "PPCISD::BCTRL";
|
||
case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC";
|
||
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
|
||
case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE";
|
||
case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
|
||
case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
|
||
case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
|
||
case PPCISD::VCMP: return "PPCISD::VCMP";
|
||
case PPCISD::VCMPo: return "PPCISD::VCMPo";
|
||
case PPCISD::LBRX: return "PPCISD::LBRX";
|
||
case PPCISD::STBRX: return "PPCISD::STBRX";
|
||
case PPCISD::LFIWAX: return "PPCISD::LFIWAX";
|
||
case PPCISD::LFIWZX: return "PPCISD::LFIWZX";
|
||
case PPCISD::LARX: return "PPCISD::LARX";
|
||
case PPCISD::STCX: return "PPCISD::STCX";
|
||
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
|
||
case PPCISD::BDNZ: return "PPCISD::BDNZ";
|
||
case PPCISD::BDZ: return "PPCISD::BDZ";
|
||
case PPCISD::MFFS: return "PPCISD::MFFS";
|
||
case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
|
||
case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
|
||
case PPCISD::CR6SET: return "PPCISD::CR6SET";
|
||
case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
|
||
case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA";
|
||
case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L";
|
||
case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L";
|
||
case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
|
||
case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
|
||
case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
|
||
case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
|
||
case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
|
||
case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
|
||
case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
|
||
case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
|
||
case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
|
||
case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
|
||
case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
|
||
case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
|
||
case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
|
||
case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
|
||
case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
|
||
case PPCISD::SC: return "PPCISD::SC";
|
||
}
|
||
}
|
||
|
||
EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
||
if (!VT.isVector())
|
||
return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
|
||
return VT.changeVectorElementTypeToInteger();
|
||
}
|
||
|
||
bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
|
||
assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
|
||
return true;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Node matching predicates, for use by the tblgen matching code.
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
|
||
static bool isFloatingPointZero(SDValue Op) {
|
||
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
|
||
return CFP->getValueAPF().isZero();
|
||
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
|
||
// Maybe this has already been legalized into the constant pool?
|
||
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
|
||
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
|
||
return CFP->getValueAPF().isZero();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
|
||
/// true if Op is undef or if it matches the specified value.
|
||
static bool isConstantOrUndef(int Op, int Val) {
|
||
return Op < 0 || Op == Val;
|
||
}
|
||
|
||
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
|
||
/// VPKUHUM instruction.
|
||
/// The ShuffleKind distinguishes between big-endian operations with
|
||
/// two different inputs (0), either-endian operations with two identical
|
||
/// inputs (1), and little-endian operantion with two different inputs (2).
|
||
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
|
||
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
||
SelectionDAG &DAG) {
|
||
bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian();
|
||
if (ShuffleKind == 0) {
|
||
if (IsLE)
|
||
return false;
|
||
for (unsigned i = 0; i != 16; ++i)
|
||
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
|
||
return false;
|
||
} else if (ShuffleKind == 2) {
|
||
if (!IsLE)
|
||
return false;
|
||
for (unsigned i = 0; i != 16; ++i)
|
||
if (!isConstantOrUndef(N->getMaskElt(i), i*2))
|
||
return false;
|
||
} else if (ShuffleKind == 1) {
|
||
unsigned j = IsLE ? 0 : 1;
|
||
for (unsigned i = 0; i != 8; ++i)
|
||
if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
|
||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
|
||
/// VPKUWUM instruction.
|
||
/// The ShuffleKind distinguishes between big-endian operations with
|
||
/// two different inputs (0), either-endian operations with two identical
|
||
/// inputs (1), and little-endian operantion with two different inputs (2).
|
||
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
|
||
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
|
||
SelectionDAG &DAG) {
|
||
bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian();
|
||
if (ShuffleKind == 0) {
|
||
if (IsLE)
|
||
return false;
|
||
for (unsigned i = 0; i != 16; i += 2)
|
||
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
|
||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
|
||
return false;
|
||
} else if (ShuffleKind == 2) {
|
||
if (!IsLE)
|
||
return false;
|
||
for (unsigned i = 0; i != 16; i += 2)
|
||
if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
|
||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
|
||
return false;
|
||
} else if (ShuffleKind == 1) {
|
||
unsigned j = IsLE ? 0 : 2;
|
||
for (unsigned i = 0; i != 8; i += 2)
|
||
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
|
||
!isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
|
||
!isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
|
||
!isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/// isVMerge - Common function, used to match vmrg* shuffles.
|
||
///
|
||
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
|
||
unsigned LHSStart, unsigned RHSStart) {
|
||
if (N->getValueType(0) != MVT::v16i8)
|
||
return false;
|
||
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
|
||
"Unsupported merge size!");
|
||
|
||
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
|
||
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
|
||
if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
|
||
LHSStart+j+i*UnitSize) ||
|
||
!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
|
||
RHSStart+j+i*UnitSize))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
|
||
/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
|
||
/// The ShuffleKind distinguishes between big-endian merges with two
|
||
/// different inputs (0), either-endian merges with two identical inputs (1),
|
||
/// and little-endian merges with two different inputs (2). For the latter,
|
||
/// the input operands are swapped (see PPCInstrAltivec.td).
|
||
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
||
unsigned ShuffleKind, SelectionDAG &DAG) {
|
||
if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
|
||
if (ShuffleKind == 1) // unary
|
||
return isVMerge(N, UnitSize, 0, 0);
|
||
else if (ShuffleKind == 2) // swapped
|
||
return isVMerge(N, UnitSize, 0, 16);
|
||
else
|
||
return false;
|
||
} else {
|
||
if (ShuffleKind == 1) // unary
|
||
return isVMerge(N, UnitSize, 8, 8);
|
||
else if (ShuffleKind == 0) // normal
|
||
return isVMerge(N, UnitSize, 8, 24);
|
||
else
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
|
||
/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
|
||
/// The ShuffleKind distinguishes between big-endian merges with two
|
||
/// different inputs (0), either-endian merges with two identical inputs (1),
|
||
/// and little-endian merges with two different inputs (2). For the latter,
|
||
/// the input operands are swapped (see PPCInstrAltivec.td).
|
||
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
||
unsigned ShuffleKind, SelectionDAG &DAG) {
|
||
if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
|
||
if (ShuffleKind == 1) // unary
|
||
return isVMerge(N, UnitSize, 8, 8);
|
||
else if (ShuffleKind == 2) // swapped
|
||
return isVMerge(N, UnitSize, 8, 24);
|
||
else
|
||
return false;
|
||
} else {
|
||
if (ShuffleKind == 1) // unary
|
||
return isVMerge(N, UnitSize, 0, 0);
|
||
else if (ShuffleKind == 0) // normal
|
||
return isVMerge(N, UnitSize, 0, 16);
|
||
else
|
||
return false;
|
||
}
|
||
}
|
||
|
||
|
||
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
|
||
/// amount, otherwise return -1.
|
||
/// The ShuffleKind distinguishes between big-endian operations with two
|
||
/// different inputs (0), either-endian operations with two identical inputs
|
||
/// (1), and little-endian operations with two different inputs (2). For the
|
||
/// latter, the input operands are swapped (see PPCInstrAltivec.td).
|
||
int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
|
||
SelectionDAG &DAG) {
|
||
if (N->getValueType(0) != MVT::v16i8)
|
||
return -1;
|
||
|
||
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
||
|
||
// Find the first non-undef value in the shuffle mask.
|
||
unsigned i;
|
||
for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
|
||
/*search*/;
|
||
|
||
if (i == 16) return -1; // all undef.
|
||
|
||
// Otherwise, check to see if the rest of the elements are consecutively
|
||
// numbered from this value.
|
||
unsigned ShiftAmt = SVOp->getMaskElt(i);
|
||
if (ShiftAmt < i) return -1;
|
||
|
||
ShiftAmt -= i;
|
||
bool isLE = DAG.getTarget().getDataLayout()->isLittleEndian();
|
||
|
||
if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
|
||
// Check the rest of the elements to see if they are consecutive.
|
||
for (++i; i != 16; ++i)
|
||
if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
|
||
return -1;
|
||
} else if (ShuffleKind == 1) {
|
||
// Check the rest of the elements to see if they are consecutive.
|
||
for (++i; i != 16; ++i)
|
||
if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
|
||
return -1;
|
||
} else
|
||
return -1;
|
||
|
||
if (ShuffleKind == 2 && isLE)
|
||
ShiftAmt = 16 - ShiftAmt;
|
||
|
||
return ShiftAmt;
|
||
}
|
||
|
||
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
|
||
/// specifies a splat of a single element that is suitable for input to
|
||
/// VSPLTB/VSPLTH/VSPLTW.
|
||
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
|
||
assert(N->getValueType(0) == MVT::v16i8 &&
|
||
(EltSize == 1 || EltSize == 2 || EltSize == 4));
|
||
|
||
// This is a splat operation if each element of the permute is the same, and
|
||
// if the value doesn't reference the second vector.
|
||
unsigned ElementBase = N->getMaskElt(0);
|
||
|
||
// FIXME: Handle UNDEF elements too!
|
||
if (ElementBase >= 16)
|
||
return false;
|
||
|
||
// Check that the indices are consecutive, in the case of a multi-byte element
|
||
// splatted with a v16i8 mask.
|
||
for (unsigned i = 1; i != EltSize; ++i)
|
||
if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
|
||
return false;
|
||
|
||
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
|
||
if (N->getMaskElt(i) < 0) continue;
|
||
for (unsigned j = 0; j != EltSize; ++j)
|
||
if (N->getMaskElt(i+j) != N->getMaskElt(j))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
|
||
/// are -0.0.
|
||
bool PPC::isAllNegativeZeroVector(SDNode *N) {
|
||
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
|
||
|
||
APInt APVal, APUndef;
|
||
unsigned BitSize;
|
||
bool HasAnyUndefs;
|
||
|
||
if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
|
||
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
|
||
return CFP->getValueAPF().isNegZero();
|
||
|
||
return false;
|
||
}
|
||
|
||
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
|
||
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
|
||
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
|
||
SelectionDAG &DAG) {
|
||
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
||
assert(isSplatShuffleMask(SVOp, EltSize));
|
||
if (DAG.getTarget().getDataLayout()->isLittleEndian())
|
||
return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
|
||
else
|
||
return SVOp->getMaskElt(0) / EltSize;
|
||
}
|
||
|
||
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
|
||
/// by using a vspltis[bhw] instruction of the specified element size, return
|
||
/// the constant being splatted. The ByteSize field indicates the number of
|
||
/// bytes of each element [124] -> [bhw].
|
||
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
|
||
SDValue OpVal(nullptr, 0);
|
||
|
||
// If ByteSize of the splat is bigger than the element size of the
|
||
// build_vector, then we have a case where we are checking for a splat where
|
||
// multiple elements of the buildvector are folded together into a single
|
||
// logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
|
||
unsigned EltSize = 16/N->getNumOperands();
|
||
if (EltSize < ByteSize) {
|
||
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
|
||
SDValue UniquedVals[4];
|
||
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
|
||
|
||
// See if all of the elements in the buildvector agree across.
|
||
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
||
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
||
// If the element isn't a constant, bail fully out.
|
||
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
|
||
|
||
|
||
if (!UniquedVals[i&(Multiple-1)].getNode())
|
||
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
|
||
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
|
||
return SDValue(); // no match.
|
||
}
|
||
|
||
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
|
||
// either constant or undef values that are identical for each chunk. See
|
||
// if these chunks can form into a larger vspltis*.
|
||
|
||
// Check to see if all of the leading entries are either 0 or -1. If
|
||
// neither, then this won't fit into the immediate field.
|
||
bool LeadingZero = true;
|
||
bool LeadingOnes = true;
|
||
for (unsigned i = 0; i != Multiple-1; ++i) {
|
||
if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
|
||
|
||
LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
|
||
LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
|
||
}
|
||
// Finally, check the least significant entry.
|
||
if (LeadingZero) {
|
||
if (!UniquedVals[Multiple-1].getNode())
|
||
return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
|
||
int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
|
||
if (Val < 16)
|
||
return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
|
||
}
|
||
if (LeadingOnes) {
|
||
if (!UniquedVals[Multiple-1].getNode())
|
||
return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
|
||
int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
|
||
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
|
||
return DAG.getTargetConstant(Val, MVT::i32);
|
||
}
|
||
|
||
return SDValue();
|
||
}
|
||
|
||
// Check to see if this buildvec has a single non-undef value in its elements.
|
||
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
||
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
||
if (!OpVal.getNode())
|
||
OpVal = N->getOperand(i);
|
||
else if (OpVal != N->getOperand(i))
|
||
return SDValue();
|
||
}
|
||
|
||
if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
|
||
|
||
unsigned ValSizeInBytes = EltSize;
|
||
uint64_t Value = 0;
|
||
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
|
||
Value = CN->getZExtValue();
|
||
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
|
||
assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
|
||
Value = FloatToBits(CN->getValueAPF().convertToFloat());
|
||
}
|
||
|
||
// If the splat value is larger than the element value, then we can never do
|
||
// this splat. The only case that we could fit the replicated bits into our
|
||
// immediate field for would be zero, and we prefer to use vxor for it.
|
||
if (ValSizeInBytes < ByteSize) return SDValue();
|
||
|
||
// If the element value is larger than the splat value, cut it in half and
|
||
// check to see if the two halves are equal. Continue doing this until we
|
||
// get to ByteSize. This allows us to handle 0x01010101 as 0x01.
|
||
while (ValSizeInBytes > ByteSize) {
|
||
ValSizeInBytes >>= 1;
|
||
|
||
// If the top half equals the bottom half, we're still ok.
|
||
if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
|
||
(Value & ((1 << (8*ValSizeInBytes))-1)))
|
||
return SDValue();
|
||
}
|
||
|
||
// Properly sign extend the value.
|
||
int MaskVal = SignExtend32(Value, ByteSize * 8);
|
||
|
||
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
|
||
if (MaskVal == 0) return SDValue();
|
||
|
||
// Finally, if this value fits in a 5 bit sext field, return it
|
||
if (SignExtend32<5>(MaskVal) == MaskVal)
|
||
return DAG.getTargetConstant(MaskVal, MVT::i32);
|
||
return SDValue();
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Addressing Mode Selection
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
|
||
/// or 64-bit immediate, and if the value can be accurately represented as a
|
||
/// sign extension from a 16-bit value. If so, this returns true and the
|
||
/// immediate.
|
||
static bool isIntS16Immediate(SDNode *N, short &Imm) {
|
||
if (!isa<ConstantSDNode>(N))
|
||
return false;
|
||
|
||
Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
|
||
if (N->getValueType(0) == MVT::i32)
|
||
return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
|
||
else
|
||
return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
|
||
}
|
||
static bool isIntS16Immediate(SDValue Op, short &Imm) {
|
||
return isIntS16Immediate(Op.getNode(), Imm);
|
||
}
|
||
|
||
|
||
/// SelectAddressRegReg - Given the specified addressed, check to see if it
|
||
/// can be represented as an indexed [r+r] operation. Returns false if it
|
||
/// can be more efficiently represented with [r+imm].
|
||
bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
|
||
SDValue &Index,
|
||
SelectionDAG &DAG) const {
|
||
short imm = 0;
|
||
if (N.getOpcode() == ISD::ADD) {
|
||
if (isIntS16Immediate(N.getOperand(1), imm))
|
||
return false; // r+i
|
||
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
|
||
return false; // r+i
|
||
|
||
Base = N.getOperand(0);
|
||
Index = N.getOperand(1);
|
||
return true;
|
||
} else if (N.getOpcode() == ISD::OR) {
|
||
if (isIntS16Immediate(N.getOperand(1), imm))
|
||
return false; // r+i can fold it if we can.
|
||
|
||
// If this is an or of disjoint bitfields, we can codegen this as an add
|
||
// (for better address arithmetic) if the LHS and RHS of the OR are provably
|
||
// disjoint.
|
||
APInt LHSKnownZero, LHSKnownOne;
|
||
APInt RHSKnownZero, RHSKnownOne;
|
||
DAG.computeKnownBits(N.getOperand(0),
|
||
LHSKnownZero, LHSKnownOne);
|
||
|
||
if (LHSKnownZero.getBoolValue()) {
|
||
DAG.computeKnownBits(N.getOperand(1),
|
||
RHSKnownZero, RHSKnownOne);
|
||
// If all of the bits are known zero on the LHS or RHS, the add won't
|
||
// carry.
|
||
if (~(LHSKnownZero | RHSKnownZero) == 0) {
|
||
Base = N.getOperand(0);
|
||
Index = N.getOperand(1);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// If we happen to be doing an i64 load or store into a stack slot that has
|
||
// less than a 4-byte alignment, then the frame-index elimination may need to
|
||
// use an indexed load or store instruction (because the offset may not be a
|
||
// multiple of 4). The extra register needed to hold the offset comes from the
|
||
// register scavenger, and it is possible that the scavenger will need to use
|
||
// an emergency spill slot. As a result, we need to make sure that a spill slot
|
||
// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
|
||
// stack slot.
|
||
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
|
||
// FIXME: This does not handle the LWA case.
|
||
if (VT != MVT::i64)
|
||
return;
|
||
|
||
// NOTE: We'll exclude negative FIs here, which come from argument
|
||
// lowering, because there are no known test cases triggering this problem
|
||
// using packed structures (or similar). We can remove this exclusion if
|
||
// we find such a test case. The reason why this is so test-case driven is
|
||
// because this entire 'fixup' is only to prevent crashes (from the
|
||
// register scavenger) on not-really-valid inputs. For example, if we have:
|
||
// %a = alloca i1
|
||
// %b = bitcast i1* %a to i64*
|
||
// store i64* a, i64 b
|
||
// then the store should really be marked as 'align 1', but is not. If it
|
||
// were marked as 'align 1' then the indexed form would have been
|
||
// instruction-selected initially, and the problem this 'fixup' is preventing
|
||
// won't happen regardless.
|
||
if (FrameIdx < 0)
|
||
return;
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineFrameInfo *MFI = MF.getFrameInfo();
|
||
|
||
unsigned Align = MFI->getObjectAlignment(FrameIdx);
|
||
if (Align >= 4)
|
||
return;
|
||
|
||
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
||
FuncInfo->setHasNonRISpills();
|
||
}
|
||
|
||
/// Returns true if the address N can be represented by a base register plus
|
||
/// a signed 16-bit displacement [r+imm], and if it is not better
|
||
/// represented as reg+reg. If Aligned is true, only accept displacements
|
||
/// suitable for STD and friends, i.e. multiples of 4.
|
||
bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
|
||
SDValue &Base,
|
||
SelectionDAG &DAG,
|
||
bool Aligned) const {
|
||
// FIXME dl should come from parent load or store, not from address
|
||
SDLoc dl(N);
|
||
// If this can be more profitably realized as r+r, fail.
|
||
if (SelectAddressRegReg(N, Disp, Base, DAG))
|
||
return false;
|
||
|
||
if (N.getOpcode() == ISD::ADD) {
|
||
short imm = 0;
|
||
if (isIntS16Immediate(N.getOperand(1), imm) &&
|
||
(!Aligned || (imm & 3) == 0)) {
|
||
Disp = DAG.getTargetConstant(imm, N.getValueType());
|
||
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
|
||
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
||
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
|
||
} else {
|
||
Base = N.getOperand(0);
|
||
}
|
||
return true; // [r+i]
|
||
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
|
||
// Match LOAD (ADD (X, Lo(G))).
|
||
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
|
||
&& "Cannot handle constant offsets yet!");
|
||
Disp = N.getOperand(1).getOperand(0); // The global address.
|
||
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
|
||
Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
|
||
Disp.getOpcode() == ISD::TargetConstantPool ||
|
||
Disp.getOpcode() == ISD::TargetJumpTable);
|
||
Base = N.getOperand(0);
|
||
return true; // [&g+r]
|
||
}
|
||
} else if (N.getOpcode() == ISD::OR) {
|
||
short imm = 0;
|
||
if (isIntS16Immediate(N.getOperand(1), imm) &&
|
||
(!Aligned || (imm & 3) == 0)) {
|
||
// If this is an or of disjoint bitfields, we can codegen this as an add
|
||
// (for better address arithmetic) if the LHS and RHS of the OR are
|
||
// provably disjoint.
|
||
APInt LHSKnownZero, LHSKnownOne;
|
||
DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
|
||
|
||
if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
|
||
// If all of the bits are known zero on the LHS or RHS, the add won't
|
||
// carry.
|
||
if (FrameIndexSDNode *FI =
|
||
dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
|
||
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
||
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
|
||
} else {
|
||
Base = N.getOperand(0);
|
||
}
|
||
Disp = DAG.getTargetConstant(imm, N.getValueType());
|
||
return true;
|
||
}
|
||
}
|
||
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
||
// Loading from a constant address.
|
||
|
||
// If this address fits entirely in a 16-bit sext immediate field, codegen
|
||
// this as "d, 0"
|
||
short Imm;
|
||
if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
|
||
Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
|
||
Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
|
||
CN->getValueType(0));
|
||
return true;
|
||
}
|
||
|
||
// Handle 32-bit sext immediates with LIS + addr mode.
|
||
if ((CN->getValueType(0) == MVT::i32 ||
|
||
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
|
||
(!Aligned || (CN->getZExtValue() & 3) == 0)) {
|
||
int Addr = (int)CN->getZExtValue();
|
||
|
||
// Otherwise, break this down into an LIS + disp.
|
||
Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
|
||
|
||
Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
|
||
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
|
||
Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
Disp = DAG.getTargetConstant(0, getPointerTy());
|
||
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
|
||
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
||
fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
|
||
} else
|
||
Base = N;
|
||
return true; // [r+0]
|
||
}
|
||
|
||
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
|
||
/// represented as an indexed [r+r] operation.
|
||
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
|
||
SDValue &Index,
|
||
SelectionDAG &DAG) const {
|
||
// Check to see if we can easily represent this as an [r+r] address. This
|
||
// will fail if it thinks that the address is more profitably represented as
|
||
// reg+imm, e.g. where imm = 0.
|
||
if (SelectAddressRegReg(N, Base, Index, DAG))
|
||
return true;
|
||
|
||
// If the operand is an addition, always emit this as [r+r], since this is
|
||
// better (for code size, and execution, as the memop does the add for free)
|
||
// than emitting an explicit add.
|
||
if (N.getOpcode() == ISD::ADD) {
|
||
Base = N.getOperand(0);
|
||
Index = N.getOperand(1);
|
||
return true;
|
||
}
|
||
|
||
// Otherwise, do it the hard way, using R0 as the base register.
|
||
Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
|
||
N.getValueType());
|
||
Index = N;
|
||
return true;
|
||
}
|
||
|
||
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
||
/// offset pointer and addressing mode by reference if the node's address
|
||
/// can be legally represented as pre-indexed load / store address.
|
||
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
||
SDValue &Offset,
|
||
ISD::MemIndexedMode &AM,
|
||
SelectionDAG &DAG) const {
|
||
if (DisablePPCPreinc) return false;
|
||
|
||
bool isLoad = true;
|
||
SDValue Ptr;
|
||
EVT VT;
|
||
unsigned Alignment;
|
||
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
||
Ptr = LD->getBasePtr();
|
||
VT = LD->getMemoryVT();
|
||
Alignment = LD->getAlignment();
|
||
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
||
Ptr = ST->getBasePtr();
|
||
VT = ST->getMemoryVT();
|
||
Alignment = ST->getAlignment();
|
||
isLoad = false;
|
||
} else
|
||
return false;
|
||
|
||
// PowerPC doesn't have preinc load/store instructions for vectors.
|
||
if (VT.isVector())
|
||
return false;
|
||
|
||
if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
|
||
|
||
// Common code will reject creating a pre-inc form if the base pointer
|
||
// is a frame index, or if N is a store and the base pointer is either
|
||
// the same as or a predecessor of the value being stored. Check for
|
||
// those situations here, and try with swapped Base/Offset instead.
|
||
bool Swap = false;
|
||
|
||
if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
|
||
Swap = true;
|
||
else if (!isLoad) {
|
||
SDValue Val = cast<StoreSDNode>(N)->getValue();
|
||
if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
|
||
Swap = true;
|
||
}
|
||
|
||
if (Swap)
|
||
std::swap(Base, Offset);
|
||
|
||
AM = ISD::PRE_INC;
|
||
return true;
|
||
}
|
||
|
||
// LDU/STU can only handle immediates that are a multiple of 4.
|
||
if (VT != MVT::i64) {
|
||
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
|
||
return false;
|
||
} else {
|
||
// LDU/STU need an address with at least 4-byte alignment.
|
||
if (Alignment < 4)
|
||
return false;
|
||
|
||
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
|
||
return false;
|
||
}
|
||
|
||
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
||
// PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
|
||
// sext i32 to i64 when addr mode is r+i.
|
||
if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
|
||
LD->getExtensionType() == ISD::SEXTLOAD &&
|
||
isa<ConstantSDNode>(Offset))
|
||
return false;
|
||
}
|
||
|
||
AM = ISD::PRE_INC;
|
||
return true;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// LowerOperation implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// GetLabelAccessInfo - Return true if we should reference labels using a
|
||
/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
|
||
static bool GetLabelAccessInfo(const TargetMachine &TM,
|
||
const PPCSubtarget &Subtarget,
|
||
unsigned &HiOpFlags, unsigned &LoOpFlags,
|
||
const GlobalValue *GV = nullptr) {
|
||
HiOpFlags = PPCII::MO_HA;
|
||
LoOpFlags = PPCII::MO_LO;
|
||
|
||
// Don't use the pic base if not in PIC relocation model.
|
||
bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
|
||
|
||
if (isPIC) {
|
||
HiOpFlags |= PPCII::MO_PIC_FLAG;
|
||
LoOpFlags |= PPCII::MO_PIC_FLAG;
|
||
}
|
||
|
||
// If this is a reference to a global value that requires a non-lazy-ptr, make
|
||
// sure that instruction lowering adds it.
|
||
if (GV && Subtarget.hasLazyResolverStub(GV, TM)) {
|
||
HiOpFlags |= PPCII::MO_NLP_FLAG;
|
||
LoOpFlags |= PPCII::MO_NLP_FLAG;
|
||
|
||
if (GV->hasHiddenVisibility()) {
|
||
HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
|
||
LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
|
||
}
|
||
}
|
||
|
||
return isPIC;
|
||
}
|
||
|
||
static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
|
||
SelectionDAG &DAG) {
|
||
EVT PtrVT = HiPart.getValueType();
|
||
SDValue Zero = DAG.getConstant(0, PtrVT);
|
||
SDLoc DL(HiPart);
|
||
|
||
SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
|
||
SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
|
||
|
||
// With PIC, the first instruction is actually "GR+hi(&G)".
|
||
if (isPIC)
|
||
Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
|
||
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
|
||
|
||
// Generate non-pic code that has direct accesses to the constant pool.
|
||
// The address of the global is just (hi(&g)+lo(&g)).
|
||
return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
|
||
}
|
||
|
||
static void setUsesTOCBasePtr(MachineFunction &MF) {
|
||
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
||
FuncInfo->setUsesTOCBasePtr();
|
||
}
|
||
|
||
static void setUsesTOCBasePtr(SelectionDAG &DAG) {
|
||
setUsesTOCBasePtr(DAG.getMachineFunction());
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
EVT PtrVT = Op.getValueType();
|
||
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
||
const Constant *C = CP->getConstVal();
|
||
|
||
// 64-bit SVR4 ABI code is always position-independent.
|
||
// The actual address of the GlobalValue is stored in the TOC.
|
||
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
|
||
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
|
||
DAG.getRegister(PPC::X2, MVT::i64));
|
||
}
|
||
|
||
unsigned MOHiFlag, MOLoFlag;
|
||
bool isPIC =
|
||
GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
|
||
|
||
if (isPIC && Subtarget.isSVR4ABI()) {
|
||
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
|
||
PPCII::MO_PIC_FLAG);
|
||
SDLoc DL(CP);
|
||
return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA,
|
||
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT));
|
||
}
|
||
|
||
SDValue CPIHi =
|
||
DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
|
||
SDValue CPILo =
|
||
DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
|
||
return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
|
||
EVT PtrVT = Op.getValueType();
|
||
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
||
|
||
// 64-bit SVR4 ABI code is always position-independent.
|
||
// The actual address of the GlobalValue is stored in the TOC.
|
||
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
|
||
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
|
||
DAG.getRegister(PPC::X2, MVT::i64));
|
||
}
|
||
|
||
unsigned MOHiFlag, MOLoFlag;
|
||
bool isPIC =
|
||
GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
|
||
|
||
if (isPIC && Subtarget.isSVR4ABI()) {
|
||
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
|
||
PPCII::MO_PIC_FLAG);
|
||
SDLoc DL(GA);
|
||
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), PtrVT, GA,
|
||
DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT));
|
||
}
|
||
|
||
SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
|
||
SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
|
||
return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
EVT PtrVT = Op.getValueType();
|
||
BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
|
||
const BlockAddress *BA = BASDN->getBlockAddress();
|
||
|
||
// 64-bit SVR4 ABI code is always position-independent.
|
||
// The actual BlockAddress is stored in the TOC.
|
||
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
|
||
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(BASDN), MVT::i64, GA,
|
||
DAG.getRegister(PPC::X2, MVT::i64));
|
||
}
|
||
|
||
unsigned MOHiFlag, MOLoFlag;
|
||
bool isPIC =
|
||
GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
|
||
SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
|
||
SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
|
||
return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
|
||
// FIXME: TLS addresses currently use medium model code sequences,
|
||
// which is the most useful form. Eventually support for small and
|
||
// large models could be added if users need it, at the cost of
|
||
// additional complexity.
|
||
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
||
SDLoc dl(GA);
|
||
const GlobalValue *GV = GA->getGlobal();
|
||
EVT PtrVT = getPointerTy();
|
||
bool is64bit = Subtarget.isPPC64();
|
||
const Module *M = DAG.getMachineFunction().getFunction()->getParent();
|
||
PICLevel::Level picLevel = M->getPICLevel();
|
||
|
||
TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
|
||
|
||
if (Model == TLSModel::LocalExec) {
|
||
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
||
PPCII::MO_TPREL_HA);
|
||
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
||
PPCII::MO_TPREL_LO);
|
||
SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
|
||
is64bit ? MVT::i64 : MVT::i32);
|
||
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
|
||
return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
|
||
}
|
||
|
||
if (Model == TLSModel::InitialExec) {
|
||
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
|
||
SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
||
PPCII::MO_TLS);
|
||
SDValue GOTPtr;
|
||
if (is64bit) {
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
|
||
GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
|
||
PtrVT, GOTReg, TGA);
|
||
} else
|
||
GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
|
||
SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
|
||
PtrVT, TGA, GOTPtr);
|
||
return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
|
||
}
|
||
|
||
if (Model == TLSModel::GeneralDynamic) {
|
||
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
|
||
SDValue GOTPtr;
|
||
if (is64bit) {
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
|
||
GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
|
||
GOTReg, TGA);
|
||
} else {
|
||
if (picLevel == PICLevel::Small)
|
||
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
|
||
else
|
||
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
|
||
}
|
||
return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
|
||
GOTPtr, TGA, TGA);
|
||
}
|
||
|
||
if (Model == TLSModel::LocalDynamic) {
|
||
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
|
||
SDValue GOTPtr;
|
||
if (is64bit) {
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
|
||
GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
|
||
GOTReg, TGA);
|
||
} else {
|
||
if (picLevel == PICLevel::Small)
|
||
GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
|
||
else
|
||
GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
|
||
}
|
||
SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
|
||
PtrVT, GOTPtr, TGA, TGA);
|
||
SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
|
||
PtrVT, TLSAddr, TGA);
|
||
return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
|
||
}
|
||
|
||
llvm_unreachable("Unknown TLS model!");
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
EVT PtrVT = Op.getValueType();
|
||
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
|
||
SDLoc DL(GSDN);
|
||
const GlobalValue *GV = GSDN->getGlobal();
|
||
|
||
// 64-bit SVR4 ABI code is always position-independent.
|
||
// The actual address of the GlobalValue is stored in the TOC.
|
||
if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
|
||
return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
|
||
DAG.getRegister(PPC::X2, MVT::i64));
|
||
}
|
||
|
||
unsigned MOHiFlag, MOLoFlag;
|
||
bool isPIC =
|
||
GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
|
||
|
||
if (isPIC && Subtarget.isSVR4ABI()) {
|
||
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
|
||
GSDN->getOffset(),
|
||
PPCII::MO_PIC_FLAG);
|
||
return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i32, GA,
|
||
DAG.getNode(PPCISD::GlobalBaseReg, DL, MVT::i32));
|
||
}
|
||
|
||
SDValue GAHi =
|
||
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
|
||
SDValue GALo =
|
||
DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
|
||
|
||
SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
|
||
|
||
// If the global reference is actually to a non-lazy-pointer, we have to do an
|
||
// extra load to get the address of the global.
|
||
if (MOHiFlag & PPCII::MO_NLP_FLAG)
|
||
Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
return Ptr;
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
||
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
||
SDLoc dl(Op);
|
||
|
||
if (Op.getValueType() == MVT::v2i64) {
|
||
// When the operands themselves are v2i64 values, we need to do something
|
||
// special because VSX has no underlying comparison operations for these.
|
||
if (Op.getOperand(0).getValueType() == MVT::v2i64) {
|
||
// Equality can be handled by casting to the legal type for Altivec
|
||
// comparisons, everything else needs to be expanded.
|
||
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
|
||
return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
|
||
DAG.getSetCC(dl, MVT::v4i32,
|
||
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
|
||
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
|
||
CC));
|
||
}
|
||
|
||
return SDValue();
|
||
}
|
||
|
||
// We handle most of these in the usual way.
|
||
return Op;
|
||
}
|
||
|
||
// If we're comparing for equality to zero, expose the fact that this is
|
||
// implented as a ctlz/srl pair on ppc, so that the dag combiner can
|
||
// fold the new nodes.
|
||
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||
if (C->isNullValue() && CC == ISD::SETEQ) {
|
||
EVT VT = Op.getOperand(0).getValueType();
|
||
SDValue Zext = Op.getOperand(0);
|
||
if (VT.bitsLT(MVT::i32)) {
|
||
VT = MVT::i32;
|
||
Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
|
||
}
|
||
unsigned Log2b = Log2_32(VT.getSizeInBits());
|
||
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
|
||
SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
|
||
DAG.getConstant(Log2b, MVT::i32));
|
||
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
|
||
}
|
||
// Leave comparisons against 0 and -1 alone for now, since they're usually
|
||
// optimized. FIXME: revisit this when we can custom lower all setcc
|
||
// optimizations.
|
||
if (C->isAllOnesValue() || C->isNullValue())
|
||
return SDValue();
|
||
}
|
||
|
||
// If we have an integer seteq/setne, turn it into a compare against zero
|
||
// by xor'ing the rhs with the lhs, which is faster than setting a
|
||
// condition register, reading it back out, and masking the correct bit. The
|
||
// normal approach here uses sub to do this instead of xor. Using xor exposes
|
||
// the result to other bit-twiddling opportunities.
|
||
EVT LHSVT = Op.getOperand(0).getValueType();
|
||
if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
||
EVT VT = Op.getValueType();
|
||
SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
|
||
Op.getOperand(1));
|
||
return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
|
||
}
|
||
return SDValue();
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
|
||
const PPCSubtarget &Subtarget) const {
|
||
SDNode *Node = Op.getNode();
|
||
EVT VT = Node->getValueType(0);
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
SDValue InChain = Node->getOperand(0);
|
||
SDValue VAListPtr = Node->getOperand(1);
|
||
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
|
||
SDLoc dl(Node);
|
||
|
||
assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
|
||
|
||
// gpr_index
|
||
SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
|
||
VAListPtr, MachinePointerInfo(SV), MVT::i8,
|
||
false, false, false, 0);
|
||
InChain = GprIndex.getValue(1);
|
||
|
||
if (VT == MVT::i64) {
|
||
// Check if GprIndex is even
|
||
SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
|
||
DAG.getConstant(1, MVT::i32));
|
||
SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
|
||
DAG.getConstant(0, MVT::i32), ISD::SETNE);
|
||
SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
|
||
DAG.getConstant(1, MVT::i32));
|
||
// Align GprIndex to be even if it isn't
|
||
GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
|
||
GprIndex);
|
||
}
|
||
|
||
// fpr index is 1 byte after gpr
|
||
SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
|
||
DAG.getConstant(1, MVT::i32));
|
||
|
||
// fpr
|
||
SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
|
||
FprPtr, MachinePointerInfo(SV), MVT::i8,
|
||
false, false, false, 0);
|
||
InChain = FprIndex.getValue(1);
|
||
|
||
SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
|
||
DAG.getConstant(8, MVT::i32));
|
||
|
||
SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
|
||
DAG.getConstant(4, MVT::i32));
|
||
|
||
// areas
|
||
SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
|
||
MachinePointerInfo(), false, false,
|
||
false, 0);
|
||
InChain = OverflowArea.getValue(1);
|
||
|
||
SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
|
||
MachinePointerInfo(), false, false,
|
||
false, 0);
|
||
InChain = RegSaveArea.getValue(1);
|
||
|
||
// select overflow_area if index > 8
|
||
SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
|
||
DAG.getConstant(8, MVT::i32), ISD::SETLT);
|
||
|
||
// adjustment constant gpr_index * 4/8
|
||
SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
|
||
VT.isInteger() ? GprIndex : FprIndex,
|
||
DAG.getConstant(VT.isInteger() ? 4 : 8,
|
||
MVT::i32));
|
||
|
||
// OurReg = RegSaveArea + RegConstant
|
||
SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
|
||
RegConstant);
|
||
|
||
// Floating types are 32 bytes into RegSaveArea
|
||
if (VT.isFloatingPoint())
|
||
OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
|
||
DAG.getConstant(32, MVT::i32));
|
||
|
||
// increase {f,g}pr_index by 1 (or 2 if VT is i64)
|
||
SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
|
||
VT.isInteger() ? GprIndex : FprIndex,
|
||
DAG.getConstant(VT == MVT::i64 ? 2 : 1,
|
||
MVT::i32));
|
||
|
||
InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
|
||
VT.isInteger() ? VAListPtr : FprPtr,
|
||
MachinePointerInfo(SV),
|
||
MVT::i8, false, false, 0);
|
||
|
||
// determine if we should load from reg_save_area or overflow_area
|
||
SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
|
||
|
||
// increase overflow_area by 4/8 if gpr/fpr > 8
|
||
SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
|
||
DAG.getConstant(VT.isInteger() ? 4 : 8,
|
||
MVT::i32));
|
||
|
||
OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
|
||
OverflowAreaPlusN);
|
||
|
||
InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
|
||
OverflowAreaPtr,
|
||
MachinePointerInfo(),
|
||
MVT::i32, false, false, 0);
|
||
|
||
return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
|
||
const PPCSubtarget &Subtarget) const {
|
||
assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
|
||
|
||
// We have to copy the entire va_list struct:
|
||
// 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
|
||
return DAG.getMemcpy(Op.getOperand(0), Op,
|
||
Op.getOperand(1), Op.getOperand(2),
|
||
DAG.getConstant(12, MVT::i32), 8, false, true,
|
||
MachinePointerInfo(), MachinePointerInfo());
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
return Op.getOperand(0);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDValue Chain = Op.getOperand(0);
|
||
SDValue Trmp = Op.getOperand(1); // trampoline
|
||
SDValue FPtr = Op.getOperand(2); // nested function
|
||
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
|
||
SDLoc dl(Op);
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
bool isPPC64 = (PtrVT == MVT::i64);
|
||
Type *IntPtrTy =
|
||
DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
|
||
*DAG.getContext());
|
||
|
||
TargetLowering::ArgListTy Args;
|
||
TargetLowering::ArgListEntry Entry;
|
||
|
||
Entry.Ty = IntPtrTy;
|
||
Entry.Node = Trmp; Args.push_back(Entry);
|
||
|
||
// TrampSize == (isPPC64 ? 48 : 40);
|
||
Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
|
||
isPPC64 ? MVT::i64 : MVT::i32);
|
||
Args.push_back(Entry);
|
||
|
||
Entry.Node = FPtr; Args.push_back(Entry);
|
||
Entry.Node = Nest; Args.push_back(Entry);
|
||
|
||
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
|
||
TargetLowering::CallLoweringInfo CLI(DAG);
|
||
CLI.setDebugLoc(dl).setChain(Chain)
|
||
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
|
||
DAG.getExternalSymbol("__trampoline_setup", PtrVT),
|
||
std::move(Args), 0);
|
||
|
||
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
||
return CallResult.second;
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
|
||
const PPCSubtarget &Subtarget) const {
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
||
|
||
SDLoc dl(Op);
|
||
|
||
if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
|
||
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
||
// memory location argument.
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
||
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
||
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
|
||
MachinePointerInfo(SV),
|
||
false, false, 0);
|
||
}
|
||
|
||
// For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
|
||
// We suppose the given va_list is already allocated.
|
||
//
|
||
// typedef struct {
|
||
// char gpr; /* index into the array of 8 GPRs
|
||
// * stored in the register save area
|
||
// * gpr=0 corresponds to r3,
|
||
// * gpr=1 to r4, etc.
|
||
// */
|
||
// char fpr; /* index into the array of 8 FPRs
|
||
// * stored in the register save area
|
||
// * fpr=0 corresponds to f1,
|
||
// * fpr=1 to f2, etc.
|
||
// */
|
||
// char *overflow_arg_area;
|
||
// /* location on stack that holds
|
||
// * the next overflow argument
|
||
// */
|
||
// char *reg_save_area;
|
||
// /* where r3:r10 and f1:f8 (if saved)
|
||
// * are stored
|
||
// */
|
||
// } va_list[1];
|
||
|
||
|
||
SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
|
||
SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
|
||
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
|
||
SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
|
||
PtrVT);
|
||
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
||
PtrVT);
|
||
|
||
uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
|
||
SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
|
||
|
||
uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
|
||
SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
|
||
|
||
uint64_t FPROffset = 1;
|
||
SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
|
||
|
||
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
||
|
||
// Store first byte : number of int regs
|
||
SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
|
||
Op.getOperand(1),
|
||
MachinePointerInfo(SV),
|
||
MVT::i8, false, false, 0);
|
||
uint64_t nextOffset = FPROffset;
|
||
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
|
||
ConstFPROffset);
|
||
|
||
// Store second byte : number of float regs
|
||
SDValue secondStore =
|
||
DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
|
||
MachinePointerInfo(SV, nextOffset), MVT::i8,
|
||
false, false, 0);
|
||
nextOffset += StackOffset;
|
||
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
|
||
|
||
// Store second word : arguments given on stack
|
||
SDValue thirdStore =
|
||
DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
|
||
MachinePointerInfo(SV, nextOffset),
|
||
false, false, 0);
|
||
nextOffset += FrameOffset;
|
||
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
|
||
|
||
// Store third word : arguments given in registers
|
||
return DAG.getStore(thirdStore, dl, FR, nextPtr,
|
||
MachinePointerInfo(SV, nextOffset),
|
||
false, false, 0);
|
||
|
||
}
|
||
|
||
#include "PPCGenCallingConv.inc"
|
||
|
||
// Function whose sole purpose is to kill compiler warnings
|
||
// stemming from unused functions included from PPCGenCallingConv.inc.
|
||
CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
|
||
return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
|
||
}
|
||
|
||
bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
|
||
CCValAssign::LocInfo &LocInfo,
|
||
ISD::ArgFlagsTy &ArgFlags,
|
||
CCState &State) {
|
||
return true;
|
||
}
|
||
|
||
bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
|
||
MVT &LocVT,
|
||
CCValAssign::LocInfo &LocInfo,
|
||
ISD::ArgFlagsTy &ArgFlags,
|
||
CCState &State) {
|
||
static const MCPhysReg ArgRegs[] = {
|
||
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
||
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
||
};
|
||
const unsigned NumArgRegs = array_lengthof(ArgRegs);
|
||
|
||
unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
|
||
|
||
// Skip one register if the first unallocated register has an even register
|
||
// number and there are still argument registers available which have not been
|
||
// allocated yet. RegNum is actually an index into ArgRegs, which means we
|
||
// need to skip a register if RegNum is odd.
|
||
if (RegNum != NumArgRegs && RegNum % 2 == 1) {
|
||
State.AllocateReg(ArgRegs[RegNum]);
|
||
}
|
||
|
||
// Always return false here, as this function only makes sure that the first
|
||
// unallocated register has an odd register number and does not actually
|
||
// allocate a register for the current argument.
|
||
return false;
|
||
}
|
||
|
||
bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
|
||
MVT &LocVT,
|
||
CCValAssign::LocInfo &LocInfo,
|
||
ISD::ArgFlagsTy &ArgFlags,
|
||
CCState &State) {
|
||
static const MCPhysReg ArgRegs[] = {
|
||
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
||
PPC::F8
|
||
};
|
||
|
||
const unsigned NumArgRegs = array_lengthof(ArgRegs);
|
||
|
||
unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
|
||
|
||
// If there is only one Floating-point register left we need to put both f64
|
||
// values of a split ppc_fp128 value on the stack.
|
||
if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
|
||
State.AllocateReg(ArgRegs[RegNum]);
|
||
}
|
||
|
||
// Always return false here, as this function only makes sure that the two f64
|
||
// values a ppc_fp128 value is split into are both passed in registers or both
|
||
// passed on the stack and does not actually allocate a register for the
|
||
// current argument.
|
||
return false;
|
||
}
|
||
|
||
/// GetFPR - Get the set of FP registers that should be allocated for arguments,
|
||
/// on Darwin.
|
||
static const MCPhysReg *GetFPR() {
|
||
static const MCPhysReg FPR[] = {
|
||
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
||
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
||
};
|
||
|
||
return FPR;
|
||
}
|
||
|
||
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
|
||
/// the stack.
|
||
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
|
||
unsigned PtrByteSize) {
|
||
unsigned ArgSize = ArgVT.getStoreSize();
|
||
if (Flags.isByVal())
|
||
ArgSize = Flags.getByValSize();
|
||
|
||
// Round up to multiples of the pointer size, except for array members,
|
||
// which are always packed.
|
||
if (!Flags.isInConsecutiveRegs())
|
||
ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
||
|
||
return ArgSize;
|
||
}
|
||
|
||
/// CalculateStackSlotAlignment - Calculates the alignment of this argument
|
||
/// on the stack.
|
||
static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
|
||
ISD::ArgFlagsTy Flags,
|
||
unsigned PtrByteSize) {
|
||
unsigned Align = PtrByteSize;
|
||
|
||
// Altivec parameters are padded to a 16 byte boundary.
|
||
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
|
||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
|
||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
|
||
Align = 16;
|
||
|
||
// ByVal parameters are aligned as requested.
|
||
if (Flags.isByVal()) {
|
||
unsigned BVAlign = Flags.getByValAlign();
|
||
if (BVAlign > PtrByteSize) {
|
||
if (BVAlign % PtrByteSize != 0)
|
||
llvm_unreachable(
|
||
"ByVal alignment is not a multiple of the pointer size");
|
||
|
||
Align = BVAlign;
|
||
}
|
||
}
|
||
|
||
// Array members are always packed to their original alignment.
|
||
if (Flags.isInConsecutiveRegs()) {
|
||
// If the array member was split into multiple registers, the first
|
||
// needs to be aligned to the size of the full type. (Except for
|
||
// ppcf128, which is only aligned as its f64 components.)
|
||
if (Flags.isSplit() && OrigVT != MVT::ppcf128)
|
||
Align = OrigVT.getStoreSize();
|
||
else
|
||
Align = ArgVT.getStoreSize();
|
||
}
|
||
|
||
return Align;
|
||
}
|
||
|
||
/// CalculateStackSlotUsed - Return whether this argument will use its
|
||
/// stack slot (instead of being passed in registers). ArgOffset,
|
||
/// AvailableFPRs, and AvailableVRs must hold the current argument
|
||
/// position, and will be updated to account for this argument.
|
||
static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
|
||
ISD::ArgFlagsTy Flags,
|
||
unsigned PtrByteSize,
|
||
unsigned LinkageSize,
|
||
unsigned ParamAreaSize,
|
||
unsigned &ArgOffset,
|
||
unsigned &AvailableFPRs,
|
||
unsigned &AvailableVRs) {
|
||
bool UseMemory = false;
|
||
|
||
// Respect alignment of argument on the stack.
|
||
unsigned Align =
|
||
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
|
||
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
|
||
// If there's no space left in the argument save area, we must
|
||
// use memory (this check also catches zero-sized arguments).
|
||
if (ArgOffset >= LinkageSize + ParamAreaSize)
|
||
UseMemory = true;
|
||
|
||
// Allocate argument on the stack.
|
||
ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
|
||
if (Flags.isInConsecutiveRegsLast())
|
||
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
||
// If we overran the argument save area, we must use memory
|
||
// (this check catches arguments passed partially in memory)
|
||
if (ArgOffset > LinkageSize + ParamAreaSize)
|
||
UseMemory = true;
|
||
|
||
// However, if the argument is actually passed in an FPR or a VR,
|
||
// we don't use memory after all.
|
||
if (!Flags.isByVal()) {
|
||
if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
|
||
if (AvailableFPRs > 0) {
|
||
--AvailableFPRs;
|
||
return false;
|
||
}
|
||
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
|
||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
|
||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
|
||
if (AvailableVRs > 0) {
|
||
--AvailableVRs;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return UseMemory;
|
||
}
|
||
|
||
/// EnsureStackAlignment - Round stack frame size up from NumBytes to
|
||
/// ensure minimum alignment required for target.
|
||
static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
|
||
unsigned NumBytes) {
|
||
unsigned TargetAlign = Lowering->getStackAlignment();
|
||
unsigned AlignMask = TargetAlign - 1;
|
||
NumBytes = (NumBytes + AlignMask) & ~AlignMask;
|
||
return NumBytes;
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerFormalArguments(SDValue Chain,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
const SmallVectorImpl<ISD::InputArg>
|
||
&Ins,
|
||
SDLoc dl, SelectionDAG &DAG,
|
||
SmallVectorImpl<SDValue> &InVals)
|
||
const {
|
||
if (Subtarget.isSVR4ABI()) {
|
||
if (Subtarget.isPPC64())
|
||
return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
|
||
dl, DAG, InVals);
|
||
else
|
||
return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
|
||
dl, DAG, InVals);
|
||
} else {
|
||
return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
|
||
dl, DAG, InVals);
|
||
}
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerFormalArguments_32SVR4(
|
||
SDValue Chain,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
const SmallVectorImpl<ISD::InputArg>
|
||
&Ins,
|
||
SDLoc dl, SelectionDAG &DAG,
|
||
SmallVectorImpl<SDValue> &InVals) const {
|
||
|
||
// 32-bit SVR4 ABI Stack Frame Layout:
|
||
// +-----------------------------------+
|
||
// +--> | Back chain |
|
||
// | +-----------------------------------+
|
||
// | | Floating-point register save area |
|
||
// | +-----------------------------------+
|
||
// | | General register save area |
|
||
// | +-----------------------------------+
|
||
// | | CR save word |
|
||
// | +-----------------------------------+
|
||
// | | VRSAVE save word |
|
||
// | +-----------------------------------+
|
||
// | | Alignment padding |
|
||
// | +-----------------------------------+
|
||
// | | Vector register save area |
|
||
// | +-----------------------------------+
|
||
// | | Local variable space |
|
||
// | +-----------------------------------+
|
||
// | | Parameter list area |
|
||
// | +-----------------------------------+
|
||
// | | LR save word |
|
||
// | +-----------------------------------+
|
||
// SP--> +--- | Back chain |
|
||
// +-----------------------------------+
|
||
//
|
||
// Specifications:
|
||
// System V Application Binary Interface PowerPC Processor Supplement
|
||
// AltiVec Technology Programming Interface Manual
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineFrameInfo *MFI = MF.getFrameInfo();
|
||
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
// Potential tail calls could cause overwriting of argument stack slots.
|
||
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
|
||
(CallConv == CallingConv::Fast));
|
||
unsigned PtrByteSize = 4;
|
||
|
||
// Assign locations to all of the incoming arguments.
|
||
SmallVector<CCValAssign, 16> ArgLocs;
|
||
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
||
*DAG.getContext());
|
||
|
||
// Reserve space for the linkage area on the stack.
|
||
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false, false);
|
||
CCInfo.AllocateStack(LinkageSize, PtrByteSize);
|
||
|
||
CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
|
||
|
||
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
||
CCValAssign &VA = ArgLocs[i];
|
||
|
||
// Arguments stored in registers.
|
||
if (VA.isRegLoc()) {
|
||
const TargetRegisterClass *RC;
|
||
EVT ValVT = VA.getValVT();
|
||
|
||
switch (ValVT.getSimpleVT().SimpleTy) {
|
||
default:
|
||
llvm_unreachable("ValVT not supported by formal arguments Lowering");
|
||
case MVT::i1:
|
||
case MVT::i32:
|
||
RC = &PPC::GPRCRegClass;
|
||
break;
|
||
case MVT::f32:
|
||
RC = &PPC::F4RCRegClass;
|
||
break;
|
||
case MVT::f64:
|
||
if (Subtarget.hasVSX())
|
||
RC = &PPC::VSFRCRegClass;
|
||
else
|
||
RC = &PPC::F8RCRegClass;
|
||
break;
|
||
case MVT::v16i8:
|
||
case MVT::v8i16:
|
||
case MVT::v4i32:
|
||
case MVT::v4f32:
|
||
RC = &PPC::VRRCRegClass;
|
||
break;
|
||
case MVT::v2f64:
|
||
case MVT::v2i64:
|
||
RC = &PPC::VSHRCRegClass;
|
||
break;
|
||
}
|
||
|
||
// Transform the arguments stored in physical registers into virtual ones.
|
||
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
||
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
|
||
ValVT == MVT::i1 ? MVT::i32 : ValVT);
|
||
|
||
if (ValVT == MVT::i1)
|
||
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
|
||
|
||
InVals.push_back(ArgValue);
|
||
} else {
|
||
// Argument stored in memory.
|
||
assert(VA.isMemLoc());
|
||
|
||
unsigned ArgSize = VA.getLocVT().getStoreSize();
|
||
int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
|
||
isImmutable);
|
||
|
||
// Create load nodes to retrieve arguments from the stack.
|
||
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
||
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
|
||
MachinePointerInfo(),
|
||
false, false, false, 0));
|
||
}
|
||
}
|
||
|
||
// Assign locations to all of the incoming aggregate by value arguments.
|
||
// Aggregates passed by value are stored in the local variable space of the
|
||
// caller's stack frame, right above the parameter list area.
|
||
SmallVector<CCValAssign, 16> ByValArgLocs;
|
||
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
||
ByValArgLocs, *DAG.getContext());
|
||
|
||
// Reserve stack space for the allocations in CCInfo.
|
||
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
|
||
|
||
CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
|
||
|
||
// Area that is at least reserved in the caller of this function.
|
||
unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
|
||
MinReservedArea = std::max(MinReservedArea, LinkageSize);
|
||
|
||
// Set the size that is at least reserved in caller of this function. Tail
|
||
// call optimized function's reserved stack space needs to be aligned so that
|
||
// taking the difference between two stack areas will result in an aligned
|
||
// stack.
|
||
MinReservedArea =
|
||
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
|
||
FuncInfo->setMinReservedArea(MinReservedArea);
|
||
|
||
SmallVector<SDValue, 8> MemOps;
|
||
|
||
// If the function takes variable number of arguments, make a frame index for
|
||
// the start of the first vararg value... for expansion of llvm.va_start.
|
||
if (isVarArg) {
|
||
static const MCPhysReg GPArgRegs[] = {
|
||
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
||
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
||
};
|
||
const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
|
||
|
||
static const MCPhysReg FPArgRegs[] = {
|
||
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
||
PPC::F8
|
||
};
|
||
unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
|
||
if (DisablePPCFloatInVariadic)
|
||
NumFPArgRegs = 0;
|
||
|
||
FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
|
||
NumGPArgRegs));
|
||
FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
|
||
NumFPArgRegs));
|
||
|
||
// Make room for NumGPArgRegs and NumFPArgRegs.
|
||
int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
|
||
NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
|
||
|
||
FuncInfo->setVarArgsStackOffset(
|
||
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
|
||
CCInfo.getNextStackOffset(), true));
|
||
|
||
FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
|
||
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
||
|
||
// The fixed integer arguments of a variadic function are stored to the
|
||
// VarArgsFrameIndex on the stack so that they may be loaded by deferencing
|
||
// the result of va_next.
|
||
for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
|
||
// Get an existing live-in vreg, or add a new one.
|
||
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
|
||
if (!VReg)
|
||
VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
|
||
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
||
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
||
MachinePointerInfo(), false, false, 0);
|
||
MemOps.push_back(Store);
|
||
// Increment the address by four for the next argument to store
|
||
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
|
||
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
||
}
|
||
|
||
// FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
|
||
// is set.
|
||
// The double arguments are stored to the VarArgsFrameIndex
|
||
// on the stack.
|
||
for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
|
||
// Get an existing live-in vreg, or add a new one.
|
||
unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
|
||
if (!VReg)
|
||
VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
|
||
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
|
||
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
||
MachinePointerInfo(), false, false, 0);
|
||
MemOps.push_back(Store);
|
||
// Increment the address by eight for the next argument to store
|
||
SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
|
||
PtrVT);
|
||
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
||
}
|
||
}
|
||
|
||
if (!MemOps.empty())
|
||
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
|
||
|
||
return Chain;
|
||
}
|
||
|
||
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
|
||
// value to MVT::i64 and then truncate to the correct register size.
|
||
SDValue
|
||
PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
|
||
SelectionDAG &DAG, SDValue ArgVal,
|
||
SDLoc dl) const {
|
||
if (Flags.isSExt())
|
||
ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
|
||
DAG.getValueType(ObjectVT));
|
||
else if (Flags.isZExt())
|
||
ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
|
||
DAG.getValueType(ObjectVT));
|
||
|
||
return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerFormalArguments_64SVR4(
|
||
SDValue Chain,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
const SmallVectorImpl<ISD::InputArg>
|
||
&Ins,
|
||
SDLoc dl, SelectionDAG &DAG,
|
||
SmallVectorImpl<SDValue> &InVals) const {
|
||
// TODO: add description of PPC stack frame format, or at least some docs.
|
||
//
|
||
bool isELFv2ABI = Subtarget.isELFv2ABI();
|
||
bool isLittleEndian = Subtarget.isLittleEndian();
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineFrameInfo *MFI = MF.getFrameInfo();
|
||
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
||
|
||
assert(!(CallConv == CallingConv::Fast && isVarArg) &&
|
||
"fastcc not supported on varargs functions");
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
// Potential tail calls could cause overwriting of argument stack slots.
|
||
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
|
||
(CallConv == CallingConv::Fast));
|
||
unsigned PtrByteSize = 8;
|
||
|
||
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false,
|
||
isELFv2ABI);
|
||
|
||
static const MCPhysReg GPR[] = {
|
||
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
||
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
||
};
|
||
|
||
static const MCPhysReg *FPR = GetFPR();
|
||
|
||
static const MCPhysReg VR[] = {
|
||
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
||
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
||
};
|
||
static const MCPhysReg VSRH[] = {
|
||
PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
|
||
PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
|
||
};
|
||
|
||
const unsigned Num_GPR_Regs = array_lengthof(GPR);
|
||
const unsigned Num_FPR_Regs = 13;
|
||
const unsigned Num_VR_Regs = array_lengthof(VR);
|
||
|
||
// Do a first pass over the arguments to determine whether the ABI
|
||
// guarantees that our caller has allocated the parameter save area
|
||
// on its stack frame. In the ELFv1 ABI, this is always the case;
|
||
// in the ELFv2 ABI, it is true if this is a vararg function or if
|
||
// any parameter is located in a stack slot.
|
||
|
||
bool HasParameterArea = !isELFv2ABI || isVarArg;
|
||
unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
|
||
unsigned NumBytes = LinkageSize;
|
||
unsigned AvailableFPRs = Num_FPR_Regs;
|
||
unsigned AvailableVRs = Num_VR_Regs;
|
||
for (unsigned i = 0, e = Ins.size(); i != e; ++i)
|
||
if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
|
||
PtrByteSize, LinkageSize, ParamAreaSize,
|
||
NumBytes, AvailableFPRs, AvailableVRs))
|
||
HasParameterArea = true;
|
||
|
||
// Add DAG nodes to load the arguments or copy them out of registers. On
|
||
// entry to a function on PPC, the arguments start after the linkage area,
|
||
// although the first ones are often in registers.
|
||
|
||
unsigned ArgOffset = LinkageSize;
|
||
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
||
SmallVector<SDValue, 8> MemOps;
|
||
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
|
||
unsigned CurArgIdx = 0;
|
||
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
|
||
SDValue ArgVal;
|
||
bool needsLoad = false;
|
||
EVT ObjectVT = Ins[ArgNo].VT;
|
||
EVT OrigVT = Ins[ArgNo].ArgVT;
|
||
unsigned ObjSize = ObjectVT.getStoreSize();
|
||
unsigned ArgSize = ObjSize;
|
||
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
|
||
std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
|
||
CurArgIdx = Ins[ArgNo].OrigArgIndex;
|
||
|
||
// We re-align the argument offset for each argument, except when using the
|
||
// fast calling convention, when we need to make sure we do that only when
|
||
// we'll actually use a stack slot.
|
||
unsigned CurArgOffset, Align;
|
||
auto ComputeArgOffset = [&]() {
|
||
/* Respect alignment of argument on the stack. */
|
||
Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
|
||
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
|
||
CurArgOffset = ArgOffset;
|
||
};
|
||
|
||
if (CallConv != CallingConv::Fast) {
|
||
ComputeArgOffset();
|
||
|
||
/* Compute GPR index associated with argument offset. */
|
||
GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
|
||
GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
|
||
}
|
||
|
||
// FIXME the codegen can be much improved in some cases.
|
||
// We do not have to keep everything in memory.
|
||
if (Flags.isByVal()) {
|
||
if (CallConv == CallingConv::Fast)
|
||
ComputeArgOffset();
|
||
|
||
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
|
||
ObjSize = Flags.getByValSize();
|
||
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
||
// Empty aggregate parameters do not take up registers. Examples:
|
||
// struct { } a;
|
||
// union { } b;
|
||
// int c[0];
|
||
// etc. However, we have to provide a place-holder in InVals, so
|
||
// pretend we have an 8-byte item at the current address for that
|
||
// purpose.
|
||
if (!ObjSize) {
|
||
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
|
||
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
||
InVals.push_back(FIN);
|
||
continue;
|
||
}
|
||
|
||
// Create a stack object covering all stack doublewords occupied
|
||
// by the argument. If the argument is (fully or partially) on
|
||
// the stack, or if the argument is fully in registers but the
|
||
// caller has allocated the parameter save anyway, we can refer
|
||
// directly to the caller's stack frame. Otherwise, create a
|
||
// local copy in our own frame.
|
||
int FI;
|
||
if (HasParameterArea ||
|
||
ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
|
||
FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
|
||
else
|
||
FI = MFI->CreateStackObject(ArgSize, Align, false);
|
||
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
||
|
||
// Handle aggregates smaller than 8 bytes.
|
||
if (ObjSize < PtrByteSize) {
|
||
// The value of the object is its address, which differs from the
|
||
// address of the enclosing doubleword on big-endian systems.
|
||
SDValue Arg = FIN;
|
||
if (!isLittleEndian) {
|
||
SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, PtrVT);
|
||
Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
|
||
}
|
||
InVals.push_back(Arg);
|
||
|
||
if (GPR_idx != Num_GPR_Regs) {
|
||
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
||
SDValue Store;
|
||
|
||
if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
|
||
EVT ObjType = (ObjSize == 1 ? MVT::i8 :
|
||
(ObjSize == 2 ? MVT::i16 : MVT::i32));
|
||
Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
|
||
MachinePointerInfo(FuncArg),
|
||
ObjType, false, false, 0);
|
||
} else {
|
||
// For sizes that don't fit a truncating store (3, 5, 6, 7),
|
||
// store the whole register as-is to the parameter save area
|
||
// slot.
|
||
Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
||
MachinePointerInfo(FuncArg),
|
||
false, false, 0);
|
||
}
|
||
|
||
MemOps.push_back(Store);
|
||
}
|
||
// Whether we copied from a register or not, advance the offset
|
||
// into the parameter save area by a full doubleword.
|
||
ArgOffset += PtrByteSize;
|
||
continue;
|
||
}
|
||
|
||
// The value of the object is its address, which is the address of
|
||
// its first stack doubleword.
|
||
InVals.push_back(FIN);
|
||
|
||
// Store whatever pieces of the object are in registers to memory.
|
||
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
|
||
if (GPR_idx == Num_GPR_Regs)
|
||
break;
|
||
|
||
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
||
SDValue Addr = FIN;
|
||
if (j) {
|
||
SDValue Off = DAG.getConstant(j, PtrVT);
|
||
Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
|
||
}
|
||
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
|
||
MachinePointerInfo(FuncArg, j),
|
||
false, false, 0);
|
||
MemOps.push_back(Store);
|
||
++GPR_idx;
|
||
}
|
||
ArgOffset += ArgSize;
|
||
continue;
|
||
}
|
||
|
||
switch (ObjectVT.getSimpleVT().SimpleTy) {
|
||
default: llvm_unreachable("Unhandled argument type!");
|
||
case MVT::i1:
|
||
case MVT::i32:
|
||
case MVT::i64:
|
||
// These can be scalar arguments or elements of an integer array type
|
||
// passed directly. Clang may use those instead of "byval" aggregate
|
||
// types to avoid forcing arguments to memory unnecessarily.
|
||
if (GPR_idx != Num_GPR_Regs) {
|
||
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
|
||
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
|
||
|
||
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
|
||
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
|
||
// value to MVT::i64 and then truncate to the correct register size.
|
||
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
|
||
} else {
|
||
if (CallConv == CallingConv::Fast)
|
||
ComputeArgOffset();
|
||
|
||
needsLoad = true;
|
||
ArgSize = PtrByteSize;
|
||
}
|
||
if (CallConv != CallingConv::Fast || needsLoad)
|
||
ArgOffset += 8;
|
||
break;
|
||
|
||
case MVT::f32:
|
||
case MVT::f64:
|
||
// These can be scalar arguments or elements of a float array type
|
||
// passed directly. The latter are used to implement ELFv2 homogenous
|
||
// float aggregates.
|
||
if (FPR_idx != Num_FPR_Regs) {
|
||
unsigned VReg;
|
||
|
||
if (ObjectVT == MVT::f32)
|
||
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
|
||
else
|
||
VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
|
||
? &PPC::VSFRCRegClass
|
||
: &PPC::F8RCRegClass);
|
||
|
||
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
||
++FPR_idx;
|
||
} else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
|
||
// FIXME: We may want to re-enable this for CallingConv::Fast on the P8
|
||
// once we support fp <-> gpr moves.
|
||
|
||
// This can only ever happen in the presence of f32 array types,
|
||
// since otherwise we never run out of FPRs before running out
|
||
// of GPRs.
|
||
unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
|
||
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
|
||
|
||
if (ObjectVT == MVT::f32) {
|
||
if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
|
||
ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
|
||
DAG.getConstant(32, MVT::i32));
|
||
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
|
||
}
|
||
|
||
ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
|
||
} else {
|
||
if (CallConv == CallingConv::Fast)
|
||
ComputeArgOffset();
|
||
|
||
needsLoad = true;
|
||
}
|
||
|
||
// When passing an array of floats, the array occupies consecutive
|
||
// space in the argument area; only round up to the next doubleword
|
||
// at the end of the array. Otherwise, each float takes 8 bytes.
|
||
if (CallConv != CallingConv::Fast || needsLoad) {
|
||
ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
|
||
ArgOffset += ArgSize;
|
||
if (Flags.isInConsecutiveRegsLast())
|
||
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
||
}
|
||
break;
|
||
case MVT::v4f32:
|
||
case MVT::v4i32:
|
||
case MVT::v8i16:
|
||
case MVT::v16i8:
|
||
case MVT::v2f64:
|
||
case MVT::v2i64:
|
||
// These can be scalar arguments or elements of a vector array type
|
||
// passed directly. The latter are used to implement ELFv2 homogenous
|
||
// vector aggregates.
|
||
if (VR_idx != Num_VR_Regs) {
|
||
unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
|
||
MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
|
||
MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
|
||
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
||
++VR_idx;
|
||
} else {
|
||
if (CallConv == CallingConv::Fast)
|
||
ComputeArgOffset();
|
||
|
||
needsLoad = true;
|
||
}
|
||
if (CallConv != CallingConv::Fast || needsLoad)
|
||
ArgOffset += 16;
|
||
break;
|
||
}
|
||
|
||
// We need to load the argument to a virtual register if we determined
|
||
// above that we ran out of physical registers of the appropriate type.
|
||
if (needsLoad) {
|
||
if (ObjSize < ArgSize && !isLittleEndian)
|
||
CurArgOffset += ArgSize - ObjSize;
|
||
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
|
||
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
||
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
}
|
||
|
||
InVals.push_back(ArgVal);
|
||
}
|
||
|
||
// Area that is at least reserved in the caller of this function.
|
||
unsigned MinReservedArea;
|
||
if (HasParameterArea)
|
||
MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
|
||
else
|
||
MinReservedArea = LinkageSize;
|
||
|
||
// Set the size that is at least reserved in caller of this function. Tail
|
||
// call optimized functions' reserved stack space needs to be aligned so that
|
||
// taking the difference between two stack areas will result in an aligned
|
||
// stack.
|
||
MinReservedArea =
|
||
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
|
||
FuncInfo->setMinReservedArea(MinReservedArea);
|
||
|
||
// If the function takes variable number of arguments, make a frame index for
|
||
// the start of the first vararg value... for expansion of llvm.va_start.
|
||
if (isVarArg) {
|
||
int Depth = ArgOffset;
|
||
|
||
FuncInfo->setVarArgsFrameIndex(
|
||
MFI->CreateFixedObject(PtrByteSize, Depth, true));
|
||
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
||
|
||
// If this function is vararg, store any remaining integer argument regs
|
||
// to their spots on the stack so that they may be loaded by deferencing the
|
||
// result of va_next.
|
||
for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
|
||
GPR_idx < Num_GPR_Regs; ++GPR_idx) {
|
||
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
||
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
||
MachinePointerInfo(), false, false, 0);
|
||
MemOps.push_back(Store);
|
||
// Increment the address by four for the next argument to store
|
||
SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
|
||
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
||
}
|
||
}
|
||
|
||
if (!MemOps.empty())
|
||
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
|
||
|
||
return Chain;
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerFormalArguments_Darwin(
|
||
SDValue Chain,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
const SmallVectorImpl<ISD::InputArg>
|
||
&Ins,
|
||
SDLoc dl, SelectionDAG &DAG,
|
||
SmallVectorImpl<SDValue> &InVals) const {
|
||
// TODO: add description of PPC stack frame format, or at least some docs.
|
||
//
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineFrameInfo *MFI = MF.getFrameInfo();
|
||
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
bool isPPC64 = PtrVT == MVT::i64;
|
||
// Potential tail calls could cause overwriting of argument stack slots.
|
||
bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
|
||
(CallConv == CallingConv::Fast));
|
||
unsigned PtrByteSize = isPPC64 ? 8 : 4;
|
||
|
||
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true,
|
||
false);
|
||
unsigned ArgOffset = LinkageSize;
|
||
// Area that is at least reserved in caller of this function.
|
||
unsigned MinReservedArea = ArgOffset;
|
||
|
||
static const MCPhysReg GPR_32[] = { // 32-bit registers.
|
||
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
||
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
||
};
|
||
static const MCPhysReg GPR_64[] = { // 64-bit registers.
|
||
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
||
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
||
};
|
||
|
||
static const MCPhysReg *FPR = GetFPR();
|
||
|
||
static const MCPhysReg VR[] = {
|
||
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
||
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
||
};
|
||
|
||
const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
|
||
const unsigned Num_FPR_Regs = 13;
|
||
const unsigned Num_VR_Regs = array_lengthof( VR);
|
||
|
||
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
||
|
||
const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
|
||
|
||
// In 32-bit non-varargs functions, the stack space for vectors is after the
|
||
// stack space for non-vectors. We do not use this space unless we have
|
||
// too many vectors to fit in registers, something that only occurs in
|
||
// constructed examples:), but we have to walk the arglist to figure
|
||
// that out...for the pathological case, compute VecArgOffset as the
|
||
// start of the vector parameter area. Computing VecArgOffset is the
|
||
// entire point of the following loop.
|
||
unsigned VecArgOffset = ArgOffset;
|
||
if (!isVarArg && !isPPC64) {
|
||
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
|
||
++ArgNo) {
|
||
EVT ObjectVT = Ins[ArgNo].VT;
|
||
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
|
||
|
||
if (Flags.isByVal()) {
|
||
// ObjSize is the true size, ArgSize rounded up to multiple of regs.
|
||
unsigned ObjSize = Flags.getByValSize();
|
||
unsigned ArgSize =
|
||
((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
||
VecArgOffset += ArgSize;
|
||
continue;
|
||
}
|
||
|
||
switch(ObjectVT.getSimpleVT().SimpleTy) {
|
||
default: llvm_unreachable("Unhandled argument type!");
|
||
case MVT::i1:
|
||
case MVT::i32:
|
||
case MVT::f32:
|
||
VecArgOffset += 4;
|
||
break;
|
||
case MVT::i64: // PPC64
|
||
case MVT::f64:
|
||
// FIXME: We are guaranteed to be !isPPC64 at this point.
|
||
// Does MVT::i64 apply?
|
||
VecArgOffset += 8;
|
||
break;
|
||
case MVT::v4f32:
|
||
case MVT::v4i32:
|
||
case MVT::v8i16:
|
||
case MVT::v16i8:
|
||
// Nothing to do, we're only looking at Nonvector args here.
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
// We've found where the vector parameter area in memory is. Skip the
|
||
// first 12 parameters; these don't use that memory.
|
||
VecArgOffset = ((VecArgOffset+15)/16)*16;
|
||
VecArgOffset += 12*16;
|
||
|
||
// Add DAG nodes to load the arguments or copy them out of registers. On
|
||
// entry to a function on PPC, the arguments start after the linkage area,
|
||
// although the first ones are often in registers.
|
||
|
||
SmallVector<SDValue, 8> MemOps;
|
||
unsigned nAltivecParamsAtEnd = 0;
|
||
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
|
||
unsigned CurArgIdx = 0;
|
||
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
|
||
SDValue ArgVal;
|
||
bool needsLoad = false;
|
||
EVT ObjectVT = Ins[ArgNo].VT;
|
||
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
|
||
unsigned ArgSize = ObjSize;
|
||
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
|
||
std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
|
||
CurArgIdx = Ins[ArgNo].OrigArgIndex;
|
||
|
||
unsigned CurArgOffset = ArgOffset;
|
||
|
||
// Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
|
||
if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
|
||
ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
|
||
if (isVarArg || isPPC64) {
|
||
MinReservedArea = ((MinReservedArea+15)/16)*16;
|
||
MinReservedArea += CalculateStackSlotSize(ObjectVT,
|
||
Flags,
|
||
PtrByteSize);
|
||
} else nAltivecParamsAtEnd++;
|
||
} else
|
||
// Calculate min reserved area.
|
||
MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
|
||
Flags,
|
||
PtrByteSize);
|
||
|
||
// FIXME the codegen can be much improved in some cases.
|
||
// We do not have to keep everything in memory.
|
||
if (Flags.isByVal()) {
|
||
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
|
||
ObjSize = Flags.getByValSize();
|
||
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
||
// Objects of size 1 and 2 are right justified, everything else is
|
||
// left justified. This means the memory address is adjusted forwards.
|
||
if (ObjSize==1 || ObjSize==2) {
|
||
CurArgOffset = CurArgOffset + (4 - ObjSize);
|
||
}
|
||
// The value of the object is its address.
|
||
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
|
||
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
||
InVals.push_back(FIN);
|
||
if (ObjSize==1 || ObjSize==2) {
|
||
if (GPR_idx != Num_GPR_Regs) {
|
||
unsigned VReg;
|
||
if (isPPC64)
|
||
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
||
else
|
||
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
||
EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
|
||
SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
|
||
MachinePointerInfo(FuncArg),
|
||
ObjType, false, false, 0);
|
||
MemOps.push_back(Store);
|
||
++GPR_idx;
|
||
}
|
||
|
||
ArgOffset += PtrByteSize;
|
||
|
||
continue;
|
||
}
|
||
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
|
||
// Store whatever pieces of the object are in registers
|
||
// to memory. ArgOffset will be the address of the beginning
|
||
// of the object.
|
||
if (GPR_idx != Num_GPR_Regs) {
|
||
unsigned VReg;
|
||
if (isPPC64)
|
||
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
||
else
|
||
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
||
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
|
||
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
||
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
||
MachinePointerInfo(FuncArg, j),
|
||
false, false, 0);
|
||
MemOps.push_back(Store);
|
||
++GPR_idx;
|
||
ArgOffset += PtrByteSize;
|
||
} else {
|
||
ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
|
||
break;
|
||
}
|
||
}
|
||
continue;
|
||
}
|
||
|
||
switch (ObjectVT.getSimpleVT().SimpleTy) {
|
||
default: llvm_unreachable("Unhandled argument type!");
|
||
case MVT::i1:
|
||
case MVT::i32:
|
||
if (!isPPC64) {
|
||
if (GPR_idx != Num_GPR_Regs) {
|
||
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
||
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
|
||
|
||
if (ObjectVT == MVT::i1)
|
||
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
|
||
|
||
++GPR_idx;
|
||
} else {
|
||
needsLoad = true;
|
||
ArgSize = PtrByteSize;
|
||
}
|
||
// All int arguments reserve stack space in the Darwin ABI.
|
||
ArgOffset += PtrByteSize;
|
||
break;
|
||
}
|
||
// FALLTHROUGH
|
||
case MVT::i64: // PPC64
|
||
if (GPR_idx != Num_GPR_Regs) {
|
||
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
||
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
|
||
|
||
if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
|
||
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
|
||
// value to MVT::i64 and then truncate to the correct register size.
|
||
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
|
||
|
||
++GPR_idx;
|
||
} else {
|
||
needsLoad = true;
|
||
ArgSize = PtrByteSize;
|
||
}
|
||
// All int arguments reserve stack space in the Darwin ABI.
|
||
ArgOffset += 8;
|
||
break;
|
||
|
||
case MVT::f32:
|
||
case MVT::f64:
|
||
// Every 4 bytes of argument space consumes one of the GPRs available for
|
||
// argument passing.
|
||
if (GPR_idx != Num_GPR_Regs) {
|
||
++GPR_idx;
|
||
if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
|
||
++GPR_idx;
|
||
}
|
||
if (FPR_idx != Num_FPR_Regs) {
|
||
unsigned VReg;
|
||
|
||
if (ObjectVT == MVT::f32)
|
||
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
|
||
else
|
||
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
|
||
|
||
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
||
++FPR_idx;
|
||
} else {
|
||
needsLoad = true;
|
||
}
|
||
|
||
// All FP arguments reserve stack space in the Darwin ABI.
|
||
ArgOffset += isPPC64 ? 8 : ObjSize;
|
||
break;
|
||
case MVT::v4f32:
|
||
case MVT::v4i32:
|
||
case MVT::v8i16:
|
||
case MVT::v16i8:
|
||
// Note that vector arguments in registers don't reserve stack space,
|
||
// except in varargs functions.
|
||
if (VR_idx != Num_VR_Regs) {
|
||
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
|
||
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
||
if (isVarArg) {
|
||
while ((ArgOffset % 16) != 0) {
|
||
ArgOffset += PtrByteSize;
|
||
if (GPR_idx != Num_GPR_Regs)
|
||
GPR_idx++;
|
||
}
|
||
ArgOffset += 16;
|
||
GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
|
||
}
|
||
++VR_idx;
|
||
} else {
|
||
if (!isVarArg && !isPPC64) {
|
||
// Vectors go after all the nonvectors.
|
||
CurArgOffset = VecArgOffset;
|
||
VecArgOffset += 16;
|
||
} else {
|
||
// Vectors are aligned.
|
||
ArgOffset = ((ArgOffset+15)/16)*16;
|
||
CurArgOffset = ArgOffset;
|
||
ArgOffset += 16;
|
||
}
|
||
needsLoad = true;
|
||
}
|
||
break;
|
||
}
|
||
|
||
// We need to load the argument to a virtual register if we determined above
|
||
// that we ran out of physical registers of the appropriate type.
|
||
if (needsLoad) {
|
||
int FI = MFI->CreateFixedObject(ObjSize,
|
||
CurArgOffset + (ArgSize - ObjSize),
|
||
isImmutable);
|
||
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
||
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
}
|
||
|
||
InVals.push_back(ArgVal);
|
||
}
|
||
|
||
// Allow for Altivec parameters at the end, if needed.
|
||
if (nAltivecParamsAtEnd) {
|
||
MinReservedArea = ((MinReservedArea+15)/16)*16;
|
||
MinReservedArea += 16*nAltivecParamsAtEnd;
|
||
}
|
||
|
||
// Area that is at least reserved in the caller of this function.
|
||
MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
|
||
|
||
// Set the size that is at least reserved in caller of this function. Tail
|
||
// call optimized functions' reserved stack space needs to be aligned so that
|
||
// taking the difference between two stack areas will result in an aligned
|
||
// stack.
|
||
MinReservedArea =
|
||
EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
|
||
FuncInfo->setMinReservedArea(MinReservedArea);
|
||
|
||
// If the function takes variable number of arguments, make a frame index for
|
||
// the start of the first vararg value... for expansion of llvm.va_start.
|
||
if (isVarArg) {
|
||
int Depth = ArgOffset;
|
||
|
||
FuncInfo->setVarArgsFrameIndex(
|
||
MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
|
||
Depth, true));
|
||
SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
||
|
||
// If this function is vararg, store any remaining integer argument regs
|
||
// to their spots on the stack so that they may be loaded by deferencing the
|
||
// result of va_next.
|
||
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
|
||
unsigned VReg;
|
||
|
||
if (isPPC64)
|
||
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
||
else
|
||
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
||
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
||
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
||
MachinePointerInfo(), false, false, 0);
|
||
MemOps.push_back(Store);
|
||
// Increment the address by four for the next argument to store
|
||
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
|
||
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
||
}
|
||
}
|
||
|
||
if (!MemOps.empty())
|
||
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
|
||
|
||
return Chain;
|
||
}
|
||
|
||
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
|
||
/// adjusted to accommodate the arguments for the tailcall.
|
||
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
|
||
unsigned ParamSize) {
|
||
|
||
if (!isTailCall) return 0;
|
||
|
||
PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
|
||
unsigned CallerMinReservedArea = FI->getMinReservedArea();
|
||
int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
|
||
// Remember only if the new adjustement is bigger.
|
||
if (SPDiff < FI->getTailCallSPDelta())
|
||
FI->setTailCallSPDelta(SPDiff);
|
||
|
||
return SPDiff;
|
||
}
|
||
|
||
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
||
/// for tail call optimization. Targets which want to do tail call
|
||
/// optimization should implement this function.
|
||
bool
|
||
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
||
CallingConv::ID CalleeCC,
|
||
bool isVarArg,
|
||
const SmallVectorImpl<ISD::InputArg> &Ins,
|
||
SelectionDAG& DAG) const {
|
||
if (!getTargetMachine().Options.GuaranteedTailCallOpt)
|
||
return false;
|
||
|
||
// Variable argument functions are not supported.
|
||
if (isVarArg)
|
||
return false;
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
|
||
if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
|
||
// Functions containing by val parameters are not supported.
|
||
for (unsigned i = 0; i != Ins.size(); i++) {
|
||
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
||
if (Flags.isByVal()) return false;
|
||
}
|
||
|
||
// Non-PIC/GOT tail calls are supported.
|
||
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
|
||
return true;
|
||
|
||
// At the moment we can only do local tail calls (in same module, hidden
|
||
// or protected) if we are generating PIC.
|
||
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
||
return G->getGlobal()->hasHiddenVisibility()
|
||
|| G->getGlobal()->hasProtectedVisibility();
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// isCallCompatibleAddress - Return the immediate to use if the specified
|
||
/// 32-bit value is representable in the immediate field of a BxA instruction.
|
||
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
|
||
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
||
if (!C) return nullptr;
|
||
|
||
int Addr = C->getZExtValue();
|
||
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
|
||
SignExtend32<26>(Addr) != Addr)
|
||
return nullptr; // Top 6 bits have to be sext of immediate.
|
||
|
||
return DAG.getConstant((int)C->getZExtValue() >> 2,
|
||
DAG.getTargetLoweringInfo().getPointerTy()).getNode();
|
||
}
|
||
|
||
namespace {
|
||
|
||
struct TailCallArgumentInfo {
|
||
SDValue Arg;
|
||
SDValue FrameIdxOp;
|
||
int FrameIdx;
|
||
|
||
TailCallArgumentInfo() : FrameIdx(0) {}
|
||
};
|
||
|
||
}
|
||
|
||
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
|
||
static void
|
||
StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
|
||
SDValue Chain,
|
||
const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
|
||
SmallVectorImpl<SDValue> &MemOpChains,
|
||
SDLoc dl) {
|
||
for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
|
||
SDValue Arg = TailCallArgs[i].Arg;
|
||
SDValue FIN = TailCallArgs[i].FrameIdxOp;
|
||
int FI = TailCallArgs[i].FrameIdx;
|
||
// Store relative to framepointer.
|
||
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
|
||
MachinePointerInfo::getFixedStack(FI),
|
||
false, false, 0));
|
||
}
|
||
}
|
||
|
||
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
|
||
/// the appropriate stack slot for the tail call optimized function call.
|
||
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
|
||
MachineFunction &MF,
|
||
SDValue Chain,
|
||
SDValue OldRetAddr,
|
||
SDValue OldFP,
|
||
int SPDiff,
|
||
bool isPPC64,
|
||
bool isDarwinABI,
|
||
SDLoc dl) {
|
||
if (SPDiff) {
|
||
// Calculate the new stack slot for the return address.
|
||
int SlotSize = isPPC64 ? 8 : 4;
|
||
const PPCFrameLowering *FL =
|
||
MF.getSubtarget<PPCSubtarget>().getFrameLowering();
|
||
int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
|
||
int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
|
||
NewRetAddrLoc, true);
|
||
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
|
||
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
|
||
Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
|
||
MachinePointerInfo::getFixedStack(NewRetAddr),
|
||
false, false, 0);
|
||
|
||
// When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
|
||
// slot as the FP is never overwritten.
|
||
if (isDarwinABI) {
|
||
int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
|
||
int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
|
||
true);
|
||
SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
|
||
Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
|
||
MachinePointerInfo::getFixedStack(NewFPIdx),
|
||
false, false, 0);
|
||
}
|
||
}
|
||
return Chain;
|
||
}
|
||
|
||
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
|
||
/// the position of the argument.
|
||
static void
|
||
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
|
||
SDValue Arg, int SPDiff, unsigned ArgOffset,
|
||
SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
|
||
int Offset = ArgOffset + SPDiff;
|
||
uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
|
||
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
|
||
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
|
||
SDValue FIN = DAG.getFrameIndex(FI, VT);
|
||
TailCallArgumentInfo Info;
|
||
Info.Arg = Arg;
|
||
Info.FrameIdxOp = FIN;
|
||
Info.FrameIdx = FI;
|
||
TailCallArguments.push_back(Info);
|
||
}
|
||
|
||
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
|
||
/// stack slot. Returns the chain as result and the loaded frame pointers in
|
||
/// LROpOut/FPOpout. Used when tail calling.
|
||
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
|
||
int SPDiff,
|
||
SDValue Chain,
|
||
SDValue &LROpOut,
|
||
SDValue &FPOpOut,
|
||
bool isDarwinABI,
|
||
SDLoc dl) const {
|
||
if (SPDiff) {
|
||
// Load the LR and FP stack slot for later adjusting.
|
||
EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
|
||
LROpOut = getReturnAddrFrameIndex(DAG);
|
||
LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
Chain = SDValue(LROpOut.getNode(), 1);
|
||
|
||
// When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
|
||
// slot as the FP is never overwritten.
|
||
if (isDarwinABI) {
|
||
FPOpOut = getFramePointerFrameIndex(DAG);
|
||
FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
Chain = SDValue(FPOpOut.getNode(), 1);
|
||
}
|
||
}
|
||
return Chain;
|
||
}
|
||
|
||
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
|
||
/// by "Src" to address "Dst" of size "Size". Alignment information is
|
||
/// specified by the specific parameter attribute. The copy will be passed as
|
||
/// a byval function parameter.
|
||
/// Sometimes what we are copying is the end of a larger object, the part that
|
||
/// does not fit in registers.
|
||
static SDValue
|
||
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
|
||
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
|
||
SDLoc dl) {
|
||
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
|
||
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
|
||
false, false, MachinePointerInfo(),
|
||
MachinePointerInfo());
|
||
}
|
||
|
||
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
|
||
/// tail calls.
|
||
static void
|
||
LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
|
||
SDValue Arg, SDValue PtrOff, int SPDiff,
|
||
unsigned ArgOffset, bool isPPC64, bool isTailCall,
|
||
bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
|
||
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
|
||
SDLoc dl) {
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
if (!isTailCall) {
|
||
if (isVector) {
|
||
SDValue StackPtr;
|
||
if (isPPC64)
|
||
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
|
||
else
|
||
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
||
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
|
||
DAG.getConstant(ArgOffset, PtrVT));
|
||
}
|
||
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
|
||
MachinePointerInfo(), false, false, 0));
|
||
// Calculate and remember argument location.
|
||
} else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
|
||
TailCallArguments);
|
||
}
|
||
|
||
static
|
||
void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
|
||
SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
|
||
SDValue LROp, SDValue FPOp, bool isDarwinABI,
|
||
SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
|
||
// Emit a sequence of copyto/copyfrom virtual registers for arguments that
|
||
// might overwrite each other in case of tail call optimization.
|
||
SmallVector<SDValue, 8> MemOpChains2;
|
||
// Do not flag preceding copytoreg stuff together with the following stuff.
|
||
InFlag = SDValue();
|
||
StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
|
||
MemOpChains2, dl);
|
||
if (!MemOpChains2.empty())
|
||
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
|
||
|
||
// Store the return address to the appropriate stack slot.
|
||
Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
|
||
isPPC64, isDarwinABI, dl);
|
||
|
||
// Emit callseq_end just before tailcall node.
|
||
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
||
DAG.getIntPtrConstant(0, true), InFlag, dl);
|
||
InFlag = Chain.getValue(1);
|
||
}
|
||
|
||
// Is this global address that of a function that can be called by name? (as
|
||
// opposed to something that must hold a descriptor for an indirect call).
|
||
static bool isFunctionGlobalAddress(SDValue Callee) {
|
||
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
||
if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
|
||
Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
|
||
return false;
|
||
|
||
return G->getGlobal()->getType()->getElementType()->isFunctionTy();
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static
|
||
unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
|
||
SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
|
||
bool isTailCall, bool IsPatchPoint,
|
||
SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
|
||
SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
|
||
ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
|
||
|
||
bool isPPC64 = Subtarget.isPPC64();
|
||
bool isSVR4ABI = Subtarget.isSVR4ABI();
|
||
bool isELFv2ABI = Subtarget.isELFv2ABI();
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
NodeTys.push_back(MVT::Other); // Returns a chain
|
||
NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
|
||
|
||
unsigned CallOpc = PPCISD::CALL;
|
||
|
||
bool needIndirectCall = true;
|
||
if (!isSVR4ABI || !isPPC64)
|
||
if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
|
||
// If this is an absolute destination address, use the munged value.
|
||
Callee = SDValue(Dest, 0);
|
||
needIndirectCall = false;
|
||
}
|
||
|
||
if (isFunctionGlobalAddress(Callee)) {
|
||
GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
|
||
// A call to a TLS address is actually an indirect call to a
|
||
// thread-specific pointer.
|
||
unsigned OpFlags = 0;
|
||
if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
|
||
(Subtarget.getTargetTriple().isMacOSX() &&
|
||
Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
|
||
(G->getGlobal()->isDeclaration() ||
|
||
G->getGlobal()->isWeakForLinker())) ||
|
||
(Subtarget.isTargetELF() && !isPPC64 &&
|
||
!G->getGlobal()->hasLocalLinkage() &&
|
||
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
|
||
// PC-relative references to external symbols should go through $stub,
|
||
// unless we're building with the leopard linker or later, which
|
||
// automatically synthesizes these stubs.
|
||
OpFlags = PPCII::MO_PLT_OR_STUB;
|
||
}
|
||
|
||
// If the callee is a GlobalAddress/ExternalSymbol node (quite common,
|
||
// every direct call is) turn it into a TargetGlobalAddress /
|
||
// TargetExternalSymbol node so that legalize doesn't hack it.
|
||
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
|
||
Callee.getValueType(), 0, OpFlags);
|
||
needIndirectCall = false;
|
||
}
|
||
|
||
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
||
unsigned char OpFlags = 0;
|
||
|
||
if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
|
||
(Subtarget.getTargetTriple().isMacOSX() &&
|
||
Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
|
||
(Subtarget.isTargetELF() && !isPPC64 &&
|
||
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
|
||
// PC-relative references to external symbols should go through $stub,
|
||
// unless we're building with the leopard linker or later, which
|
||
// automatically synthesizes these stubs.
|
||
OpFlags = PPCII::MO_PLT_OR_STUB;
|
||
}
|
||
|
||
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
|
||
OpFlags);
|
||
needIndirectCall = false;
|
||
}
|
||
|
||
if (IsPatchPoint) {
|
||
// We'll form an invalid direct call when lowering a patchpoint; the full
|
||
// sequence for an indirect call is complicated, and many of the
|
||
// instructions introduced might have side effects (and, thus, can't be
|
||
// removed later). The call itself will be removed as soon as the
|
||
// argument/return lowering is complete, so the fact that it has the wrong
|
||
// kind of operands should not really matter.
|
||
needIndirectCall = false;
|
||
}
|
||
|
||
if (needIndirectCall) {
|
||
// Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
|
||
// to do the call, we can't use PPCISD::CALL.
|
||
SDValue MTCTROps[] = {Chain, Callee, InFlag};
|
||
|
||
if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
|
||
// Function pointers in the 64-bit SVR4 ABI do not point to the function
|
||
// entry point, but to the function descriptor (the function entry point
|
||
// address is part of the function descriptor though).
|
||
// The function descriptor is a three doubleword structure with the
|
||
// following fields: function entry point, TOC base address and
|
||
// environment pointer.
|
||
// Thus for a call through a function pointer, the following actions need
|
||
// to be performed:
|
||
// 1. Save the TOC of the caller in the TOC save area of its stack
|
||
// frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
|
||
// 2. Load the address of the function entry point from the function
|
||
// descriptor.
|
||
// 3. Load the TOC of the callee from the function descriptor into r2.
|
||
// 4. Load the environment pointer from the function descriptor into
|
||
// r11.
|
||
// 5. Branch to the function entry point address.
|
||
// 6. On return of the callee, the TOC of the caller needs to be
|
||
// restored (this is done in FinishCall()).
|
||
//
|
||
// The loads are scheduled at the beginning of the call sequence, and the
|
||
// register copies are flagged together to ensure that no other
|
||
// operations can be scheduled in between. E.g. without flagging the
|
||
// copies together, a TOC access in the caller could be scheduled between
|
||
// the assignment of the callee TOC and the branch to the callee, which
|
||
// results in the TOC access going through the TOC of the callee instead
|
||
// of going through the TOC of the caller, which leads to incorrect code.
|
||
|
||
// Load the address of the function entry point from the function
|
||
// descriptor.
|
||
SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
|
||
if (LDChain.getValueType() == MVT::Glue)
|
||
LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
|
||
|
||
bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
|
||
|
||
MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
|
||
SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
|
||
false, false, LoadsInv, 8);
|
||
|
||
// Load environment pointer into r11.
|
||
SDValue PtrOff = DAG.getIntPtrConstant(16);
|
||
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
|
||
SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
|
||
MPI.getWithOffset(16), false, false,
|
||
LoadsInv, 8);
|
||
|
||
SDValue TOCOff = DAG.getIntPtrConstant(8);
|
||
SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
|
||
SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
|
||
MPI.getWithOffset(8), false, false,
|
||
LoadsInv, 8);
|
||
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
|
||
InFlag);
|
||
Chain = TOCVal.getValue(0);
|
||
InFlag = TOCVal.getValue(1);
|
||
|
||
SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
|
||
InFlag);
|
||
|
||
Chain = EnvVal.getValue(0);
|
||
InFlag = EnvVal.getValue(1);
|
||
|
||
MTCTROps[0] = Chain;
|
||
MTCTROps[1] = LoadFuncPtr;
|
||
MTCTROps[2] = InFlag;
|
||
}
|
||
|
||
Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
|
||
makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
|
||
InFlag = Chain.getValue(1);
|
||
|
||
NodeTys.clear();
|
||
NodeTys.push_back(MVT::Other);
|
||
NodeTys.push_back(MVT::Glue);
|
||
Ops.push_back(Chain);
|
||
CallOpc = PPCISD::BCTRL;
|
||
Callee.setNode(nullptr);
|
||
// Add use of X11 (holding environment pointer)
|
||
if (isSVR4ABI && isPPC64 && !isELFv2ABI)
|
||
Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
|
||
// Add CTR register as callee so a bctr can be emitted later.
|
||
if (isTailCall)
|
||
Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
|
||
}
|
||
|
||
// If this is a direct call, pass the chain and the callee.
|
||
if (Callee.getNode()) {
|
||
Ops.push_back(Chain);
|
||
Ops.push_back(Callee);
|
||
}
|
||
// If this is a tail call add stack pointer delta.
|
||
if (isTailCall)
|
||
Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
|
||
|
||
// Add argument registers to the end of the list so that they are known live
|
||
// into the call.
|
||
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
||
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
||
RegsToPass[i].second.getValueType()));
|
||
|
||
// All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
|
||
// into the call.
|
||
if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
|
||
setUsesTOCBasePtr(DAG);
|
||
Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
|
||
}
|
||
|
||
return CallOpc;
|
||
}
|
||
|
||
static
|
||
bool isLocalCall(const SDValue &Callee)
|
||
{
|
||
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
||
return !G->getGlobal()->isDeclaration() &&
|
||
!G->getGlobal()->isWeakForLinker();
|
||
return false;
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
const SmallVectorImpl<ISD::InputArg> &Ins,
|
||
SDLoc dl, SelectionDAG &DAG,
|
||
SmallVectorImpl<SDValue> &InVals) const {
|
||
|
||
SmallVector<CCValAssign, 16> RVLocs;
|
||
CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
||
*DAG.getContext());
|
||
CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
|
||
|
||
// Copy all of the result registers out of their specified physreg.
|
||
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
||
CCValAssign &VA = RVLocs[i];
|
||
assert(VA.isRegLoc() && "Can only return in registers!");
|
||
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl,
|
||
VA.getLocReg(), VA.getLocVT(), InFlag);
|
||
Chain = Val.getValue(1);
|
||
InFlag = Val.getValue(2);
|
||
|
||
switch (VA.getLocInfo()) {
|
||
default: llvm_unreachable("Unknown loc info!");
|
||
case CCValAssign::Full: break;
|
||
case CCValAssign::AExt:
|
||
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
|
||
break;
|
||
case CCValAssign::ZExt:
|
||
Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
|
||
DAG.getValueType(VA.getValVT()));
|
||
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
|
||
break;
|
||
case CCValAssign::SExt:
|
||
Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
|
||
DAG.getValueType(VA.getValVT()));
|
||
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
|
||
break;
|
||
}
|
||
|
||
InVals.push_back(Val);
|
||
}
|
||
|
||
return Chain;
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
|
||
bool isTailCall, bool isVarArg, bool IsPatchPoint,
|
||
SelectionDAG &DAG,
|
||
SmallVector<std::pair<unsigned, SDValue>, 8>
|
||
&RegsToPass,
|
||
SDValue InFlag, SDValue Chain,
|
||
SDValue CallSeqStart, SDValue &Callee,
|
||
int SPDiff, unsigned NumBytes,
|
||
const SmallVectorImpl<ISD::InputArg> &Ins,
|
||
SmallVectorImpl<SDValue> &InVals,
|
||
ImmutableCallSite *CS) const {
|
||
|
||
std::vector<EVT> NodeTys;
|
||
SmallVector<SDValue, 8> Ops;
|
||
unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
|
||
SPDiff, isTailCall, IsPatchPoint, RegsToPass,
|
||
Ops, NodeTys, CS, Subtarget);
|
||
|
||
// Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
|
||
if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
|
||
Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
|
||
|
||
// When performing tail call optimization the callee pops its arguments off
|
||
// the stack. Account for this here so these bytes can be pushed back on in
|
||
// PPCFrameLowering::eliminateCallFramePseudoInstr.
|
||
int BytesCalleePops =
|
||
(CallConv == CallingConv::Fast &&
|
||
getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
|
||
|
||
// Add a register mask operand representing the call-preserved registers.
|
||
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
||
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
|
||
assert(Mask && "Missing call preserved mask for calling convention");
|
||
Ops.push_back(DAG.getRegisterMask(Mask));
|
||
|
||
if (InFlag.getNode())
|
||
Ops.push_back(InFlag);
|
||
|
||
// Emit tail call.
|
||
if (isTailCall) {
|
||
assert(((Callee.getOpcode() == ISD::Register &&
|
||
cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
|
||
Callee.getOpcode() == ISD::TargetExternalSymbol ||
|
||
Callee.getOpcode() == ISD::TargetGlobalAddress ||
|
||
isa<ConstantSDNode>(Callee)) &&
|
||
"Expecting an global address, external symbol, absolute value or register");
|
||
|
||
return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
|
||
}
|
||
|
||
// Add a NOP immediately after the branch instruction when using the 64-bit
|
||
// SVR4 ABI. At link time, if caller and callee are in a different module and
|
||
// thus have a different TOC, the call will be replaced with a call to a stub
|
||
// function which saves the current TOC, loads the TOC of the callee and
|
||
// branches to the callee. The NOP will be replaced with a load instruction
|
||
// which restores the TOC of the caller from the TOC save slot of the current
|
||
// stack frame. If caller and callee belong to the same module (and have the
|
||
// same TOC), the NOP will remain unchanged.
|
||
|
||
if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
|
||
!IsPatchPoint) {
|
||
if (CallOpc == PPCISD::BCTRL) {
|
||
// This is a call through a function pointer.
|
||
// Restore the caller TOC from the save area into R2.
|
||
// See PrepareCall() for more information about calls through function
|
||
// pointers in the 64-bit SVR4 ABI.
|
||
// We are using a target-specific load with r2 hard coded, because the
|
||
// result of a target-independent load would never go directly into r2,
|
||
// since r2 is a reserved register (which prevents the register allocator
|
||
// from allocating it), resulting in an additional register being
|
||
// allocated and an unnecessary move instruction being generated.
|
||
CallOpc = PPCISD::BCTRL_LOAD_TOC;
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
|
||
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
|
||
SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
|
||
SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
|
||
|
||
// The address needs to go after the chain input but before the flag (or
|
||
// any other variadic arguments).
|
||
Ops.insert(std::next(Ops.begin()), AddTOC);
|
||
} else if ((CallOpc == PPCISD::CALL) &&
|
||
(!isLocalCall(Callee) ||
|
||
DAG.getTarget().getRelocationModel() == Reloc::PIC_))
|
||
// Otherwise insert NOP for non-local calls.
|
||
CallOpc = PPCISD::CALL_NOP;
|
||
}
|
||
|
||
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
|
||
InFlag = Chain.getValue(1);
|
||
|
||
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
||
DAG.getIntPtrConstant(BytesCalleePops, true),
|
||
InFlag, dl);
|
||
if (!Ins.empty())
|
||
InFlag = Chain.getValue(1);
|
||
|
||
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
|
||
Ins, dl, DAG, InVals);
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
||
SmallVectorImpl<SDValue> &InVals) const {
|
||
SelectionDAG &DAG = CLI.DAG;
|
||
SDLoc &dl = CLI.DL;
|
||
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
||
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
||
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
||
SDValue Chain = CLI.Chain;
|
||
SDValue Callee = CLI.Callee;
|
||
bool &isTailCall = CLI.IsTailCall;
|
||
CallingConv::ID CallConv = CLI.CallConv;
|
||
bool isVarArg = CLI.IsVarArg;
|
||
bool IsPatchPoint = CLI.IsPatchPoint;
|
||
ImmutableCallSite *CS = CLI.CS;
|
||
|
||
if (isTailCall)
|
||
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
|
||
Ins, DAG);
|
||
|
||
if (!isTailCall && CS && CS->isMustTailCall())
|
||
report_fatal_error("failed to perform tail call elimination on a call "
|
||
"site marked musttail");
|
||
|
||
if (Subtarget.isSVR4ABI()) {
|
||
if (Subtarget.isPPC64())
|
||
return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
|
||
isTailCall, IsPatchPoint, Outs, OutVals, Ins,
|
||
dl, DAG, InVals, CS);
|
||
else
|
||
return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
|
||
isTailCall, IsPatchPoint, Outs, OutVals, Ins,
|
||
dl, DAG, InVals, CS);
|
||
}
|
||
|
||
return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
|
||
isTailCall, IsPatchPoint, Outs, OutVals, Ins,
|
||
dl, DAG, InVals, CS);
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
bool isTailCall, bool IsPatchPoint,
|
||
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
||
const SmallVectorImpl<SDValue> &OutVals,
|
||
const SmallVectorImpl<ISD::InputArg> &Ins,
|
||
SDLoc dl, SelectionDAG &DAG,
|
||
SmallVectorImpl<SDValue> &InVals,
|
||
ImmutableCallSite *CS) const {
|
||
// See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
|
||
// of the 32-bit SVR4 ABI stack frame layout.
|
||
|
||
assert((CallConv == CallingConv::C ||
|
||
CallConv == CallingConv::Fast) && "Unknown calling convention!");
|
||
|
||
unsigned PtrByteSize = 4;
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
|
||
// Mark this function as potentially containing a function that contains a
|
||
// tail call. As a consequence the frame pointer will be used for dynamicalloc
|
||
// and restoring the callers stack pointer in this functions epilog. This is
|
||
// done because by tail calling the called function might overwrite the value
|
||
// in this function's (MF) stack pointer stack slot 0(SP).
|
||
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
||
CallConv == CallingConv::Fast)
|
||
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
|
||
|
||
// Count how many bytes are to be pushed on the stack, including the linkage
|
||
// area, parameter list area and the part of the local variable space which
|
||
// contains copies of aggregates which are passed by value.
|
||
|
||
// Assign locations to all of the outgoing arguments.
|
||
SmallVector<CCValAssign, 16> ArgLocs;
|
||
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
||
*DAG.getContext());
|
||
|
||
// Reserve space for the linkage area on the stack.
|
||
CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false, false),
|
||
PtrByteSize);
|
||
|
||
if (isVarArg) {
|
||
// Handle fixed and variable vector arguments differently.
|
||
// Fixed vector arguments go into registers as long as registers are
|
||
// available. Variable vector arguments always go into memory.
|
||
unsigned NumArgs = Outs.size();
|
||
|
||
for (unsigned i = 0; i != NumArgs; ++i) {
|
||
MVT ArgVT = Outs[i].VT;
|
||
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
||
bool Result;
|
||
|
||
if (Outs[i].IsFixed) {
|
||
Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
|
||
CCInfo);
|
||
} else {
|
||
Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
|
||
ArgFlags, CCInfo);
|
||
}
|
||
|
||
if (Result) {
|
||
#ifndef NDEBUG
|
||
errs() << "Call operand #" << i << " has unhandled type "
|
||
<< EVT(ArgVT).getEVTString() << "\n";
|
||
#endif
|
||
llvm_unreachable(nullptr);
|
||
}
|
||
}
|
||
} else {
|
||
// All arguments are treated the same.
|
||
CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
|
||
}
|
||
|
||
// Assign locations to all of the outgoing aggregate by value arguments.
|
||
SmallVector<CCValAssign, 16> ByValArgLocs;
|
||
CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
||
ByValArgLocs, *DAG.getContext());
|
||
|
||
// Reserve stack space for the allocations in CCInfo.
|
||
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
|
||
|
||
CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
|
||
|
||
// Size of the linkage area, parameter list area and the part of the local
|
||
// space variable where copies of aggregates which are passed by value are
|
||
// stored.
|
||
unsigned NumBytes = CCByValInfo.getNextStackOffset();
|
||
|
||
// Calculate by how many bytes the stack has to be adjusted in case of tail
|
||
// call optimization.
|
||
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
|
||
|
||
// Adjust the stack pointer for the new arguments...
|
||
// These operations are automatically eliminated by the prolog/epilog pass
|
||
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
||
dl);
|
||
SDValue CallSeqStart = Chain;
|
||
|
||
// Load the return address and frame pointer so it can be moved somewhere else
|
||
// later.
|
||
SDValue LROp, FPOp;
|
||
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
|
||
dl);
|
||
|
||
// Set up a copy of the stack pointer for use loading and storing any
|
||
// arguments that may not fit in the registers available for argument
|
||
// passing.
|
||
SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
||
|
||
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
||
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
|
||
SmallVector<SDValue, 8> MemOpChains;
|
||
|
||
bool seenFloatArg = false;
|
||
// Walk the register/memloc assignments, inserting copies/loads.
|
||
for (unsigned i = 0, j = 0, e = ArgLocs.size();
|
||
i != e;
|
||
++i) {
|
||
CCValAssign &VA = ArgLocs[i];
|
||
SDValue Arg = OutVals[i];
|
||
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
||
|
||
if (Flags.isByVal()) {
|
||
// Argument is an aggregate which is passed by value, thus we need to
|
||
// create a copy of it in the local variable space of the current stack
|
||
// frame (which is the stack frame of the caller) and pass the address of
|
||
// this copy to the callee.
|
||
assert((j < ByValArgLocs.size()) && "Index out of bounds!");
|
||
CCValAssign &ByValVA = ByValArgLocs[j++];
|
||
assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
|
||
|
||
// Memory reserved in the local variable space of the callers stack frame.
|
||
unsigned LocMemOffset = ByValVA.getLocMemOffset();
|
||
|
||
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
||
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
||
|
||
// Create a copy of the argument in the local area of the current
|
||
// stack frame.
|
||
SDValue MemcpyCall =
|
||
CreateCopyOfByValArgument(Arg, PtrOff,
|
||
CallSeqStart.getNode()->getOperand(0),
|
||
Flags, DAG, dl);
|
||
|
||
// This must go outside the CALLSEQ_START..END.
|
||
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
|
||
CallSeqStart.getNode()->getOperand(1),
|
||
SDLoc(MemcpyCall));
|
||
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
|
||
NewCallSeqStart.getNode());
|
||
Chain = CallSeqStart = NewCallSeqStart;
|
||
|
||
// Pass the address of the aggregate copy on the stack either in a
|
||
// physical register or in the parameter list area of the current stack
|
||
// frame to the callee.
|
||
Arg = PtrOff;
|
||
}
|
||
|
||
if (VA.isRegLoc()) {
|
||
if (Arg.getValueType() == MVT::i1)
|
||
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
|
||
|
||
seenFloatArg |= VA.getLocVT().isFloatingPoint();
|
||
// Put argument in a physical register.
|
||
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
||
} else {
|
||
// Put argument in the parameter list area of the current stack frame.
|
||
assert(VA.isMemLoc());
|
||
unsigned LocMemOffset = VA.getLocMemOffset();
|
||
|
||
if (!isTailCall) {
|
||
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
||
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
||
|
||
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
|
||
MachinePointerInfo(),
|
||
false, false, 0));
|
||
} else {
|
||
// Calculate and remember argument location.
|
||
CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
|
||
TailCallArguments);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!MemOpChains.empty())
|
||
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
||
|
||
// Build a sequence of copy-to-reg nodes chained together with token chain
|
||
// and flag operands which copy the outgoing args into the appropriate regs.
|
||
SDValue InFlag;
|
||
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
||
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
||
RegsToPass[i].second, InFlag);
|
||
InFlag = Chain.getValue(1);
|
||
}
|
||
|
||
// Set CR bit 6 to true if this is a vararg call with floating args passed in
|
||
// registers.
|
||
if (isVarArg) {
|
||
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
||
SDValue Ops[] = { Chain, InFlag };
|
||
|
||
Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
|
||
dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
|
||
|
||
InFlag = Chain.getValue(1);
|
||
}
|
||
|
||
if (isTailCall)
|
||
PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
|
||
false, TailCallArguments);
|
||
|
||
return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
|
||
RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
|
||
NumBytes, Ins, InVals, CS);
|
||
}
|
||
|
||
// Copy an argument into memory, being careful to do this outside the
|
||
// call sequence for the call to which the argument belongs.
|
||
SDValue
|
||
PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
|
||
SDValue CallSeqStart,
|
||
ISD::ArgFlagsTy Flags,
|
||
SelectionDAG &DAG,
|
||
SDLoc dl) const {
|
||
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
|
||
CallSeqStart.getNode()->getOperand(0),
|
||
Flags, DAG, dl);
|
||
// The MEMCPY must go outside the CALLSEQ_START..END.
|
||
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
|
||
CallSeqStart.getNode()->getOperand(1),
|
||
SDLoc(MemcpyCall));
|
||
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
|
||
NewCallSeqStart.getNode());
|
||
return NewCallSeqStart;
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
bool isTailCall, bool IsPatchPoint,
|
||
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
||
const SmallVectorImpl<SDValue> &OutVals,
|
||
const SmallVectorImpl<ISD::InputArg> &Ins,
|
||
SDLoc dl, SelectionDAG &DAG,
|
||
SmallVectorImpl<SDValue> &InVals,
|
||
ImmutableCallSite *CS) const {
|
||
|
||
bool isELFv2ABI = Subtarget.isELFv2ABI();
|
||
bool isLittleEndian = Subtarget.isLittleEndian();
|
||
unsigned NumOps = Outs.size();
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
unsigned PtrByteSize = 8;
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
|
||
// Mark this function as potentially containing a function that contains a
|
||
// tail call. As a consequence the frame pointer will be used for dynamicalloc
|
||
// and restoring the callers stack pointer in this functions epilog. This is
|
||
// done because by tail calling the called function might overwrite the value
|
||
// in this function's (MF) stack pointer stack slot 0(SP).
|
||
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
||
CallConv == CallingConv::Fast)
|
||
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
|
||
|
||
assert(!(CallConv == CallingConv::Fast && isVarArg) &&
|
||
"fastcc not supported on varargs functions");
|
||
|
||
// Count how many bytes are to be pushed on the stack, including the linkage
|
||
// area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
|
||
// reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
|
||
// area is 32 bytes reserved space for [SP][CR][LR][TOC].
|
||
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false,
|
||
isELFv2ABI);
|
||
unsigned NumBytes = LinkageSize;
|
||
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
||
|
||
static const MCPhysReg GPR[] = {
|
||
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
||
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
||
};
|
||
static const MCPhysReg *FPR = GetFPR();
|
||
|
||
static const MCPhysReg VR[] = {
|
||
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
||
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
||
};
|
||
static const MCPhysReg VSRH[] = {
|
||
PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
|
||
PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
|
||
};
|
||
|
||
const unsigned NumGPRs = array_lengthof(GPR);
|
||
const unsigned NumFPRs = 13;
|
||
const unsigned NumVRs = array_lengthof(VR);
|
||
|
||
// When using the fast calling convention, we don't provide backing for
|
||
// arguments that will be in registers.
|
||
unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
|
||
|
||
// Add up all the space actually used.
|
||
for (unsigned i = 0; i != NumOps; ++i) {
|
||
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
||
EVT ArgVT = Outs[i].VT;
|
||
EVT OrigVT = Outs[i].ArgVT;
|
||
|
||
if (CallConv == CallingConv::Fast) {
|
||
if (Flags.isByVal())
|
||
NumGPRsUsed += (Flags.getByValSize()+7)/8;
|
||
else
|
||
switch (ArgVT.getSimpleVT().SimpleTy) {
|
||
default: llvm_unreachable("Unexpected ValueType for argument!");
|
||
case MVT::i1:
|
||
case MVT::i32:
|
||
case MVT::i64:
|
||
if (++NumGPRsUsed <= NumGPRs)
|
||
continue;
|
||
break;
|
||
case MVT::f32:
|
||
case MVT::f64:
|
||
if (++NumFPRsUsed <= NumFPRs)
|
||
continue;
|
||
break;
|
||
case MVT::v4f32:
|
||
case MVT::v4i32:
|
||
case MVT::v8i16:
|
||
case MVT::v16i8:
|
||
case MVT::v2f64:
|
||
case MVT::v2i64:
|
||
if (++NumVRsUsed <= NumVRs)
|
||
continue;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Respect alignment of argument on the stack. */
|
||
unsigned Align =
|
||
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
|
||
NumBytes = ((NumBytes + Align - 1) / Align) * Align;
|
||
|
||
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
|
||
if (Flags.isInConsecutiveRegsLast())
|
||
NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
||
}
|
||
|
||
unsigned NumBytesActuallyUsed = NumBytes;
|
||
|
||
// The prolog code of the callee may store up to 8 GPR argument registers to
|
||
// the stack, allowing va_start to index over them in memory if its varargs.
|
||
// Because we cannot tell if this is needed on the caller side, we have to
|
||
// conservatively assume that it is needed. As such, make sure we have at
|
||
// least enough stack space for the caller to store the 8 GPRs.
|
||
// FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
|
||
NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
|
||
|
||
// Tail call needs the stack to be aligned.
|
||
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
||
CallConv == CallingConv::Fast)
|
||
NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
|
||
|
||
// Calculate by how many bytes the stack has to be adjusted in case of tail
|
||
// call optimization.
|
||
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
|
||
|
||
// To protect arguments on the stack from being clobbered in a tail call,
|
||
// force all the loads to happen before doing any other lowering.
|
||
if (isTailCall)
|
||
Chain = DAG.getStackArgumentTokenFactor(Chain);
|
||
|
||
// Adjust the stack pointer for the new arguments...
|
||
// These operations are automatically eliminated by the prolog/epilog pass
|
||
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
||
dl);
|
||
SDValue CallSeqStart = Chain;
|
||
|
||
// Load the return address and frame pointer so it can be move somewhere else
|
||
// later.
|
||
SDValue LROp, FPOp;
|
||
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
|
||
dl);
|
||
|
||
// Set up a copy of the stack pointer for use loading and storing any
|
||
// arguments that may not fit in the registers available for argument
|
||
// passing.
|
||
SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
|
||
|
||
// Figure out which arguments are going to go in registers, and which in
|
||
// memory. Also, if this is a vararg function, floating point operations
|
||
// must be stored to our stack, and loaded into integer regs as well, if
|
||
// any integer regs are available for argument passing.
|
||
unsigned ArgOffset = LinkageSize;
|
||
|
||
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
||
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
|
||
|
||
SmallVector<SDValue, 8> MemOpChains;
|
||
for (unsigned i = 0; i != NumOps; ++i) {
|
||
SDValue Arg = OutVals[i];
|
||
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
||
EVT ArgVT = Outs[i].VT;
|
||
EVT OrigVT = Outs[i].ArgVT;
|
||
|
||
// PtrOff will be used to store the current argument to the stack if a
|
||
// register cannot be found for it.
|
||
SDValue PtrOff;
|
||
|
||
// We re-align the argument offset for each argument, except when using the
|
||
// fast calling convention, when we need to make sure we do that only when
|
||
// we'll actually use a stack slot.
|
||
auto ComputePtrOff = [&]() {
|
||
/* Respect alignment of argument on the stack. */
|
||
unsigned Align =
|
||
CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
|
||
ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
|
||
|
||
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
||
|
||
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
|
||
};
|
||
|
||
if (CallConv != CallingConv::Fast) {
|
||
ComputePtrOff();
|
||
|
||
/* Compute GPR index associated with argument offset. */
|
||
GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
|
||
GPR_idx = std::min(GPR_idx, NumGPRs);
|
||
}
|
||
|
||
// Promote integers to 64-bit values.
|
||
if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
|
||
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
|
||
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
||
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
|
||
}
|
||
|
||
// FIXME memcpy is used way more than necessary. Correctness first.
|
||
// Note: "by value" is code for passing a structure by value, not
|
||
// basic types.
|
||
if (Flags.isByVal()) {
|
||
// Note: Size includes alignment padding, so
|
||
// struct x { short a; char b; }
|
||
// will have Size = 4. With #pragma pack(1), it will have Size = 3.
|
||
// These are the proper values we need for right-justifying the
|
||
// aggregate in a parameter register.
|
||
unsigned Size = Flags.getByValSize();
|
||
|
||
// An empty aggregate parameter takes up no storage and no
|
||
// registers.
|
||
if (Size == 0)
|
||
continue;
|
||
|
||
if (CallConv == CallingConv::Fast)
|
||
ComputePtrOff();
|
||
|
||
// All aggregates smaller than 8 bytes must be passed right-justified.
|
||
if (Size==1 || Size==2 || Size==4) {
|
||
EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
|
||
if (GPR_idx != NumGPRs) {
|
||
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
|
||
MachinePointerInfo(), VT,
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
|
||
ArgOffset += PtrByteSize;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (GPR_idx == NumGPRs && Size < 8) {
|
||
SDValue AddPtr = PtrOff;
|
||
if (!isLittleEndian) {
|
||
SDValue Const = DAG.getConstant(PtrByteSize - Size,
|
||
PtrOff.getValueType());
|
||
AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
|
||
}
|
||
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
|
||
CallSeqStart,
|
||
Flags, DAG, dl);
|
||
ArgOffset += PtrByteSize;
|
||
continue;
|
||
}
|
||
// Copy entire object into memory. There are cases where gcc-generated
|
||
// code assumes it is there, even if it could be put entirely into
|
||
// registers. (This is not what the doc says.)
|
||
|
||
// FIXME: The above statement is likely due to a misunderstanding of the
|
||
// documents. All arguments must be copied into the parameter area BY
|
||
// THE CALLEE in the event that the callee takes the address of any
|
||
// formal argument. That has not yet been implemented. However, it is
|
||
// reasonable to use the stack area as a staging area for the register
|
||
// load.
|
||
|
||
// Skip this for small aggregates, as we will use the same slot for a
|
||
// right-justified copy, below.
|
||
if (Size >= 8)
|
||
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
|
||
CallSeqStart,
|
||
Flags, DAG, dl);
|
||
|
||
// When a register is available, pass a small aggregate right-justified.
|
||
if (Size < 8 && GPR_idx != NumGPRs) {
|
||
// The easiest way to get this right-justified in a register
|
||
// is to copy the structure into the rightmost portion of a
|
||
// local variable slot, then load the whole slot into the
|
||
// register.
|
||
// FIXME: The memcpy seems to produce pretty awful code for
|
||
// small aggregates, particularly for packed ones.
|
||
// FIXME: It would be preferable to use the slot in the
|
||
// parameter save area instead of a new local variable.
|
||
SDValue AddPtr = PtrOff;
|
||
if (!isLittleEndian) {
|
||
SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
|
||
AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
|
||
}
|
||
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
|
||
CallSeqStart,
|
||
Flags, DAG, dl);
|
||
|
||
// Load the slot into the register.
|
||
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
|
||
MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
|
||
// Done with this argument.
|
||
ArgOffset += PtrByteSize;
|
||
continue;
|
||
}
|
||
|
||
// For aggregates larger than PtrByteSize, copy the pieces of the
|
||
// object that fit into registers from the parameter save area.
|
||
for (unsigned j=0; j<Size; j+=PtrByteSize) {
|
||
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
|
||
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
|
||
if (GPR_idx != NumGPRs) {
|
||
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
|
||
MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
ArgOffset += PtrByteSize;
|
||
} else {
|
||
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
|
||
break;
|
||
}
|
||
}
|
||
continue;
|
||
}
|
||
|
||
switch (Arg.getSimpleValueType().SimpleTy) {
|
||
default: llvm_unreachable("Unexpected ValueType for argument!");
|
||
case MVT::i1:
|
||
case MVT::i32:
|
||
case MVT::i64:
|
||
// These can be scalar arguments or elements of an integer array type
|
||
// passed directly. Clang may use those instead of "byval" aggregate
|
||
// types to avoid forcing arguments to memory unnecessarily.
|
||
if (GPR_idx != NumGPRs) {
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
|
||
} else {
|
||
if (CallConv == CallingConv::Fast)
|
||
ComputePtrOff();
|
||
|
||
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
||
true, isTailCall, false, MemOpChains,
|
||
TailCallArguments, dl);
|
||
if (CallConv == CallingConv::Fast)
|
||
ArgOffset += PtrByteSize;
|
||
}
|
||
if (CallConv != CallingConv::Fast)
|
||
ArgOffset += PtrByteSize;
|
||
break;
|
||
case MVT::f32:
|
||
case MVT::f64: {
|
||
// These can be scalar arguments or elements of a float array type
|
||
// passed directly. The latter are used to implement ELFv2 homogenous
|
||
// float aggregates.
|
||
|
||
// Named arguments go into FPRs first, and once they overflow, the
|
||
// remaining arguments go into GPRs and then the parameter save area.
|
||
// Unnamed arguments for vararg functions always go to GPRs and
|
||
// then the parameter save area. For now, put all arguments to vararg
|
||
// routines always in both locations (FPR *and* GPR or stack slot).
|
||
bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
|
||
bool NeededLoad = false;
|
||
|
||
// First load the argument into the next available FPR.
|
||
if (FPR_idx != NumFPRs)
|
||
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
|
||
|
||
// Next, load the argument into GPR or stack slot if needed.
|
||
if (!NeedGPROrStack)
|
||
;
|
||
else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
|
||
// FIXME: We may want to re-enable this for CallingConv::Fast on the P8
|
||
// once we support fp <-> gpr moves.
|
||
|
||
// In the non-vararg case, this can only ever happen in the
|
||
// presence of f32 array types, since otherwise we never run
|
||
// out of FPRs before running out of GPRs.
|
||
SDValue ArgVal;
|
||
|
||
// Double values are always passed in a single GPR.
|
||
if (Arg.getValueType() != MVT::f32) {
|
||
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
|
||
|
||
// Non-array float values are extended and passed in a GPR.
|
||
} else if (!Flags.isInConsecutiveRegs()) {
|
||
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
|
||
ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
|
||
|
||
// If we have an array of floats, we collect every odd element
|
||
// together with its predecessor into one GPR.
|
||
} else if (ArgOffset % PtrByteSize != 0) {
|
||
SDValue Lo, Hi;
|
||
Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
|
||
Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
|
||
if (!isLittleEndian)
|
||
std::swap(Lo, Hi);
|
||
ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
|
||
|
||
// The final element, if even, goes into the first half of a GPR.
|
||
} else if (Flags.isInConsecutiveRegsLast()) {
|
||
ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
|
||
ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
|
||
if (!isLittleEndian)
|
||
ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
|
||
DAG.getConstant(32, MVT::i32));
|
||
|
||
// Non-final even elements are skipped; they will be handled
|
||
// together the with subsequent argument on the next go-around.
|
||
} else
|
||
ArgVal = SDValue();
|
||
|
||
if (ArgVal.getNode())
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
|
||
} else {
|
||
if (CallConv == CallingConv::Fast)
|
||
ComputePtrOff();
|
||
|
||
// Single-precision floating-point values are mapped to the
|
||
// second (rightmost) word of the stack doubleword.
|
||
if (Arg.getValueType() == MVT::f32 &&
|
||
!isLittleEndian && !Flags.isInConsecutiveRegs()) {
|
||
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
|
||
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
|
||
}
|
||
|
||
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
||
true, isTailCall, false, MemOpChains,
|
||
TailCallArguments, dl);
|
||
|
||
NeededLoad = true;
|
||
}
|
||
// When passing an array of floats, the array occupies consecutive
|
||
// space in the argument area; only round up to the next doubleword
|
||
// at the end of the array. Otherwise, each float takes 8 bytes.
|
||
if (CallConv != CallingConv::Fast || NeededLoad) {
|
||
ArgOffset += (Arg.getValueType() == MVT::f32 &&
|
||
Flags.isInConsecutiveRegs()) ? 4 : 8;
|
||
if (Flags.isInConsecutiveRegsLast())
|
||
ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
||
}
|
||
break;
|
||
}
|
||
case MVT::v4f32:
|
||
case MVT::v4i32:
|
||
case MVT::v8i16:
|
||
case MVT::v16i8:
|
||
case MVT::v2f64:
|
||
case MVT::v2i64:
|
||
// These can be scalar arguments or elements of a vector array type
|
||
// passed directly. The latter are used to implement ELFv2 homogenous
|
||
// vector aggregates.
|
||
|
||
// For a varargs call, named arguments go into VRs or on the stack as
|
||
// usual; unnamed arguments always go to the stack or the corresponding
|
||
// GPRs when within range. For now, we always put the value in both
|
||
// locations (or even all three).
|
||
if (isVarArg) {
|
||
// We could elide this store in the case where the object fits
|
||
// entirely in R registers. Maybe later.
|
||
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
|
||
MachinePointerInfo(), false, false, 0);
|
||
MemOpChains.push_back(Store);
|
||
if (VR_idx != NumVRs) {
|
||
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
|
||
MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
|
||
unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
|
||
Arg.getSimpleValueType() == MVT::v2i64) ?
|
||
VSRH[VR_idx] : VR[VR_idx];
|
||
++VR_idx;
|
||
|
||
RegsToPass.push_back(std::make_pair(VReg, Load));
|
||
}
|
||
ArgOffset += 16;
|
||
for (unsigned i=0; i<16; i+=PtrByteSize) {
|
||
if (GPR_idx == NumGPRs)
|
||
break;
|
||
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
|
||
DAG.getConstant(i, PtrVT));
|
||
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
}
|
||
break;
|
||
}
|
||
|
||
// Non-varargs Altivec params go into VRs or on the stack.
|
||
if (VR_idx != NumVRs) {
|
||
unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
|
||
Arg.getSimpleValueType() == MVT::v2i64) ?
|
||
VSRH[VR_idx] : VR[VR_idx];
|
||
++VR_idx;
|
||
|
||
RegsToPass.push_back(std::make_pair(VReg, Arg));
|
||
} else {
|
||
if (CallConv == CallingConv::Fast)
|
||
ComputePtrOff();
|
||
|
||
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
||
true, isTailCall, true, MemOpChains,
|
||
TailCallArguments, dl);
|
||
if (CallConv == CallingConv::Fast)
|
||
ArgOffset += 16;
|
||
}
|
||
|
||
if (CallConv != CallingConv::Fast)
|
||
ArgOffset += 16;
|
||
break;
|
||
}
|
||
}
|
||
|
||
assert(NumBytesActuallyUsed == ArgOffset);
|
||
(void)NumBytesActuallyUsed;
|
||
|
||
if (!MemOpChains.empty())
|
||
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
||
|
||
// Check if this is an indirect call (MTCTR/BCTRL).
|
||
// See PrepareCall() for more information about calls through function
|
||
// pointers in the 64-bit SVR4 ABI.
|
||
if (!isTailCall && !IsPatchPoint &&
|
||
!isFunctionGlobalAddress(Callee) &&
|
||
!isa<ExternalSymbolSDNode>(Callee)) {
|
||
// Load r2 into a virtual register and store it to the TOC save area.
|
||
setUsesTOCBasePtr(DAG);
|
||
SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
|
||
// TOC save area offset.
|
||
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
|
||
SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
|
||
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
|
||
Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
|
||
MachinePointerInfo::getStack(TOCSaveOffset),
|
||
false, false, 0);
|
||
// In the ELFv2 ABI, R12 must contain the address of an indirect callee.
|
||
// This does not mean the MTCTR instruction must use R12; it's easier
|
||
// to model this as an extra parameter, so do that.
|
||
if (isELFv2ABI && !IsPatchPoint)
|
||
RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
|
||
}
|
||
|
||
// Build a sequence of copy-to-reg nodes chained together with token chain
|
||
// and flag operands which copy the outgoing args into the appropriate regs.
|
||
SDValue InFlag;
|
||
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
||
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
||
RegsToPass[i].second, InFlag);
|
||
InFlag = Chain.getValue(1);
|
||
}
|
||
|
||
if (isTailCall)
|
||
PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
|
||
FPOp, true, TailCallArguments);
|
||
|
||
return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
|
||
RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
|
||
NumBytes, Ins, InVals, CS);
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
bool isTailCall, bool IsPatchPoint,
|
||
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
||
const SmallVectorImpl<SDValue> &OutVals,
|
||
const SmallVectorImpl<ISD::InputArg> &Ins,
|
||
SDLoc dl, SelectionDAG &DAG,
|
||
SmallVectorImpl<SDValue> &InVals,
|
||
ImmutableCallSite *CS) const {
|
||
|
||
unsigned NumOps = Outs.size();
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
bool isPPC64 = PtrVT == MVT::i64;
|
||
unsigned PtrByteSize = isPPC64 ? 8 : 4;
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
|
||
// Mark this function as potentially containing a function that contains a
|
||
// tail call. As a consequence the frame pointer will be used for dynamicalloc
|
||
// and restoring the callers stack pointer in this functions epilog. This is
|
||
// done because by tail calling the called function might overwrite the value
|
||
// in this function's (MF) stack pointer stack slot 0(SP).
|
||
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
||
CallConv == CallingConv::Fast)
|
||
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
|
||
|
||
// Count how many bytes are to be pushed on the stack, including the linkage
|
||
// area, and parameter passing area. We start with 24/48 bytes, which is
|
||
// prereserved space for [SP][CR][LR][3 x unused].
|
||
unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true,
|
||
false);
|
||
unsigned NumBytes = LinkageSize;
|
||
|
||
// Add up all the space actually used.
|
||
// In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
|
||
// they all go in registers, but we must reserve stack space for them for
|
||
// possible use by the caller. In varargs or 64-bit calls, parameters are
|
||
// assigned stack space in order, with padding so Altivec parameters are
|
||
// 16-byte aligned.
|
||
unsigned nAltivecParamsAtEnd = 0;
|
||
for (unsigned i = 0; i != NumOps; ++i) {
|
||
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
||
EVT ArgVT = Outs[i].VT;
|
||
// Varargs Altivec parameters are padded to a 16 byte boundary.
|
||
if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
|
||
ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
|
||
ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
|
||
if (!isVarArg && !isPPC64) {
|
||
// Non-varargs Altivec parameters go after all the non-Altivec
|
||
// parameters; handle those later so we know how much padding we need.
|
||
nAltivecParamsAtEnd++;
|
||
continue;
|
||
}
|
||
// Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
|
||
NumBytes = ((NumBytes+15)/16)*16;
|
||
}
|
||
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
|
||
}
|
||
|
||
// Allow for Altivec parameters at the end, if needed.
|
||
if (nAltivecParamsAtEnd) {
|
||
NumBytes = ((NumBytes+15)/16)*16;
|
||
NumBytes += 16*nAltivecParamsAtEnd;
|
||
}
|
||
|
||
// The prolog code of the callee may store up to 8 GPR argument registers to
|
||
// the stack, allowing va_start to index over them in memory if its varargs.
|
||
// Because we cannot tell if this is needed on the caller side, we have to
|
||
// conservatively assume that it is needed. As such, make sure we have at
|
||
// least enough stack space for the caller to store the 8 GPRs.
|
||
NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
|
||
|
||
// Tail call needs the stack to be aligned.
|
||
if (getTargetMachine().Options.GuaranteedTailCallOpt &&
|
||
CallConv == CallingConv::Fast)
|
||
NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
|
||
|
||
// Calculate by how many bytes the stack has to be adjusted in case of tail
|
||
// call optimization.
|
||
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
|
||
|
||
// To protect arguments on the stack from being clobbered in a tail call,
|
||
// force all the loads to happen before doing any other lowering.
|
||
if (isTailCall)
|
||
Chain = DAG.getStackArgumentTokenFactor(Chain);
|
||
|
||
// Adjust the stack pointer for the new arguments...
|
||
// These operations are automatically eliminated by the prolog/epilog pass
|
||
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
||
dl);
|
||
SDValue CallSeqStart = Chain;
|
||
|
||
// Load the return address and frame pointer so it can be move somewhere else
|
||
// later.
|
||
SDValue LROp, FPOp;
|
||
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
|
||
dl);
|
||
|
||
// Set up a copy of the stack pointer for use loading and storing any
|
||
// arguments that may not fit in the registers available for argument
|
||
// passing.
|
||
SDValue StackPtr;
|
||
if (isPPC64)
|
||
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
|
||
else
|
||
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
||
|
||
// Figure out which arguments are going to go in registers, and which in
|
||
// memory. Also, if this is a vararg function, floating point operations
|
||
// must be stored to our stack, and loaded into integer regs as well, if
|
||
// any integer regs are available for argument passing.
|
||
unsigned ArgOffset = LinkageSize;
|
||
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
||
|
||
static const MCPhysReg GPR_32[] = { // 32-bit registers.
|
||
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
||
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
||
};
|
||
static const MCPhysReg GPR_64[] = { // 64-bit registers.
|
||
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
||
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
||
};
|
||
static const MCPhysReg *FPR = GetFPR();
|
||
|
||
static const MCPhysReg VR[] = {
|
||
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
||
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
||
};
|
||
const unsigned NumGPRs = array_lengthof(GPR_32);
|
||
const unsigned NumFPRs = 13;
|
||
const unsigned NumVRs = array_lengthof(VR);
|
||
|
||
const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
|
||
|
||
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
||
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
|
||
|
||
SmallVector<SDValue, 8> MemOpChains;
|
||
for (unsigned i = 0; i != NumOps; ++i) {
|
||
SDValue Arg = OutVals[i];
|
||
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
||
|
||
// PtrOff will be used to store the current argument to the stack if a
|
||
// register cannot be found for it.
|
||
SDValue PtrOff;
|
||
|
||
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
||
|
||
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
|
||
|
||
// On PPC64, promote integers to 64-bit values.
|
||
if (isPPC64 && Arg.getValueType() == MVT::i32) {
|
||
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
|
||
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
||
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
|
||
}
|
||
|
||
// FIXME memcpy is used way more than necessary. Correctness first.
|
||
// Note: "by value" is code for passing a structure by value, not
|
||
// basic types.
|
||
if (Flags.isByVal()) {
|
||
unsigned Size = Flags.getByValSize();
|
||
// Very small objects are passed right-justified. Everything else is
|
||
// passed left-justified.
|
||
if (Size==1 || Size==2) {
|
||
EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
|
||
if (GPR_idx != NumGPRs) {
|
||
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
|
||
MachinePointerInfo(), VT,
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
|
||
ArgOffset += PtrByteSize;
|
||
} else {
|
||
SDValue Const = DAG.getConstant(PtrByteSize - Size,
|
||
PtrOff.getValueType());
|
||
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
|
||
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
|
||
CallSeqStart,
|
||
Flags, DAG, dl);
|
||
ArgOffset += PtrByteSize;
|
||
}
|
||
continue;
|
||
}
|
||
// Copy entire object into memory. There are cases where gcc-generated
|
||
// code assumes it is there, even if it could be put entirely into
|
||
// registers. (This is not what the doc says.)
|
||
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
|
||
CallSeqStart,
|
||
Flags, DAG, dl);
|
||
|
||
// For small aggregates (Darwin only) and aggregates >= PtrByteSize,
|
||
// copy the pieces of the object that fit into registers from the
|
||
// parameter save area.
|
||
for (unsigned j=0; j<Size; j+=PtrByteSize) {
|
||
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
|
||
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
|
||
if (GPR_idx != NumGPRs) {
|
||
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
|
||
MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
ArgOffset += PtrByteSize;
|
||
} else {
|
||
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
|
||
break;
|
||
}
|
||
}
|
||
continue;
|
||
}
|
||
|
||
switch (Arg.getSimpleValueType().SimpleTy) {
|
||
default: llvm_unreachable("Unexpected ValueType for argument!");
|
||
case MVT::i1:
|
||
case MVT::i32:
|
||
case MVT::i64:
|
||
if (GPR_idx != NumGPRs) {
|
||
if (Arg.getValueType() == MVT::i1)
|
||
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
|
||
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
|
||
} else {
|
||
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
||
isPPC64, isTailCall, false, MemOpChains,
|
||
TailCallArguments, dl);
|
||
}
|
||
ArgOffset += PtrByteSize;
|
||
break;
|
||
case MVT::f32:
|
||
case MVT::f64:
|
||
if (FPR_idx != NumFPRs) {
|
||
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
|
||
|
||
if (isVarArg) {
|
||
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
|
||
MachinePointerInfo(), false, false, 0);
|
||
MemOpChains.push_back(Store);
|
||
|
||
// Float varargs are always shadowed in available integer registers
|
||
if (GPR_idx != NumGPRs) {
|
||
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
|
||
MachinePointerInfo(), false, false,
|
||
false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
}
|
||
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
|
||
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
|
||
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
|
||
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
|
||
MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
}
|
||
} else {
|
||
// If we have any FPRs remaining, we may also have GPRs remaining.
|
||
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
|
||
// GPRs.
|
||
if (GPR_idx != NumGPRs)
|
||
++GPR_idx;
|
||
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
|
||
!isPPC64) // PPC64 has 64-bit GPR's obviously :)
|
||
++GPR_idx;
|
||
}
|
||
} else
|
||
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
||
isPPC64, isTailCall, false, MemOpChains,
|
||
TailCallArguments, dl);
|
||
if (isPPC64)
|
||
ArgOffset += 8;
|
||
else
|
||
ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
|
||
break;
|
||
case MVT::v4f32:
|
||
case MVT::v4i32:
|
||
case MVT::v8i16:
|
||
case MVT::v16i8:
|
||
if (isVarArg) {
|
||
// These go aligned on the stack, or in the corresponding R registers
|
||
// when within range. The Darwin PPC ABI doc claims they also go in
|
||
// V registers; in fact gcc does this only for arguments that are
|
||
// prototyped, not for those that match the ... We do it for all
|
||
// arguments, seems to work.
|
||
while (ArgOffset % 16 !=0) {
|
||
ArgOffset += PtrByteSize;
|
||
if (GPR_idx != NumGPRs)
|
||
GPR_idx++;
|
||
}
|
||
// We could elide this store in the case where the object fits
|
||
// entirely in R registers. Maybe later.
|
||
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
|
||
DAG.getConstant(ArgOffset, PtrVT));
|
||
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
|
||
MachinePointerInfo(), false, false, 0);
|
||
MemOpChains.push_back(Store);
|
||
if (VR_idx != NumVRs) {
|
||
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
|
||
MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
|
||
}
|
||
ArgOffset += 16;
|
||
for (unsigned i=0; i<16; i+=PtrByteSize) {
|
||
if (GPR_idx == NumGPRs)
|
||
break;
|
||
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
|
||
DAG.getConstant(i, PtrVT));
|
||
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
MemOpChains.push_back(Load.getValue(1));
|
||
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
||
}
|
||
break;
|
||
}
|
||
|
||
// Non-varargs Altivec params generally go in registers, but have
|
||
// stack space allocated at the end.
|
||
if (VR_idx != NumVRs) {
|
||
// Doesn't have GPR space allocated.
|
||
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
|
||
} else if (nAltivecParamsAtEnd==0) {
|
||
// We are emitting Altivec params in order.
|
||
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
||
isPPC64, isTailCall, true, MemOpChains,
|
||
TailCallArguments, dl);
|
||
ArgOffset += 16;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
// If all Altivec parameters fit in registers, as they usually do,
|
||
// they get stack space following the non-Altivec parameters. We
|
||
// don't track this here because nobody below needs it.
|
||
// If there are more Altivec parameters than fit in registers emit
|
||
// the stores here.
|
||
if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
|
||
unsigned j = 0;
|
||
// Offset is aligned; skip 1st 12 params which go in V registers.
|
||
ArgOffset = ((ArgOffset+15)/16)*16;
|
||
ArgOffset += 12*16;
|
||
for (unsigned i = 0; i != NumOps; ++i) {
|
||
SDValue Arg = OutVals[i];
|
||
EVT ArgType = Outs[i].VT;
|
||
if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
|
||
ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
|
||
if (++j > NumVRs) {
|
||
SDValue PtrOff;
|
||
// We are emitting Altivec params in order.
|
||
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
||
isPPC64, isTailCall, true, MemOpChains,
|
||
TailCallArguments, dl);
|
||
ArgOffset += 16;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!MemOpChains.empty())
|
||
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
||
|
||
// On Darwin, R12 must contain the address of an indirect callee. This does
|
||
// not mean the MTCTR instruction must use R12; it's easier to model this as
|
||
// an extra parameter, so do that.
|
||
if (!isTailCall &&
|
||
!isFunctionGlobalAddress(Callee) &&
|
||
!isa<ExternalSymbolSDNode>(Callee) &&
|
||
!isBLACompatibleAddress(Callee, DAG))
|
||
RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
|
||
PPC::R12), Callee));
|
||
|
||
// Build a sequence of copy-to-reg nodes chained together with token chain
|
||
// and flag operands which copy the outgoing args into the appropriate regs.
|
||
SDValue InFlag;
|
||
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
||
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
||
RegsToPass[i].second, InFlag);
|
||
InFlag = Chain.getValue(1);
|
||
}
|
||
|
||
if (isTailCall)
|
||
PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
|
||
FPOp, true, TailCallArguments);
|
||
|
||
return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
|
||
RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
|
||
NumBytes, Ins, InVals, CS);
|
||
}
|
||
|
||
bool
|
||
PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
|
||
MachineFunction &MF, bool isVarArg,
|
||
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
||
LLVMContext &Context) const {
|
||
SmallVector<CCValAssign, 16> RVLocs;
|
||
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
|
||
return CCInfo.CheckReturn(Outs, RetCC_PPC);
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::LowerReturn(SDValue Chain,
|
||
CallingConv::ID CallConv, bool isVarArg,
|
||
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
||
const SmallVectorImpl<SDValue> &OutVals,
|
||
SDLoc dl, SelectionDAG &DAG) const {
|
||
|
||
SmallVector<CCValAssign, 16> RVLocs;
|
||
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
||
*DAG.getContext());
|
||
CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
|
||
|
||
SDValue Flag;
|
||
SmallVector<SDValue, 4> RetOps(1, Chain);
|
||
|
||
// Copy the result values into the output registers.
|
||
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
||
CCValAssign &VA = RVLocs[i];
|
||
assert(VA.isRegLoc() && "Can only return in registers!");
|
||
|
||
SDValue Arg = OutVals[i];
|
||
|
||
switch (VA.getLocInfo()) {
|
||
default: llvm_unreachable("Unknown loc info!");
|
||
case CCValAssign::Full: break;
|
||
case CCValAssign::AExt:
|
||
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
||
break;
|
||
case CCValAssign::ZExt:
|
||
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
|
||
break;
|
||
case CCValAssign::SExt:
|
||
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
|
||
break;
|
||
}
|
||
|
||
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
|
||
Flag = Chain.getValue(1);
|
||
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
||
}
|
||
|
||
RetOps[0] = Chain; // Update chain.
|
||
|
||
// Add the flag if we have it.
|
||
if (Flag.getNode())
|
||
RetOps.push_back(Flag);
|
||
|
||
return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
|
||
const PPCSubtarget &Subtarget) const {
|
||
// When we pop the dynamic allocation we need to restore the SP link.
|
||
SDLoc dl(Op);
|
||
|
||
// Get the corect type for pointers.
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
|
||
// Construct the stack pointer operand.
|
||
bool isPPC64 = Subtarget.isPPC64();
|
||
unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
|
||
SDValue StackPtr = DAG.getRegister(SP, PtrVT);
|
||
|
||
// Get the operands for the STACKRESTORE.
|
||
SDValue Chain = Op.getOperand(0);
|
||
SDValue SaveSP = Op.getOperand(1);
|
||
|
||
// Load the old link SP.
|
||
SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
|
||
MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
|
||
// Restore the stack pointer.
|
||
Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
|
||
|
||
// Store the old link SP.
|
||
return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
|
||
false, false, 0);
|
||
}
|
||
|
||
|
||
|
||
SDValue
|
||
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
bool isPPC64 = Subtarget.isPPC64();
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
|
||
// Get current frame pointer save index. The users of this index will be
|
||
// primarily DYNALLOC instructions.
|
||
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
||
int RASI = FI->getReturnAddrSaveIndex();
|
||
|
||
// If the frame pointer save index hasn't been defined yet.
|
||
if (!RASI) {
|
||
// Find out what the fix offset of the frame pointer save area.
|
||
int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
|
||
// Allocate the frame index for frame pointer save area.
|
||
RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
|
||
// Save the result.
|
||
FI->setReturnAddrSaveIndex(RASI);
|
||
}
|
||
return DAG.getFrameIndex(RASI, PtrVT);
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
bool isPPC64 = Subtarget.isPPC64();
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
|
||
// Get current frame pointer save index. The users of this index will be
|
||
// primarily DYNALLOC instructions.
|
||
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
||
int FPSI = FI->getFramePointerSaveIndex();
|
||
|
||
// If the frame pointer save index hasn't been defined yet.
|
||
if (!FPSI) {
|
||
// Find out what the fix offset of the frame pointer save area.
|
||
int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
|
||
// Allocate the frame index for frame pointer save area.
|
||
FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
|
||
// Save the result.
|
||
FI->setFramePointerSaveIndex(FPSI);
|
||
}
|
||
return DAG.getFrameIndex(FPSI, PtrVT);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
|
||
SelectionDAG &DAG,
|
||
const PPCSubtarget &Subtarget) const {
|
||
// Get the inputs.
|
||
SDValue Chain = Op.getOperand(0);
|
||
SDValue Size = Op.getOperand(1);
|
||
SDLoc dl(Op);
|
||
|
||
// Get the corect type for pointers.
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
// Negate the size.
|
||
SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
|
||
DAG.getConstant(0, PtrVT), Size);
|
||
// Construct a node for the frame pointer save index.
|
||
SDValue FPSIdx = getFramePointerFrameIndex(DAG);
|
||
// Build a DYNALLOC node.
|
||
SDValue Ops[3] = { Chain, NegSize, FPSIdx };
|
||
SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
|
||
return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc DL(Op);
|
||
return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
|
||
DAG.getVTList(MVT::i32, MVT::Other),
|
||
Op.getOperand(0), Op.getOperand(1));
|
||
}
|
||
|
||
SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc DL(Op);
|
||
return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
|
||
Op.getOperand(0), Op.getOperand(1));
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
||
assert(Op.getValueType() == MVT::i1 &&
|
||
"Custom lowering only for i1 loads");
|
||
|
||
// First, load 8 bits into 32 bits, then truncate to 1 bit.
|
||
|
||
SDLoc dl(Op);
|
||
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
||
|
||
SDValue Chain = LD->getChain();
|
||
SDValue BasePtr = LD->getBasePtr();
|
||
MachineMemOperand *MMO = LD->getMemOperand();
|
||
|
||
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
|
||
BasePtr, MVT::i8, MMO);
|
||
SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
|
||
|
||
SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
|
||
return DAG.getMergeValues(Ops, dl);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
||
assert(Op.getOperand(1).getValueType() == MVT::i1 &&
|
||
"Custom lowering only for i1 stores");
|
||
|
||
// First, zero extend to 32 bits, then use a truncating store to 8 bits.
|
||
|
||
SDLoc dl(Op);
|
||
StoreSDNode *ST = cast<StoreSDNode>(Op);
|
||
|
||
SDValue Chain = ST->getChain();
|
||
SDValue BasePtr = ST->getBasePtr();
|
||
SDValue Value = ST->getValue();
|
||
MachineMemOperand *MMO = ST->getMemOperand();
|
||
|
||
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
|
||
return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
|
||
}
|
||
|
||
// FIXME: Remove this once the ANDI glue bug is fixed:
|
||
SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
|
||
assert(Op.getValueType() == MVT::i1 &&
|
||
"Custom lowering only for i1 results");
|
||
|
||
SDLoc DL(Op);
|
||
return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
|
||
Op.getOperand(0));
|
||
}
|
||
|
||
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
|
||
/// possible.
|
||
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
|
||
// Not FP? Not a fsel.
|
||
if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
|
||
!Op.getOperand(2).getValueType().isFloatingPoint())
|
||
return Op;
|
||
|
||
// We might be able to do better than this under some circumstances, but in
|
||
// general, fsel-based lowering of select is a finite-math-only optimization.
|
||
// For more information, see section F.3 of the 2.06 ISA specification.
|
||
if (!DAG.getTarget().Options.NoInfsFPMath ||
|
||
!DAG.getTarget().Options.NoNaNsFPMath)
|
||
return Op;
|
||
|
||
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
||
|
||
EVT ResVT = Op.getValueType();
|
||
EVT CmpVT = Op.getOperand(0).getValueType();
|
||
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
||
SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
|
||
SDLoc dl(Op);
|
||
|
||
// If the RHS of the comparison is a 0.0, we don't need to do the
|
||
// subtraction at all.
|
||
SDValue Sel1;
|
||
if (isFloatingPointZero(RHS))
|
||
switch (CC) {
|
||
default: break; // SETUO etc aren't handled by fsel.
|
||
case ISD::SETNE:
|
||
std::swap(TV, FV);
|
||
case ISD::SETEQ:
|
||
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
|
||
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
|
||
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
|
||
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
|
||
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
|
||
case ISD::SETULT:
|
||
case ISD::SETLT:
|
||
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
|
||
case ISD::SETOGE:
|
||
case ISD::SETGE:
|
||
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
|
||
return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
|
||
case ISD::SETUGT:
|
||
case ISD::SETGT:
|
||
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
|
||
case ISD::SETOLE:
|
||
case ISD::SETLE:
|
||
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
|
||
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
|
||
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
|
||
}
|
||
|
||
SDValue Cmp;
|
||
switch (CC) {
|
||
default: break; // SETUO etc aren't handled by fsel.
|
||
case ISD::SETNE:
|
||
std::swap(TV, FV);
|
||
case ISD::SETEQ:
|
||
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
|
||
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
||
Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
|
||
if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
|
||
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
|
||
DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
|
||
case ISD::SETULT:
|
||
case ISD::SETLT:
|
||
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
|
||
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
||
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
|
||
case ISD::SETOGE:
|
||
case ISD::SETGE:
|
||
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
|
||
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
||
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
|
||
case ISD::SETUGT:
|
||
case ISD::SETGT:
|
||
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
|
||
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
||
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
|
||
case ISD::SETOLE:
|
||
case ISD::SETLE:
|
||
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
|
||
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
||
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
||
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
|
||
}
|
||
return Op;
|
||
}
|
||
|
||
void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
|
||
SelectionDAG &DAG,
|
||
SDLoc dl) const {
|
||
assert(Op.getOperand(0).getValueType().isFloatingPoint());
|
||
SDValue Src = Op.getOperand(0);
|
||
if (Src.getValueType() == MVT::f32)
|
||
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
|
||
|
||
SDValue Tmp;
|
||
switch (Op.getSimpleValueType().SimpleTy) {
|
||
default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
|
||
case MVT::i32:
|
||
Tmp = DAG.getNode(
|
||
Op.getOpcode() == ISD::FP_TO_SINT
|
||
? PPCISD::FCTIWZ
|
||
: (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
|
||
dl, MVT::f64, Src);
|
||
break;
|
||
case MVT::i64:
|
||
assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
|
||
"i64 FP_TO_UINT is supported only with FPCVT");
|
||
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
|
||
PPCISD::FCTIDUZ,
|
||
dl, MVT::f64, Src);
|
||
break;
|
||
}
|
||
|
||
// Convert the FP value to an int value through memory.
|
||
bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
|
||
(Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
|
||
SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
|
||
int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
|
||
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
|
||
|
||
// Emit a store to the stack slot.
|
||
SDValue Chain;
|
||
if (i32Stack) {
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineMemOperand *MMO =
|
||
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
|
||
SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
|
||
Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
|
||
DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
|
||
} else
|
||
Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
|
||
MPI, false, false, 0);
|
||
|
||
// Result is a load from the stack slot. If loading 4 bytes, make sure to
|
||
// add in a bias.
|
||
if (Op.getValueType() == MVT::i32 && !i32Stack) {
|
||
FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
|
||
DAG.getConstant(4, FIPtr.getValueType()));
|
||
MPI = MPI.getWithOffset(4);
|
||
}
|
||
|
||
RLI.Chain = Chain;
|
||
RLI.Ptr = FIPtr;
|
||
RLI.MPI = MPI;
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
|
||
SDLoc dl) const {
|
||
ReuseLoadInfo RLI;
|
||
LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
|
||
|
||
return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
|
||
false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
|
||
RLI.Ranges);
|
||
}
|
||
|
||
// We're trying to insert a regular store, S, and then a load, L. If the
|
||
// incoming value, O, is a load, we might just be able to have our load use the
|
||
// address used by O. However, we don't know if anything else will store to
|
||
// that address before we can load from it. To prevent this situation, we need
|
||
// to insert our load, L, into the chain as a peer of O. To do this, we give L
|
||
// the same chain operand as O, we create a token factor from the chain results
|
||
// of O and L, and we replace all uses of O's chain result with that token
|
||
// factor (see spliceIntoChain below for this last part).
|
||
bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
|
||
ReuseLoadInfo &RLI,
|
||
SelectionDAG &DAG,
|
||
ISD::LoadExtType ET) const {
|
||
SDLoc dl(Op);
|
||
if (ET == ISD::NON_EXTLOAD &&
|
||
(Op.getOpcode() == ISD::FP_TO_UINT ||
|
||
Op.getOpcode() == ISD::FP_TO_SINT) &&
|
||
isOperationLegalOrCustom(Op.getOpcode(),
|
||
Op.getOperand(0).getValueType())) {
|
||
|
||
LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
|
||
return true;
|
||
}
|
||
|
||
LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
|
||
if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
|
||
LD->isNonTemporal())
|
||
return false;
|
||
if (LD->getMemoryVT() != MemVT)
|
||
return false;
|
||
|
||
RLI.Ptr = LD->getBasePtr();
|
||
if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
|
||
assert(LD->getAddressingMode() == ISD::PRE_INC &&
|
||
"Non-pre-inc AM on PPC?");
|
||
RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
|
||
LD->getOffset());
|
||
}
|
||
|
||
RLI.Chain = LD->getChain();
|
||
RLI.MPI = LD->getPointerInfo();
|
||
RLI.IsInvariant = LD->isInvariant();
|
||
RLI.Alignment = LD->getAlignment();
|
||
RLI.AAInfo = LD->getAAInfo();
|
||
RLI.Ranges = LD->getRanges();
|
||
|
||
RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
|
||
return true;
|
||
}
|
||
|
||
// Given the head of the old chain, ResChain, insert a token factor containing
|
||
// it and NewResChain, and make users of ResChain now be users of that token
|
||
// factor.
|
||
void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
|
||
SDValue NewResChain,
|
||
SelectionDAG &DAG) const {
|
||
if (!ResChain)
|
||
return;
|
||
|
||
SDLoc dl(NewResChain);
|
||
|
||
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
||
NewResChain, DAG.getUNDEF(MVT::Other));
|
||
assert(TF.getNode() != NewResChain.getNode() &&
|
||
"A new TF really is required here");
|
||
|
||
DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
|
||
DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
// Don't handle ppc_fp128 here; let it be lowered to a libcall.
|
||
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
|
||
return SDValue();
|
||
|
||
if (Op.getOperand(0).getValueType() == MVT::i1)
|
||
return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
|
||
DAG.getConstantFP(1.0, Op.getValueType()),
|
||
DAG.getConstantFP(0.0, Op.getValueType()));
|
||
|
||
assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
|
||
"UINT_TO_FP is supported only with FPCVT");
|
||
|
||
// If we have FCFIDS, then use it when converting to single-precision.
|
||
// Otherwise, convert to double-precision and then round.
|
||
unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
|
||
? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
|
||
: PPCISD::FCFIDS)
|
||
: (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
|
||
: PPCISD::FCFID);
|
||
MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
|
||
? MVT::f32
|
||
: MVT::f64;
|
||
|
||
if (Op.getOperand(0).getValueType() == MVT::i64) {
|
||
SDValue SINT = Op.getOperand(0);
|
||
// When converting to single-precision, we actually need to convert
|
||
// to double-precision first and then round to single-precision.
|
||
// To avoid double-rounding effects during that operation, we have
|
||
// to prepare the input operand. Bits that might be truncated when
|
||
// converting to double-precision are replaced by a bit that won't
|
||
// be lost at this stage, but is below the single-precision rounding
|
||
// position.
|
||
//
|
||
// However, if -enable-unsafe-fp-math is in effect, accept double
|
||
// rounding to avoid the extra overhead.
|
||
if (Op.getValueType() == MVT::f32 &&
|
||
!Subtarget.hasFPCVT() &&
|
||
!DAG.getTarget().Options.UnsafeFPMath) {
|
||
|
||
// Twiddle input to make sure the low 11 bits are zero. (If this
|
||
// is the case, we are guaranteed the value will fit into the 53 bit
|
||
// mantissa of an IEEE double-precision value without rounding.)
|
||
// If any of those low 11 bits were not zero originally, make sure
|
||
// bit 12 (value 2048) is set instead, so that the final rounding
|
||
// to single-precision gets the correct result.
|
||
SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
|
||
SINT, DAG.getConstant(2047, MVT::i64));
|
||
Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
|
||
Round, DAG.getConstant(2047, MVT::i64));
|
||
Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
|
||
Round = DAG.getNode(ISD::AND, dl, MVT::i64,
|
||
Round, DAG.getConstant(-2048, MVT::i64));
|
||
|
||
// However, we cannot use that value unconditionally: if the magnitude
|
||
// of the input value is small, the bit-twiddling we did above might
|
||
// end up visibly changing the output. Fortunately, in that case, we
|
||
// don't need to twiddle bits since the original input will convert
|
||
// exactly to double-precision floating-point already. Therefore,
|
||
// construct a conditional to use the original value if the top 11
|
||
// bits are all sign-bit copies, and use the rounded value computed
|
||
// above otherwise.
|
||
SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
|
||
SINT, DAG.getConstant(53, MVT::i32));
|
||
Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
|
||
Cond, DAG.getConstant(1, MVT::i64));
|
||
Cond = DAG.getSetCC(dl, MVT::i32,
|
||
Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
|
||
|
||
SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
|
||
}
|
||
|
||
ReuseLoadInfo RLI;
|
||
SDValue Bits;
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
|
||
Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
|
||
false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
|
||
RLI.Ranges);
|
||
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
|
||
} else if (Subtarget.hasLFIWAX() &&
|
||
canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
|
||
MachineMemOperand *MMO =
|
||
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
|
||
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
|
||
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
|
||
Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
|
||
DAG.getVTList(MVT::f64, MVT::Other),
|
||
Ops, MVT::i32, MMO);
|
||
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
|
||
} else if (Subtarget.hasFPCVT() &&
|
||
canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
|
||
MachineMemOperand *MMO =
|
||
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
|
||
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
|
||
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
|
||
Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
|
||
DAG.getVTList(MVT::f64, MVT::Other),
|
||
Ops, MVT::i32, MMO);
|
||
spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
|
||
} else if (((Subtarget.hasLFIWAX() &&
|
||
SINT.getOpcode() == ISD::SIGN_EXTEND) ||
|
||
(Subtarget.hasFPCVT() &&
|
||
SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
|
||
SINT.getOperand(0).getValueType() == MVT::i32) {
|
||
MachineFrameInfo *FrameInfo = MF.getFrameInfo();
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
|
||
int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
|
||
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
||
|
||
SDValue Store =
|
||
DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
|
||
MachinePointerInfo::getFixedStack(FrameIdx),
|
||
false, false, 0);
|
||
|
||
assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
|
||
"Expected an i32 store");
|
||
|
||
RLI.Ptr = FIdx;
|
||
RLI.Chain = Store;
|
||
RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
|
||
RLI.Alignment = 4;
|
||
|
||
MachineMemOperand *MMO =
|
||
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
|
||
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
|
||
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
|
||
Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
|
||
PPCISD::LFIWZX : PPCISD::LFIWAX,
|
||
dl, DAG.getVTList(MVT::f64, MVT::Other),
|
||
Ops, MVT::i32, MMO);
|
||
} else
|
||
Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
|
||
|
||
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
|
||
|
||
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
|
||
FP = DAG.getNode(ISD::FP_ROUND, dl,
|
||
MVT::f32, FP, DAG.getIntPtrConstant(0));
|
||
return FP;
|
||
}
|
||
|
||
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
|
||
"Unhandled INT_TO_FP type in custom expander!");
|
||
// Since we only generate this in 64-bit mode, we can take advantage of
|
||
// 64-bit registers. In particular, sign extend the input value into the
|
||
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
|
||
// then lfd it and fcfid it.
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineFrameInfo *FrameInfo = MF.getFrameInfo();
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
|
||
SDValue Ld;
|
||
if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
|
||
ReuseLoadInfo RLI;
|
||
bool ReusingLoad;
|
||
if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
|
||
DAG))) {
|
||
int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
|
||
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
||
|
||
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
|
||
MachinePointerInfo::getFixedStack(FrameIdx),
|
||
false, false, 0);
|
||
|
||
assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
|
||
"Expected an i32 store");
|
||
|
||
RLI.Ptr = FIdx;
|
||
RLI.Chain = Store;
|
||
RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
|
||
RLI.Alignment = 4;
|
||
}
|
||
|
||
MachineMemOperand *MMO =
|
||
MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
|
||
RLI.Alignment, RLI.AAInfo, RLI.Ranges);
|
||
SDValue Ops[] = { RLI.Chain, RLI.Ptr };
|
||
Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
|
||
PPCISD::LFIWZX : PPCISD::LFIWAX,
|
||
dl, DAG.getVTList(MVT::f64, MVT::Other),
|
||
Ops, MVT::i32, MMO);
|
||
if (ReusingLoad)
|
||
spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
|
||
} else {
|
||
assert(Subtarget.isPPC64() &&
|
||
"i32->FP without LFIWAX supported only on PPC64");
|
||
|
||
int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
|
||
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
||
|
||
SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
|
||
Op.getOperand(0));
|
||
|
||
// STD the extended value into the stack slot.
|
||
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
|
||
MachinePointerInfo::getFixedStack(FrameIdx),
|
||
false, false, 0);
|
||
|
||
// Load the value as a double.
|
||
Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
|
||
MachinePointerInfo::getFixedStack(FrameIdx),
|
||
false, false, false, 0);
|
||
}
|
||
|
||
// FCFID it and return it.
|
||
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
|
||
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
|
||
FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
|
||
return FP;
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
/*
|
||
The rounding mode is in bits 30:31 of FPSR, and has the following
|
||
settings:
|
||
00 Round to nearest
|
||
01 Round to 0
|
||
10 Round to +inf
|
||
11 Round to -inf
|
||
|
||
FLT_ROUNDS, on the other hand, expects the following:
|
||
-1 Undefined
|
||
0 Round to 0
|
||
1 Round to nearest
|
||
2 Round to +inf
|
||
3 Round to -inf
|
||
|
||
To perform the conversion, we do:
|
||
((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
|
||
*/
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
EVT VT = Op.getValueType();
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
|
||
// Save FP Control Word to register
|
||
EVT NodeTys[] = {
|
||
MVT::f64, // return register
|
||
MVT::Glue // unused in this context
|
||
};
|
||
SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
|
||
|
||
// Save FP register to stack slot
|
||
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
|
||
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
|
||
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
|
||
StackSlot, MachinePointerInfo(), false, false,0);
|
||
|
||
// Load FP Control Word from low 32 bits of stack slot.
|
||
SDValue Four = DAG.getConstant(4, PtrVT);
|
||
SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
|
||
SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
|
||
// Transform as necessary
|
||
SDValue CWD1 =
|
||
DAG.getNode(ISD::AND, dl, MVT::i32,
|
||
CWD, DAG.getConstant(3, MVT::i32));
|
||
SDValue CWD2 =
|
||
DAG.getNode(ISD::SRL, dl, MVT::i32,
|
||
DAG.getNode(ISD::AND, dl, MVT::i32,
|
||
DAG.getNode(ISD::XOR, dl, MVT::i32,
|
||
CWD, DAG.getConstant(3, MVT::i32)),
|
||
DAG.getConstant(3, MVT::i32)),
|
||
DAG.getConstant(1, MVT::i32));
|
||
|
||
SDValue RetVal =
|
||
DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
|
||
|
||
return DAG.getNode((VT.getSizeInBits() < 16 ?
|
||
ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
|
||
EVT VT = Op.getValueType();
|
||
unsigned BitWidth = VT.getSizeInBits();
|
||
SDLoc dl(Op);
|
||
assert(Op.getNumOperands() == 3 &&
|
||
VT == Op.getOperand(1).getValueType() &&
|
||
"Unexpected SHL!");
|
||
|
||
// Expand into a bunch of logical ops. Note that these ops
|
||
// depend on the PPC behavior for oversized shift amounts.
|
||
SDValue Lo = Op.getOperand(0);
|
||
SDValue Hi = Op.getOperand(1);
|
||
SDValue Amt = Op.getOperand(2);
|
||
EVT AmtVT = Amt.getValueType();
|
||
|
||
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
||
DAG.getConstant(BitWidth, AmtVT), Amt);
|
||
SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
|
||
SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
|
||
SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
|
||
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
||
DAG.getConstant(-BitWidth, AmtVT));
|
||
SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
|
||
SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
|
||
SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
|
||
SDValue OutOps[] = { OutLo, OutHi };
|
||
return DAG.getMergeValues(OutOps, dl);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
|
||
EVT VT = Op.getValueType();
|
||
SDLoc dl(Op);
|
||
unsigned BitWidth = VT.getSizeInBits();
|
||
assert(Op.getNumOperands() == 3 &&
|
||
VT == Op.getOperand(1).getValueType() &&
|
||
"Unexpected SRL!");
|
||
|
||
// Expand into a bunch of logical ops. Note that these ops
|
||
// depend on the PPC behavior for oversized shift amounts.
|
||
SDValue Lo = Op.getOperand(0);
|
||
SDValue Hi = Op.getOperand(1);
|
||
SDValue Amt = Op.getOperand(2);
|
||
EVT AmtVT = Amt.getValueType();
|
||
|
||
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
||
DAG.getConstant(BitWidth, AmtVT), Amt);
|
||
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
|
||
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
|
||
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
|
||
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
||
DAG.getConstant(-BitWidth, AmtVT));
|
||
SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
|
||
SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
|
||
SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
|
||
SDValue OutOps[] = { OutLo, OutHi };
|
||
return DAG.getMergeValues(OutOps, dl);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
EVT VT = Op.getValueType();
|
||
unsigned BitWidth = VT.getSizeInBits();
|
||
assert(Op.getNumOperands() == 3 &&
|
||
VT == Op.getOperand(1).getValueType() &&
|
||
"Unexpected SRA!");
|
||
|
||
// Expand into a bunch of logical ops, followed by a select_cc.
|
||
SDValue Lo = Op.getOperand(0);
|
||
SDValue Hi = Op.getOperand(1);
|
||
SDValue Amt = Op.getOperand(2);
|
||
EVT AmtVT = Amt.getValueType();
|
||
|
||
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
||
DAG.getConstant(BitWidth, AmtVT), Amt);
|
||
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
|
||
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
|
||
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
|
||
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
||
DAG.getConstant(-BitWidth, AmtVT));
|
||
SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
|
||
SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
|
||
SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
|
||
Tmp4, Tmp6, ISD::SETLE);
|
||
SDValue OutOps[] = { OutLo, OutHi };
|
||
return DAG.getMergeValues(OutOps, dl);
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Vector related lowering.
|
||
//
|
||
|
||
/// BuildSplatI - Build a canonical splati of Val with an element size of
|
||
/// SplatSize. Cast the result to VT.
|
||
static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
|
||
SelectionDAG &DAG, SDLoc dl) {
|
||
assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
|
||
|
||
static const EVT VTys[] = { // canonical VT to use for each size.
|
||
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
|
||
};
|
||
|
||
EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
|
||
|
||
// Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
|
||
if (Val == -1)
|
||
SplatSize = 1;
|
||
|
||
EVT CanonicalVT = VTys[SplatSize-1];
|
||
|
||
// Build a canonical splat for this value.
|
||
SDValue Elt = DAG.getConstant(Val, MVT::i32);
|
||
SmallVector<SDValue, 8> Ops;
|
||
Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
|
||
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
|
||
return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
|
||
}
|
||
|
||
/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
|
||
/// specified intrinsic ID.
|
||
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
|
||
SelectionDAG &DAG, SDLoc dl,
|
||
EVT DestVT = MVT::Other) {
|
||
if (DestVT == MVT::Other) DestVT = Op.getValueType();
|
||
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
||
DAG.getConstant(IID, MVT::i32), Op);
|
||
}
|
||
|
||
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
|
||
/// specified intrinsic ID.
|
||
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
|
||
SelectionDAG &DAG, SDLoc dl,
|
||
EVT DestVT = MVT::Other) {
|
||
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
|
||
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
||
DAG.getConstant(IID, MVT::i32), LHS, RHS);
|
||
}
|
||
|
||
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
|
||
/// specified intrinsic ID.
|
||
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
|
||
SDValue Op2, SelectionDAG &DAG,
|
||
SDLoc dl, EVT DestVT = MVT::Other) {
|
||
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
|
||
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
||
DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
|
||
}
|
||
|
||
|
||
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
|
||
/// amount. The result has the specified value type.
|
||
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
|
||
EVT VT, SelectionDAG &DAG, SDLoc dl) {
|
||
// Force LHS/RHS to be the right type.
|
||
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
|
||
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
|
||
|
||
int Ops[16];
|
||
for (unsigned i = 0; i != 16; ++i)
|
||
Ops[i] = i + Amt;
|
||
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
|
||
return DAG.getNode(ISD::BITCAST, dl, VT, T);
|
||
}
|
||
|
||
// If this is a case we can't handle, return null and let the default
|
||
// expansion code take care of it. If we CAN select this case, and if it
|
||
// selects to a single instruction, return Op. Otherwise, if we can codegen
|
||
// this case more efficiently than a constant pool load, lower it to the
|
||
// sequence of ops that should be used.
|
||
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
||
assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
|
||
|
||
// Check if this is a splat of a constant value.
|
||
APInt APSplatBits, APSplatUndef;
|
||
unsigned SplatBitSize;
|
||
bool HasAnyUndefs;
|
||
if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
|
||
HasAnyUndefs, 0, true) || SplatBitSize > 32)
|
||
return SDValue();
|
||
|
||
unsigned SplatBits = APSplatBits.getZExtValue();
|
||
unsigned SplatUndef = APSplatUndef.getZExtValue();
|
||
unsigned SplatSize = SplatBitSize / 8;
|
||
|
||
// First, handle single instruction cases.
|
||
|
||
// All zeros?
|
||
if (SplatBits == 0) {
|
||
// Canonicalize all zero vectors to be v4i32.
|
||
if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
|
||
SDValue Z = DAG.getConstant(0, MVT::i32);
|
||
Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
|
||
Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
|
||
}
|
||
return Op;
|
||
}
|
||
|
||
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
|
||
int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
|
||
(32-SplatBitSize));
|
||
if (SextVal >= -16 && SextVal <= 15)
|
||
return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
|
||
|
||
|
||
// Two instruction sequences.
|
||
|
||
// If this value is in the range [-32,30] and is even, use:
|
||
// VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
|
||
// If this value is in the range [17,31] and is odd, use:
|
||
// VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
|
||
// If this value is in the range [-31,-17] and is odd, use:
|
||
// VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
|
||
// Note the last two are three-instruction sequences.
|
||
if (SextVal >= -32 && SextVal <= 31) {
|
||
// To avoid having these optimizations undone by constant folding,
|
||
// we convert to a pseudo that will be expanded later into one of
|
||
// the above forms.
|
||
SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
|
||
EVT VT = (SplatSize == 1 ? MVT::v16i8 :
|
||
(SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
|
||
SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
|
||
SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
|
||
if (VT == Op.getValueType())
|
||
return RetVal;
|
||
else
|
||
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
|
||
}
|
||
|
||
// If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
|
||
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
|
||
// for fneg/fabs.
|
||
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
|
||
// Make -1 and vspltisw -1:
|
||
SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
|
||
|
||
// Make the VSLW intrinsic, computing 0x8000_0000.
|
||
SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
|
||
OnesV, DAG, dl);
|
||
|
||
// xor by OnesV to invert it.
|
||
Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
|
||
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
||
}
|
||
|
||
// The remaining cases assume either big endian element order or
|
||
// a splat-size that equates to the element size of the vector
|
||
// to be built. An example that doesn't work for little endian is
|
||
// {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits
|
||
// and a vector element size of 16 bits. The code below will
|
||
// produce the vector in big endian element order, which for little
|
||
// endian is {-1, 0, -1, 0, -1, 0, -1, 0}.
|
||
|
||
// For now, just avoid these optimizations in that case.
|
||
// FIXME: Develop correct optimizations for LE with mismatched
|
||
// splat and element sizes.
|
||
|
||
if (Subtarget.isLittleEndian() &&
|
||
SplatSize != Op.getValueType().getVectorElementType().getSizeInBits())
|
||
return SDValue();
|
||
|
||
// Check to see if this is a wide variety of vsplti*, binop self cases.
|
||
static const signed char SplatCsts[] = {
|
||
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
|
||
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
|
||
};
|
||
|
||
for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
|
||
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
|
||
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
|
||
int i = SplatCsts[idx];
|
||
|
||
// Figure out what shift amount will be used by altivec if shifted by i in
|
||
// this splat size.
|
||
unsigned TypeShiftAmt = i & (SplatBitSize-1);
|
||
|
||
// vsplti + shl self.
|
||
if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
|
||
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
||
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
||
Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
|
||
Intrinsic::ppc_altivec_vslw
|
||
};
|
||
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
||
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
||
}
|
||
|
||
// vsplti + srl self.
|
||
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
|
||
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
||
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
||
Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
|
||
Intrinsic::ppc_altivec_vsrw
|
||
};
|
||
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
||
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
||
}
|
||
|
||
// vsplti + sra self.
|
||
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
|
||
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
||
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
||
Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
|
||
Intrinsic::ppc_altivec_vsraw
|
||
};
|
||
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
||
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
||
}
|
||
|
||
// vsplti + rol self.
|
||
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
|
||
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
|
||
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
||
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
||
Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
|
||
Intrinsic::ppc_altivec_vrlw
|
||
};
|
||
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
||
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
|
||
}
|
||
|
||
// t = vsplti c, result = vsldoi t, t, 1
|
||
if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
|
||
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
||
return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
|
||
}
|
||
// t = vsplti c, result = vsldoi t, t, 2
|
||
if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
|
||
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
||
return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
|
||
}
|
||
// t = vsplti c, result = vsldoi t, t, 3
|
||
if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
|
||
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
||
return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
|
||
}
|
||
}
|
||
|
||
return SDValue();
|
||
}
|
||
|
||
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
||
/// the specified operations to build the shuffle.
|
||
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
|
||
SDValue RHS, SelectionDAG &DAG,
|
||
SDLoc dl) {
|
||
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
||
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
|
||
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
|
||
|
||
enum {
|
||
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
||
OP_VMRGHW,
|
||
OP_VMRGLW,
|
||
OP_VSPLTISW0,
|
||
OP_VSPLTISW1,
|
||
OP_VSPLTISW2,
|
||
OP_VSPLTISW3,
|
||
OP_VSLDOI4,
|
||
OP_VSLDOI8,
|
||
OP_VSLDOI12
|
||
};
|
||
|
||
if (OpNum == OP_COPY) {
|
||
if (LHSID == (1*9+2)*9+3) return LHS;
|
||
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
|
||
return RHS;
|
||
}
|
||
|
||
SDValue OpLHS, OpRHS;
|
||
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
|
||
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
|
||
|
||
int ShufIdxs[16];
|
||
switch (OpNum) {
|
||
default: llvm_unreachable("Unknown i32 permute!");
|
||
case OP_VMRGHW:
|
||
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
|
||
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
|
||
ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
|
||
ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
|
||
break;
|
||
case OP_VMRGLW:
|
||
ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
|
||
ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
|
||
ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
|
||
ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
|
||
break;
|
||
case OP_VSPLTISW0:
|
||
for (unsigned i = 0; i != 16; ++i)
|
||
ShufIdxs[i] = (i&3)+0;
|
||
break;
|
||
case OP_VSPLTISW1:
|
||
for (unsigned i = 0; i != 16; ++i)
|
||
ShufIdxs[i] = (i&3)+4;
|
||
break;
|
||
case OP_VSPLTISW2:
|
||
for (unsigned i = 0; i != 16; ++i)
|
||
ShufIdxs[i] = (i&3)+8;
|
||
break;
|
||
case OP_VSPLTISW3:
|
||
for (unsigned i = 0; i != 16; ++i)
|
||
ShufIdxs[i] = (i&3)+12;
|
||
break;
|
||
case OP_VSLDOI4:
|
||
return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
|
||
case OP_VSLDOI8:
|
||
return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
|
||
case OP_VSLDOI12:
|
||
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
|
||
}
|
||
EVT VT = OpLHS.getValueType();
|
||
OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
|
||
OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
|
||
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
|
||
return DAG.getNode(ISD::BITCAST, dl, VT, T);
|
||
}
|
||
|
||
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
|
||
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
|
||
/// return the code it can be lowered into. Worst case, it can always be
|
||
/// lowered into a vperm.
|
||
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
SDValue V1 = Op.getOperand(0);
|
||
SDValue V2 = Op.getOperand(1);
|
||
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
||
EVT VT = Op.getValueType();
|
||
bool isLittleEndian = Subtarget.isLittleEndian();
|
||
|
||
// Cases that are handled by instructions that take permute immediates
|
||
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
|
||
// selected by the instruction selector.
|
||
if (V2.getOpcode() == ISD::UNDEF) {
|
||
if (PPC::isSplatShuffleMask(SVOp, 1) ||
|
||
PPC::isSplatShuffleMask(SVOp, 2) ||
|
||
PPC::isSplatShuffleMask(SVOp, 4) ||
|
||
PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
|
||
PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
|
||
PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
|
||
PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
|
||
PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
|
||
PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
|
||
PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
|
||
PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
|
||
PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) {
|
||
return Op;
|
||
}
|
||
}
|
||
|
||
// Altivec has a variety of "shuffle immediates" that take two vector inputs
|
||
// and produce a fixed permutation. If any of these match, do not lower to
|
||
// VPERM.
|
||
unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
|
||
if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
|
||
PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
|
||
PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
|
||
PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
|
||
PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
|
||
PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
|
||
PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
|
||
PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
|
||
PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG))
|
||
return Op;
|
||
|
||
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
|
||
// perfect shuffle table to emit an optimal matching sequence.
|
||
ArrayRef<int> PermMask = SVOp->getMask();
|
||
|
||
unsigned PFIndexes[4];
|
||
bool isFourElementShuffle = true;
|
||
for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
|
||
unsigned EltNo = 8; // Start out undef.
|
||
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
|
||
if (PermMask[i*4+j] < 0)
|
||
continue; // Undef, ignore it.
|
||
|
||
unsigned ByteSource = PermMask[i*4+j];
|
||
if ((ByteSource & 3) != j) {
|
||
isFourElementShuffle = false;
|
||
break;
|
||
}
|
||
|
||
if (EltNo == 8) {
|
||
EltNo = ByteSource/4;
|
||
} else if (EltNo != ByteSource/4) {
|
||
isFourElementShuffle = false;
|
||
break;
|
||
}
|
||
}
|
||
PFIndexes[i] = EltNo;
|
||
}
|
||
|
||
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
|
||
// perfect shuffle vector to determine if it is cost effective to do this as
|
||
// discrete instructions, or whether we should use a vperm.
|
||
// For now, we skip this for little endian until such time as we have a
|
||
// little-endian perfect shuffle table.
|
||
if (isFourElementShuffle && !isLittleEndian) {
|
||
// Compute the index in the perfect shuffle table.
|
||
unsigned PFTableIndex =
|
||
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
||
|
||
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
||
unsigned Cost = (PFEntry >> 30);
|
||
|
||
// Determining when to avoid vperm is tricky. Many things affect the cost
|
||
// of vperm, particularly how many times the perm mask needs to be computed.
|
||
// For example, if the perm mask can be hoisted out of a loop or is already
|
||
// used (perhaps because there are multiple permutes with the same shuffle
|
||
// mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
|
||
// the loop requires an extra register.
|
||
//
|
||
// As a compromise, we only emit discrete instructions if the shuffle can be
|
||
// generated in 3 or fewer operations. When we have loop information
|
||
// available, if this block is within a loop, we should avoid using vperm
|
||
// for 3-operation perms and use a constant pool load instead.
|
||
if (Cost < 3)
|
||
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
|
||
}
|
||
|
||
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
|
||
// vector that will get spilled to the constant pool.
|
||
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
|
||
|
||
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
|
||
// that it is in input element units, not in bytes. Convert now.
|
||
|
||
// For little endian, the order of the input vectors is reversed, and
|
||
// the permutation mask is complemented with respect to 31. This is
|
||
// necessary to produce proper semantics with the big-endian-biased vperm
|
||
// instruction.
|
||
EVT EltVT = V1.getValueType().getVectorElementType();
|
||
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
|
||
|
||
SmallVector<SDValue, 16> ResultMask;
|
||
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
|
||
unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
|
||
|
||
for (unsigned j = 0; j != BytesPerElement; ++j)
|
||
if (isLittleEndian)
|
||
ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
|
||
MVT::i32));
|
||
else
|
||
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
|
||
MVT::i32));
|
||
}
|
||
|
||
SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
|
||
ResultMask);
|
||
if (isLittleEndian)
|
||
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
|
||
V2, V1, VPermMask);
|
||
else
|
||
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
|
||
V1, V2, VPermMask);
|
||
}
|
||
|
||
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
|
||
/// altivec comparison. If it is, return true and fill in Opc/isDot with
|
||
/// information about the intrinsic.
|
||
static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
|
||
bool &isDot) {
|
||
unsigned IntrinsicID =
|
||
cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
|
||
CompareOpc = -1;
|
||
isDot = false;
|
||
switch (IntrinsicID) {
|
||
default: return false;
|
||
// Comparison predicates.
|
||
case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
|
||
|
||
// Normal Comparisons.
|
||
case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
|
||
case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
|
||
/// lower, do it, otherwise return null.
|
||
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
// If this is a lowered altivec predicate compare, CompareOpc is set to the
|
||
// opcode number of the comparison.
|
||
SDLoc dl(Op);
|
||
int CompareOpc;
|
||
bool isDot;
|
||
if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
|
||
return SDValue(); // Don't custom lower most intrinsics.
|
||
|
||
// If this is a non-dot comparison, make the VCMP node and we are done.
|
||
if (!isDot) {
|
||
SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
|
||
Op.getOperand(1), Op.getOperand(2),
|
||
DAG.getConstant(CompareOpc, MVT::i32));
|
||
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
|
||
}
|
||
|
||
// Create the PPCISD altivec 'dot' comparison node.
|
||
SDValue Ops[] = {
|
||
Op.getOperand(2), // LHS
|
||
Op.getOperand(3), // RHS
|
||
DAG.getConstant(CompareOpc, MVT::i32)
|
||
};
|
||
EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
|
||
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
|
||
|
||
// Now that we have the comparison, emit a copy from the CR to a GPR.
|
||
// This is flagged to the above dot comparison.
|
||
SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
|
||
DAG.getRegister(PPC::CR6, MVT::i32),
|
||
CompNode.getValue(1));
|
||
|
||
// Unpack the result based on how the target uses it.
|
||
unsigned BitNo; // Bit # of CR6.
|
||
bool InvertBit; // Invert result?
|
||
switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
|
||
default: // Can't happen, don't crash on invalid number though.
|
||
case 0: // Return the value of the EQ bit of CR6.
|
||
BitNo = 0; InvertBit = false;
|
||
break;
|
||
case 1: // Return the inverted value of the EQ bit of CR6.
|
||
BitNo = 0; InvertBit = true;
|
||
break;
|
||
case 2: // Return the value of the LT bit of CR6.
|
||
BitNo = 2; InvertBit = false;
|
||
break;
|
||
case 3: // Return the inverted value of the LT bit of CR6.
|
||
BitNo = 2; InvertBit = true;
|
||
break;
|
||
}
|
||
|
||
// Shift the bit into the low position.
|
||
Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
|
||
DAG.getConstant(8-(3-BitNo), MVT::i32));
|
||
// Isolate the bit.
|
||
Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
|
||
DAG.getConstant(1, MVT::i32));
|
||
|
||
// If we are supposed to, toggle the bit.
|
||
if (InvertBit)
|
||
Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
|
||
DAG.getConstant(1, MVT::i32));
|
||
return Flags;
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
// For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
|
||
// instructions), but for smaller types, we need to first extend up to v2i32
|
||
// before doing going farther.
|
||
if (Op.getValueType() == MVT::v2i64) {
|
||
EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
||
if (ExtVT != MVT::v2i32) {
|
||
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
|
||
Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
|
||
DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
|
||
ExtVT.getVectorElementType(), 4)));
|
||
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
|
||
Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
|
||
DAG.getValueType(MVT::v2i32));
|
||
}
|
||
|
||
return Op;
|
||
}
|
||
|
||
return SDValue();
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
// Create a stack slot that is 16-byte aligned.
|
||
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
|
||
int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
|
||
EVT PtrVT = getPointerTy();
|
||
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
||
|
||
// Store the input value into Value#0 of the stack slot.
|
||
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
|
||
Op.getOperand(0), FIdx, MachinePointerInfo(),
|
||
false, false, 0);
|
||
// Load it out.
|
||
return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
|
||
false, false, false, 0);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
if (Op.getValueType() == MVT::v4i32) {
|
||
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
||
|
||
SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
|
||
SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
|
||
|
||
SDValue RHSSwap = // = vrlw RHS, 16
|
||
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
|
||
|
||
// Shrinkify inputs to v8i16.
|
||
LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
|
||
RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
|
||
RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
|
||
|
||
// Low parts multiplied together, generating 32-bit results (we ignore the
|
||
// top parts).
|
||
SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
|
||
LHS, RHS, DAG, dl, MVT::v4i32);
|
||
|
||
SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
|
||
LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
|
||
// Shift the high parts up 16 bits.
|
||
HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
|
||
Neg16, DAG, dl);
|
||
return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
|
||
} else if (Op.getValueType() == MVT::v8i16) {
|
||
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
||
|
||
SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
|
||
|
||
return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
|
||
LHS, RHS, Zero, DAG, dl);
|
||
} else if (Op.getValueType() == MVT::v16i8) {
|
||
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
||
bool isLittleEndian = Subtarget.isLittleEndian();
|
||
|
||
// Multiply the even 8-bit parts, producing 16-bit sums.
|
||
SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
|
||
LHS, RHS, DAG, dl, MVT::v8i16);
|
||
EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
|
||
|
||
// Multiply the odd 8-bit parts, producing 16-bit sums.
|
||
SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
|
||
LHS, RHS, DAG, dl, MVT::v8i16);
|
||
OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
|
||
|
||
// Merge the results together. Because vmuleub and vmuloub are
|
||
// instructions with a big-endian bias, we must reverse the
|
||
// element numbering and reverse the meaning of "odd" and "even"
|
||
// when generating little endian code.
|
||
int Ops[16];
|
||
for (unsigned i = 0; i != 8; ++i) {
|
||
if (isLittleEndian) {
|
||
Ops[i*2 ] = 2*i;
|
||
Ops[i*2+1] = 2*i+16;
|
||
} else {
|
||
Ops[i*2 ] = 2*i+1;
|
||
Ops[i*2+1] = 2*i+1+16;
|
||
}
|
||
}
|
||
if (isLittleEndian)
|
||
return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
|
||
else
|
||
return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
|
||
} else {
|
||
llvm_unreachable("Unknown mul to lower!");
|
||
}
|
||
}
|
||
|
||
/// LowerOperation - Provide custom lowering hooks for some operations.
|
||
///
|
||
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
||
switch (Op.getOpcode()) {
|
||
default: llvm_unreachable("Wasn't expecting to be able to lower this!");
|
||
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
||
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
||
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
||
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
||
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
||
case ISD::SETCC: return LowerSETCC(Op, DAG);
|
||
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
|
||
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
|
||
case ISD::VASTART:
|
||
return LowerVASTART(Op, DAG, Subtarget);
|
||
|
||
case ISD::VAARG:
|
||
return LowerVAARG(Op, DAG, Subtarget);
|
||
|
||
case ISD::VACOPY:
|
||
return LowerVACOPY(Op, DAG, Subtarget);
|
||
|
||
case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget);
|
||
case ISD::DYNAMIC_STACKALLOC:
|
||
return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
|
||
|
||
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
|
||
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
|
||
|
||
case ISD::LOAD: return LowerLOAD(Op, DAG);
|
||
case ISD::STORE: return LowerSTORE(Op, DAG);
|
||
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
|
||
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
||
case ISD::FP_TO_UINT:
|
||
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
|
||
SDLoc(Op));
|
||
case ISD::UINT_TO_FP:
|
||
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
|
||
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
|
||
|
||
// Lower 64-bit shifts.
|
||
case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
|
||
case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
|
||
case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
|
||
|
||
// Vector-related lowering.
|
||
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
|
||
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
||
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
||
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
|
||
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
|
||
case ISD::MUL: return LowerMUL(Op, DAG);
|
||
|
||
// For counter-based loop handling.
|
||
case ISD::INTRINSIC_W_CHAIN: return SDValue();
|
||
|
||
// Frame & Return address.
|
||
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
||
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
||
}
|
||
}
|
||
|
||
void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
|
||
SmallVectorImpl<SDValue>&Results,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc dl(N);
|
||
switch (N->getOpcode()) {
|
||
default:
|
||
llvm_unreachable("Do not know how to custom type legalize this operation!");
|
||
case ISD::READCYCLECOUNTER: {
|
||
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
|
||
SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
|
||
|
||
Results.push_back(RTB);
|
||
Results.push_back(RTB.getValue(1));
|
||
Results.push_back(RTB.getValue(2));
|
||
break;
|
||
}
|
||
case ISD::INTRINSIC_W_CHAIN: {
|
||
if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
|
||
Intrinsic::ppc_is_decremented_ctr_nonzero)
|
||
break;
|
||
|
||
assert(N->getValueType(0) == MVT::i1 &&
|
||
"Unexpected result type for CTR decrement intrinsic");
|
||
EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
|
||
SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
|
||
SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
|
||
N->getOperand(1));
|
||
|
||
Results.push_back(NewInt);
|
||
Results.push_back(NewInt.getValue(1));
|
||
break;
|
||
}
|
||
case ISD::VAARG: {
|
||
if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
|
||
return;
|
||
|
||
EVT VT = N->getValueType(0);
|
||
|
||
if (VT == MVT::i64) {
|
||
SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
|
||
|
||
Results.push_back(NewNode);
|
||
Results.push_back(NewNode.getValue(1));
|
||
}
|
||
return;
|
||
}
|
||
case ISD::FP_ROUND_INREG: {
|
||
assert(N->getValueType(0) == MVT::ppcf128);
|
||
assert(N->getOperand(0).getValueType() == MVT::ppcf128);
|
||
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
|
||
MVT::f64, N->getOperand(0),
|
||
DAG.getIntPtrConstant(0));
|
||
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
|
||
MVT::f64, N->getOperand(0),
|
||
DAG.getIntPtrConstant(1));
|
||
|
||
// Add the two halves of the long double in round-to-zero mode.
|
||
SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
|
||
|
||
// We know the low half is about to be thrown away, so just use something
|
||
// convenient.
|
||
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
|
||
FPreg, FPreg));
|
||
return;
|
||
}
|
||
case ISD::FP_TO_SINT:
|
||
// LowerFP_TO_INT() can only handle f32 and f64.
|
||
if (N->getOperand(0).getValueType() == MVT::ppcf128)
|
||
return;
|
||
Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
|
||
return;
|
||
}
|
||
}
|
||
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Other Lowering Code
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
|
||
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
||
Function *Func = Intrinsic::getDeclaration(M, Id);
|
||
return Builder.CreateCall(Func);
|
||
}
|
||
|
||
// The mappings for emitLeading/TrailingFence is taken from
|
||
// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
|
||
Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
|
||
AtomicOrdering Ord, bool IsStore,
|
||
bool IsLoad) const {
|
||
if (Ord == SequentiallyConsistent)
|
||
return callIntrinsic(Builder, Intrinsic::ppc_sync);
|
||
else if (isAtLeastRelease(Ord))
|
||
return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
|
||
else
|
||
return nullptr;
|
||
}
|
||
|
||
Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
|
||
AtomicOrdering Ord, bool IsStore,
|
||
bool IsLoad) const {
|
||
if (IsLoad && isAtLeastAcquire(Ord))
|
||
return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
|
||
// FIXME: this is too conservative, a dependent branch + isync is enough.
|
||
// See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
|
||
// http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
|
||
// and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
|
||
else
|
||
return nullptr;
|
||
}
|
||
|
||
MachineBasicBlock *
|
||
PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
|
||
bool is64bit, unsigned BinOpcode) const {
|
||
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
||
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
||
|
||
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
||
MachineFunction *F = BB->getParent();
|
||
MachineFunction::iterator It = BB;
|
||
++It;
|
||
|
||
unsigned dest = MI->getOperand(0).getReg();
|
||
unsigned ptrA = MI->getOperand(1).getReg();
|
||
unsigned ptrB = MI->getOperand(2).getReg();
|
||
unsigned incr = MI->getOperand(3).getReg();
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
|
||
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
F->insert(It, loopMBB);
|
||
F->insert(It, exitMBB);
|
||
exitMBB->splice(exitMBB->begin(), BB,
|
||
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
||
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
||
|
||
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
||
unsigned TmpReg = (!BinOpcode) ? incr :
|
||
RegInfo.createVirtualRegister( is64bit ? &PPC::G8RCRegClass
|
||
: &PPC::GPRCRegClass);
|
||
|
||
// thisMBB:
|
||
// ...
|
||
// fallthrough --> loopMBB
|
||
BB->addSuccessor(loopMBB);
|
||
|
||
// loopMBB:
|
||
// l[wd]arx dest, ptr
|
||
// add r0, dest, incr
|
||
// st[wd]cx. r0, ptr
|
||
// bne- loopMBB
|
||
// fallthrough --> exitMBB
|
||
BB = loopMBB;
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
|
||
.addReg(ptrA).addReg(ptrB);
|
||
if (BinOpcode)
|
||
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
||
.addReg(TmpReg).addReg(ptrA).addReg(ptrB);
|
||
BuildMI(BB, dl, TII->get(PPC::BCC))
|
||
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
|
||
BB->addSuccessor(loopMBB);
|
||
BB->addSuccessor(exitMBB);
|
||
|
||
// exitMBB:
|
||
// ...
|
||
BB = exitMBB;
|
||
return BB;
|
||
}
|
||
|
||
MachineBasicBlock *
|
||
PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
|
||
MachineBasicBlock *BB,
|
||
bool is8bit, // operation
|
||
unsigned BinOpcode) const {
|
||
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
||
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
||
// In 64 bit mode we have to use 64 bits for addresses, even though the
|
||
// lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
|
||
// registers without caring whether they're 32 or 64, but here we're
|
||
// doing actual arithmetic on the addresses.
|
||
bool is64bit = Subtarget.isPPC64();
|
||
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
|
||
|
||
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
||
MachineFunction *F = BB->getParent();
|
||
MachineFunction::iterator It = BB;
|
||
++It;
|
||
|
||
unsigned dest = MI->getOperand(0).getReg();
|
||
unsigned ptrA = MI->getOperand(1).getReg();
|
||
unsigned ptrB = MI->getOperand(2).getReg();
|
||
unsigned incr = MI->getOperand(3).getReg();
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
|
||
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
F->insert(It, loopMBB);
|
||
F->insert(It, exitMBB);
|
||
exitMBB->splice(exitMBB->begin(), BB,
|
||
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
||
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
||
|
||
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
||
const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
|
||
: &PPC::GPRCRegClass;
|
||
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Ptr1Reg;
|
||
unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
|
||
|
||
// thisMBB:
|
||
// ...
|
||
// fallthrough --> loopMBB
|
||
BB->addSuccessor(loopMBB);
|
||
|
||
// The 4-byte load must be aligned, while a char or short may be
|
||
// anywhere in the word. Hence all this nasty bookkeeping code.
|
||
// add ptr1, ptrA, ptrB [copy if ptrA==0]
|
||
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
|
||
// xori shift, shift1, 24 [16]
|
||
// rlwinm ptr, ptr1, 0, 0, 29
|
||
// slw incr2, incr, shift
|
||
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
|
||
// slw mask, mask2, shift
|
||
// loopMBB:
|
||
// lwarx tmpDest, ptr
|
||
// add tmp, tmpDest, incr2
|
||
// andc tmp2, tmpDest, mask
|
||
// and tmp3, tmp, mask
|
||
// or tmp4, tmp3, tmp2
|
||
// stwcx. tmp4, ptr
|
||
// bne- loopMBB
|
||
// fallthrough --> exitMBB
|
||
// srw dest, tmpDest, shift
|
||
if (ptrA != ZeroReg) {
|
||
Ptr1Reg = RegInfo.createVirtualRegister(RC);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
|
||
.addReg(ptrA).addReg(ptrB);
|
||
} else {
|
||
Ptr1Reg = ptrB;
|
||
}
|
||
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
|
||
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
|
||
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
|
||
if (is64bit)
|
||
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
|
||
.addReg(Ptr1Reg).addImm(0).addImm(61);
|
||
else
|
||
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
|
||
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
|
||
BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
|
||
.addReg(incr).addReg(ShiftReg);
|
||
if (is8bit)
|
||
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
|
||
else {
|
||
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
|
||
BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
|
||
}
|
||
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
|
||
.addReg(Mask2Reg).addReg(ShiftReg);
|
||
|
||
BB = loopMBB;
|
||
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
|
||
.addReg(ZeroReg).addReg(PtrReg);
|
||
if (BinOpcode)
|
||
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
|
||
.addReg(Incr2Reg).addReg(TmpDestReg);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
|
||
.addReg(TmpDestReg).addReg(MaskReg);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
|
||
.addReg(TmpReg).addReg(MaskReg);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
|
||
.addReg(Tmp3Reg).addReg(Tmp2Reg);
|
||
BuildMI(BB, dl, TII->get(PPC::STWCX))
|
||
.addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
|
||
BuildMI(BB, dl, TII->get(PPC::BCC))
|
||
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
|
||
BB->addSuccessor(loopMBB);
|
||
BB->addSuccessor(exitMBB);
|
||
|
||
// exitMBB:
|
||
// ...
|
||
BB = exitMBB;
|
||
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
|
||
.addReg(ShiftReg);
|
||
return BB;
|
||
}
|
||
|
||
llvm::MachineBasicBlock*
|
||
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
|
||
MachineBasicBlock *MBB) const {
|
||
DebugLoc DL = MI->getDebugLoc();
|
||
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
||
|
||
MachineFunction *MF = MBB->getParent();
|
||
MachineRegisterInfo &MRI = MF->getRegInfo();
|
||
|
||
const BasicBlock *BB = MBB->getBasicBlock();
|
||
MachineFunction::iterator I = MBB;
|
||
++I;
|
||
|
||
// Memory Reference
|
||
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
|
||
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
|
||
|
||
unsigned DstReg = MI->getOperand(0).getReg();
|
||
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
|
||
assert(RC->hasType(MVT::i32) && "Invalid destination!");
|
||
unsigned mainDstReg = MRI.createVirtualRegister(RC);
|
||
unsigned restoreDstReg = MRI.createVirtualRegister(RC);
|
||
|
||
MVT PVT = getPointerTy();
|
||
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
|
||
"Invalid Pointer Size!");
|
||
// For v = setjmp(buf), we generate
|
||
//
|
||
// thisMBB:
|
||
// SjLjSetup mainMBB
|
||
// bl mainMBB
|
||
// v_restore = 1
|
||
// b sinkMBB
|
||
//
|
||
// mainMBB:
|
||
// buf[LabelOffset] = LR
|
||
// v_main = 0
|
||
//
|
||
// sinkMBB:
|
||
// v = phi(main, restore)
|
||
//
|
||
|
||
MachineBasicBlock *thisMBB = MBB;
|
||
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
|
||
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
|
||
MF->insert(I, mainMBB);
|
||
MF->insert(I, sinkMBB);
|
||
|
||
MachineInstrBuilder MIB;
|
||
|
||
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
||
sinkMBB->splice(sinkMBB->begin(), MBB,
|
||
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
|
||
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
||
|
||
// Note that the structure of the jmp_buf used here is not compatible
|
||
// with that used by libc, and is not designed to be. Specifically, it
|
||
// stores only those 'reserved' registers that LLVM does not otherwise
|
||
// understand how to spill. Also, by convention, by the time this
|
||
// intrinsic is called, Clang has already stored the frame address in the
|
||
// first slot of the buffer and stack address in the third. Following the
|
||
// X86 target code, we'll store the jump address in the second slot. We also
|
||
// need to save the TOC pointer (R2) to handle jumps between shared
|
||
// libraries, and that will be stored in the fourth slot. The thread
|
||
// identifier (R13) is not affected.
|
||
|
||
// thisMBB:
|
||
const int64_t LabelOffset = 1 * PVT.getStoreSize();
|
||
const int64_t TOCOffset = 3 * PVT.getStoreSize();
|
||
const int64_t BPOffset = 4 * PVT.getStoreSize();
|
||
|
||
// Prepare IP either in reg.
|
||
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
|
||
unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
|
||
unsigned BufReg = MI->getOperand(1).getReg();
|
||
|
||
if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
|
||
setUsesTOCBasePtr(*MBB->getParent());
|
||
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
|
||
.addReg(PPC::X2)
|
||
.addImm(TOCOffset)
|
||
.addReg(BufReg);
|
||
MIB.setMemRefs(MMOBegin, MMOEnd);
|
||
}
|
||
|
||
// Naked functions never have a base pointer, and so we use r1. For all
|
||
// other functions, this decision must be delayed until during PEI.
|
||
unsigned BaseReg;
|
||
if (MF->getFunction()->getAttributes().hasAttribute(
|
||
AttributeSet::FunctionIndex, Attribute::Naked))
|
||
BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
|
||
else
|
||
BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
|
||
|
||
MIB = BuildMI(*thisMBB, MI, DL,
|
||
TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
|
||
.addReg(BaseReg)
|
||
.addImm(BPOffset)
|
||
.addReg(BufReg);
|
||
MIB.setMemRefs(MMOBegin, MMOEnd);
|
||
|
||
// Setup
|
||
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
|
||
const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
||
MIB.addRegMask(TRI->getNoPreservedMask());
|
||
|
||
BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
|
||
|
||
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
|
||
.addMBB(mainMBB);
|
||
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
|
||
|
||
thisMBB->addSuccessor(mainMBB, /* weight */ 0);
|
||
thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
|
||
|
||
// mainMBB:
|
||
// mainDstReg = 0
|
||
MIB =
|
||
BuildMI(mainMBB, DL,
|
||
TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
|
||
|
||
// Store IP
|
||
if (Subtarget.isPPC64()) {
|
||
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
|
||
.addReg(LabelReg)
|
||
.addImm(LabelOffset)
|
||
.addReg(BufReg);
|
||
} else {
|
||
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
|
||
.addReg(LabelReg)
|
||
.addImm(LabelOffset)
|
||
.addReg(BufReg);
|
||
}
|
||
|
||
MIB.setMemRefs(MMOBegin, MMOEnd);
|
||
|
||
BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
|
||
mainMBB->addSuccessor(sinkMBB);
|
||
|
||
// sinkMBB:
|
||
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
|
||
TII->get(PPC::PHI), DstReg)
|
||
.addReg(mainDstReg).addMBB(mainMBB)
|
||
.addReg(restoreDstReg).addMBB(thisMBB);
|
||
|
||
MI->eraseFromParent();
|
||
return sinkMBB;
|
||
}
|
||
|
||
MachineBasicBlock *
|
||
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
|
||
MachineBasicBlock *MBB) const {
|
||
DebugLoc DL = MI->getDebugLoc();
|
||
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
||
|
||
MachineFunction *MF = MBB->getParent();
|
||
MachineRegisterInfo &MRI = MF->getRegInfo();
|
||
|
||
// Memory Reference
|
||
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
|
||
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
|
||
|
||
MVT PVT = getPointerTy();
|
||
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
|
||
"Invalid Pointer Size!");
|
||
|
||
const TargetRegisterClass *RC =
|
||
(PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
|
||
unsigned Tmp = MRI.createVirtualRegister(RC);
|
||
// Since FP is only updated here but NOT referenced, it's treated as GPR.
|
||
unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
|
||
unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
|
||
unsigned BP =
|
||
(PVT == MVT::i64)
|
||
? PPC::X30
|
||
: (Subtarget.isSVR4ABI() &&
|
||
MF->getTarget().getRelocationModel() == Reloc::PIC_
|
||
? PPC::R29
|
||
: PPC::R30);
|
||
|
||
MachineInstrBuilder MIB;
|
||
|
||
const int64_t LabelOffset = 1 * PVT.getStoreSize();
|
||
const int64_t SPOffset = 2 * PVT.getStoreSize();
|
||
const int64_t TOCOffset = 3 * PVT.getStoreSize();
|
||
const int64_t BPOffset = 4 * PVT.getStoreSize();
|
||
|
||
unsigned BufReg = MI->getOperand(0).getReg();
|
||
|
||
// Reload FP (the jumped-to function may not have had a
|
||
// frame pointer, and if so, then its r31 will be restored
|
||
// as necessary).
|
||
if (PVT == MVT::i64) {
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
|
||
.addImm(0)
|
||
.addReg(BufReg);
|
||
} else {
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
|
||
.addImm(0)
|
||
.addReg(BufReg);
|
||
}
|
||
MIB.setMemRefs(MMOBegin, MMOEnd);
|
||
|
||
// Reload IP
|
||
if (PVT == MVT::i64) {
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
|
||
.addImm(LabelOffset)
|
||
.addReg(BufReg);
|
||
} else {
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
|
||
.addImm(LabelOffset)
|
||
.addReg(BufReg);
|
||
}
|
||
MIB.setMemRefs(MMOBegin, MMOEnd);
|
||
|
||
// Reload SP
|
||
if (PVT == MVT::i64) {
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
|
||
.addImm(SPOffset)
|
||
.addReg(BufReg);
|
||
} else {
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
|
||
.addImm(SPOffset)
|
||
.addReg(BufReg);
|
||
}
|
||
MIB.setMemRefs(MMOBegin, MMOEnd);
|
||
|
||
// Reload BP
|
||
if (PVT == MVT::i64) {
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
|
||
.addImm(BPOffset)
|
||
.addReg(BufReg);
|
||
} else {
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
|
||
.addImm(BPOffset)
|
||
.addReg(BufReg);
|
||
}
|
||
MIB.setMemRefs(MMOBegin, MMOEnd);
|
||
|
||
// Reload TOC
|
||
if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
|
||
setUsesTOCBasePtr(*MBB->getParent());
|
||
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
|
||
.addImm(TOCOffset)
|
||
.addReg(BufReg);
|
||
|
||
MIB.setMemRefs(MMOBegin, MMOEnd);
|
||
}
|
||
|
||
// Jump
|
||
BuildMI(*MBB, MI, DL,
|
||
TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
|
||
BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
|
||
|
||
MI->eraseFromParent();
|
||
return MBB;
|
||
}
|
||
|
||
MachineBasicBlock *
|
||
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
||
MachineBasicBlock *BB) const {
|
||
if (MI->getOpcode() == TargetOpcode::STACKMAP ||
|
||
MI->getOpcode() == TargetOpcode::PATCHPOINT) {
|
||
if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
|
||
MI->getOpcode() == TargetOpcode::PATCHPOINT) {
|
||
// Call lowering should have added an r2 operand to indicate a dependence
|
||
// on the TOC base pointer value. It can't however, because there is no
|
||
// way to mark the dependence as implicit there, and so the stackmap code
|
||
// will confuse it with a regular operand. Instead, add the dependence
|
||
// here.
|
||
setUsesTOCBasePtr(*BB->getParent());
|
||
MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
|
||
}
|
||
|
||
return emitPatchPoint(MI, BB);
|
||
}
|
||
|
||
if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
|
||
MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
|
||
return emitEHSjLjSetJmp(MI, BB);
|
||
} else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
|
||
MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
|
||
return emitEHSjLjLongJmp(MI, BB);
|
||
}
|
||
|
||
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
||
|
||
// To "insert" these instructions we actually have to insert their
|
||
// control-flow patterns.
|
||
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
||
MachineFunction::iterator It = BB;
|
||
++It;
|
||
|
||
MachineFunction *F = BB->getParent();
|
||
|
||
if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
|
||
MI->getOpcode() == PPC::SELECT_CC_I8 ||
|
||
MI->getOpcode() == PPC::SELECT_I4 ||
|
||
MI->getOpcode() == PPC::SELECT_I8)) {
|
||
SmallVector<MachineOperand, 2> Cond;
|
||
if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
|
||
MI->getOpcode() == PPC::SELECT_CC_I8)
|
||
Cond.push_back(MI->getOperand(4));
|
||
else
|
||
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
|
||
Cond.push_back(MI->getOperand(1));
|
||
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
|
||
Cond, MI->getOperand(2).getReg(),
|
||
MI->getOperand(3).getReg());
|
||
} else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
|
||
MI->getOpcode() == PPC::SELECT_CC_I8 ||
|
||
MI->getOpcode() == PPC::SELECT_CC_F4 ||
|
||
MI->getOpcode() == PPC::SELECT_CC_F8 ||
|
||
MI->getOpcode() == PPC::SELECT_CC_VRRC ||
|
||
MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
|
||
MI->getOpcode() == PPC::SELECT_CC_VSRC ||
|
||
MI->getOpcode() == PPC::SELECT_I4 ||
|
||
MI->getOpcode() == PPC::SELECT_I8 ||
|
||
MI->getOpcode() == PPC::SELECT_F4 ||
|
||
MI->getOpcode() == PPC::SELECT_F8 ||
|
||
MI->getOpcode() == PPC::SELECT_VRRC ||
|
||
MI->getOpcode() == PPC::SELECT_VSFRC ||
|
||
MI->getOpcode() == PPC::SELECT_VSRC) {
|
||
// The incoming instruction knows the destination vreg to set, the
|
||
// condition code register to branch on, the true/false values to
|
||
// select between, and a branch opcode to use.
|
||
|
||
// thisMBB:
|
||
// ...
|
||
// TrueVal = ...
|
||
// cmpTY ccX, r1, r2
|
||
// bCC copy1MBB
|
||
// fallthrough --> copy0MBB
|
||
MachineBasicBlock *thisMBB = BB;
|
||
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
F->insert(It, copy0MBB);
|
||
F->insert(It, sinkMBB);
|
||
|
||
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
||
sinkMBB->splice(sinkMBB->begin(), BB,
|
||
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
||
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
||
|
||
// Next, add the true and fallthrough blocks as its successors.
|
||
BB->addSuccessor(copy0MBB);
|
||
BB->addSuccessor(sinkMBB);
|
||
|
||
if (MI->getOpcode() == PPC::SELECT_I4 ||
|
||
MI->getOpcode() == PPC::SELECT_I8 ||
|
||
MI->getOpcode() == PPC::SELECT_F4 ||
|
||
MI->getOpcode() == PPC::SELECT_F8 ||
|
||
MI->getOpcode() == PPC::SELECT_VRRC ||
|
||
MI->getOpcode() == PPC::SELECT_VSFRC ||
|
||
MI->getOpcode() == PPC::SELECT_VSRC) {
|
||
BuildMI(BB, dl, TII->get(PPC::BC))
|
||
.addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
|
||
} else {
|
||
unsigned SelectPred = MI->getOperand(4).getImm();
|
||
BuildMI(BB, dl, TII->get(PPC::BCC))
|
||
.addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
|
||
}
|
||
|
||
// copy0MBB:
|
||
// %FalseValue = ...
|
||
// # fallthrough to sinkMBB
|
||
BB = copy0MBB;
|
||
|
||
// Update machine-CFG edges
|
||
BB->addSuccessor(sinkMBB);
|
||
|
||
// sinkMBB:
|
||
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
||
// ...
|
||
BB = sinkMBB;
|
||
BuildMI(*BB, BB->begin(), dl,
|
||
TII->get(PPC::PHI), MI->getOperand(0).getReg())
|
||
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
|
||
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
||
} else if (MI->getOpcode() == PPC::ReadTB) {
|
||
// To read the 64-bit time-base register on a 32-bit target, we read the
|
||
// two halves. Should the counter have wrapped while it was being read, we
|
||
// need to try again.
|
||
// ...
|
||
// readLoop:
|
||
// mfspr Rx,TBU # load from TBU
|
||
// mfspr Ry,TB # load from TB
|
||
// mfspr Rz,TBU # load from TBU
|
||
// cmpw crX,Rx,Rz # check if ‘old’=’new’
|
||
// bne readLoop # branch if they're not equal
|
||
// ...
|
||
|
||
MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
F->insert(It, readMBB);
|
||
F->insert(It, sinkMBB);
|
||
|
||
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
||
sinkMBB->splice(sinkMBB->begin(), BB,
|
||
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
||
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
||
|
||
BB->addSuccessor(readMBB);
|
||
BB = readMBB;
|
||
|
||
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
||
unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
|
||
unsigned LoReg = MI->getOperand(0).getReg();
|
||
unsigned HiReg = MI->getOperand(1).getReg();
|
||
|
||
BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
|
||
BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
|
||
BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
|
||
|
||
unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
|
||
|
||
BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
|
||
.addReg(HiReg).addReg(ReadAgainReg);
|
||
BuildMI(BB, dl, TII->get(PPC::BCC))
|
||
.addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
|
||
|
||
BB->addSuccessor(readMBB);
|
||
BB->addSuccessor(sinkMBB);
|
||
}
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
|
||
BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
|
||
BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
|
||
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
|
||
BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
|
||
BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
|
||
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
|
||
BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
|
||
BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
|
||
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
|
||
BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
|
||
BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
|
||
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
|
||
BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
|
||
BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
|
||
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
|
||
BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
|
||
BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
|
||
|
||
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
|
||
BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
|
||
BB = EmitAtomicBinary(MI, BB, false, 0);
|
||
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
|
||
BB = EmitAtomicBinary(MI, BB, true, 0);
|
||
|
||
else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
|
||
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
|
||
bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
|
||
|
||
unsigned dest = MI->getOperand(0).getReg();
|
||
unsigned ptrA = MI->getOperand(1).getReg();
|
||
unsigned ptrB = MI->getOperand(2).getReg();
|
||
unsigned oldval = MI->getOperand(3).getReg();
|
||
unsigned newval = MI->getOperand(4).getReg();
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
|
||
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
F->insert(It, loop1MBB);
|
||
F->insert(It, loop2MBB);
|
||
F->insert(It, midMBB);
|
||
F->insert(It, exitMBB);
|
||
exitMBB->splice(exitMBB->begin(), BB,
|
||
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
||
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
||
|
||
// thisMBB:
|
||
// ...
|
||
// fallthrough --> loopMBB
|
||
BB->addSuccessor(loop1MBB);
|
||
|
||
// loop1MBB:
|
||
// l[wd]arx dest, ptr
|
||
// cmp[wd] dest, oldval
|
||
// bne- midMBB
|
||
// loop2MBB:
|
||
// st[wd]cx. newval, ptr
|
||
// bne- loopMBB
|
||
// b exitBB
|
||
// midMBB:
|
||
// st[wd]cx. dest, ptr
|
||
// exitBB:
|
||
BB = loop1MBB;
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
|
||
.addReg(ptrA).addReg(ptrB);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
|
||
.addReg(oldval).addReg(dest);
|
||
BuildMI(BB, dl, TII->get(PPC::BCC))
|
||
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
|
||
BB->addSuccessor(loop2MBB);
|
||
BB->addSuccessor(midMBB);
|
||
|
||
BB = loop2MBB;
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
||
.addReg(newval).addReg(ptrA).addReg(ptrB);
|
||
BuildMI(BB, dl, TII->get(PPC::BCC))
|
||
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
|
||
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
|
||
BB->addSuccessor(loop1MBB);
|
||
BB->addSuccessor(exitMBB);
|
||
|
||
BB = midMBB;
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
||
.addReg(dest).addReg(ptrA).addReg(ptrB);
|
||
BB->addSuccessor(exitMBB);
|
||
|
||
// exitMBB:
|
||
// ...
|
||
BB = exitMBB;
|
||
} else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
|
||
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
|
||
// We must use 64-bit registers for addresses when targeting 64-bit,
|
||
// since we're actually doing arithmetic on them. Other registers
|
||
// can be 32-bit.
|
||
bool is64bit = Subtarget.isPPC64();
|
||
bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
|
||
|
||
unsigned dest = MI->getOperand(0).getReg();
|
||
unsigned ptrA = MI->getOperand(1).getReg();
|
||
unsigned ptrB = MI->getOperand(2).getReg();
|
||
unsigned oldval = MI->getOperand(3).getReg();
|
||
unsigned newval = MI->getOperand(4).getReg();
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
|
||
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
||
F->insert(It, loop1MBB);
|
||
F->insert(It, loop2MBB);
|
||
F->insert(It, midMBB);
|
||
F->insert(It, exitMBB);
|
||
exitMBB->splice(exitMBB->begin(), BB,
|
||
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
||
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
||
|
||
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
||
const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
|
||
: &PPC::GPRCRegClass;
|
||
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
|
||
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned Ptr1Reg;
|
||
unsigned TmpReg = RegInfo.createVirtualRegister(RC);
|
||
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
|
||
// thisMBB:
|
||
// ...
|
||
// fallthrough --> loopMBB
|
||
BB->addSuccessor(loop1MBB);
|
||
|
||
// The 4-byte load must be aligned, while a char or short may be
|
||
// anywhere in the word. Hence all this nasty bookkeeping code.
|
||
// add ptr1, ptrA, ptrB [copy if ptrA==0]
|
||
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
|
||
// xori shift, shift1, 24 [16]
|
||
// rlwinm ptr, ptr1, 0, 0, 29
|
||
// slw newval2, newval, shift
|
||
// slw oldval2, oldval,shift
|
||
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
|
||
// slw mask, mask2, shift
|
||
// and newval3, newval2, mask
|
||
// and oldval3, oldval2, mask
|
||
// loop1MBB:
|
||
// lwarx tmpDest, ptr
|
||
// and tmp, tmpDest, mask
|
||
// cmpw tmp, oldval3
|
||
// bne- midMBB
|
||
// loop2MBB:
|
||
// andc tmp2, tmpDest, mask
|
||
// or tmp4, tmp2, newval3
|
||
// stwcx. tmp4, ptr
|
||
// bne- loop1MBB
|
||
// b exitBB
|
||
// midMBB:
|
||
// stwcx. tmpDest, ptr
|
||
// exitBB:
|
||
// srw dest, tmpDest, shift
|
||
if (ptrA != ZeroReg) {
|
||
Ptr1Reg = RegInfo.createVirtualRegister(RC);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
|
||
.addReg(ptrA).addReg(ptrB);
|
||
} else {
|
||
Ptr1Reg = ptrB;
|
||
}
|
||
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
|
||
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
|
||
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
|
||
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
|
||
if (is64bit)
|
||
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
|
||
.addReg(Ptr1Reg).addImm(0).addImm(61);
|
||
else
|
||
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
|
||
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
|
||
BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
|
||
.addReg(newval).addReg(ShiftReg);
|
||
BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
|
||
.addReg(oldval).addReg(ShiftReg);
|
||
if (is8bit)
|
||
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
|
||
else {
|
||
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
|
||
BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
|
||
.addReg(Mask3Reg).addImm(65535);
|
||
}
|
||
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
|
||
.addReg(Mask2Reg).addReg(ShiftReg);
|
||
BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
|
||
.addReg(NewVal2Reg).addReg(MaskReg);
|
||
BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
|
||
.addReg(OldVal2Reg).addReg(MaskReg);
|
||
|
||
BB = loop1MBB;
|
||
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
|
||
.addReg(ZeroReg).addReg(PtrReg);
|
||
BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
|
||
.addReg(TmpDestReg).addReg(MaskReg);
|
||
BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
|
||
.addReg(TmpReg).addReg(OldVal3Reg);
|
||
BuildMI(BB, dl, TII->get(PPC::BCC))
|
||
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
|
||
BB->addSuccessor(loop2MBB);
|
||
BB->addSuccessor(midMBB);
|
||
|
||
BB = loop2MBB;
|
||
BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
|
||
.addReg(TmpDestReg).addReg(MaskReg);
|
||
BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
|
||
.addReg(Tmp2Reg).addReg(NewVal3Reg);
|
||
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
|
||
.addReg(ZeroReg).addReg(PtrReg);
|
||
BuildMI(BB, dl, TII->get(PPC::BCC))
|
||
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
|
||
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
|
||
BB->addSuccessor(loop1MBB);
|
||
BB->addSuccessor(exitMBB);
|
||
|
||
BB = midMBB;
|
||
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
|
||
.addReg(ZeroReg).addReg(PtrReg);
|
||
BB->addSuccessor(exitMBB);
|
||
|
||
// exitMBB:
|
||
// ...
|
||
BB = exitMBB;
|
||
BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
|
||
.addReg(ShiftReg);
|
||
} else if (MI->getOpcode() == PPC::FADDrtz) {
|
||
// This pseudo performs an FADD with rounding mode temporarily forced
|
||
// to round-to-zero. We emit this via custom inserter since the FPSCR
|
||
// is not modeled at the SelectionDAG level.
|
||
unsigned Dest = MI->getOperand(0).getReg();
|
||
unsigned Src1 = MI->getOperand(1).getReg();
|
||
unsigned Src2 = MI->getOperand(2).getReg();
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
|
||
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
||
unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
|
||
|
||
// Save FPSCR value.
|
||
BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
|
||
|
||
// Set rounding mode to round-to-zero.
|
||
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
|
||
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
|
||
|
||
// Perform addition.
|
||
BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
|
||
|
||
// Restore FPSCR value.
|
||
BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
|
||
} else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
|
||
MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
|
||
MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
|
||
MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
|
||
unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
|
||
MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
|
||
PPC::ANDIo8 : PPC::ANDIo;
|
||
bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
|
||
MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
|
||
|
||
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
||
unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
|
||
&PPC::GPRCRegClass :
|
||
&PPC::G8RCRegClass);
|
||
|
||
DebugLoc dl = MI->getDebugLoc();
|
||
BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
|
||
.addReg(MI->getOperand(1).getReg()).addImm(1);
|
||
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
|
||
MI->getOperand(0).getReg())
|
||
.addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
|
||
} else {
|
||
llvm_unreachable("Unexpected instr type to insert");
|
||
}
|
||
|
||
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
||
return BB;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Target Optimization Hooks
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
|
||
DAGCombinerInfo &DCI,
|
||
unsigned &RefinementSteps,
|
||
bool &UseOneConstNR) const {
|
||
EVT VT = Operand.getValueType();
|
||
if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
|
||
(VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
|
||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
|
||
(VT == MVT::v2f64 && Subtarget.hasVSX())) {
|
||
// Convergence is quadratic, so we essentially double the number of digits
|
||
// correct after every iteration. For both FRE and FRSQRTE, the minimum
|
||
// architected relative accuracy is 2^-5. When hasRecipPrec(), this is
|
||
// 2^-14. IEEE float has 23 digits and double has 52 digits.
|
||
RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
|
||
if (VT.getScalarType() == MVT::f64)
|
||
++RefinementSteps;
|
||
UseOneConstNR = true;
|
||
return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
|
||
}
|
||
return SDValue();
|
||
}
|
||
|
||
SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
|
||
DAGCombinerInfo &DCI,
|
||
unsigned &RefinementSteps) const {
|
||
EVT VT = Operand.getValueType();
|
||
if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
|
||
(VT == MVT::f64 && Subtarget.hasFRE()) ||
|
||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
|
||
(VT == MVT::v2f64 && Subtarget.hasVSX())) {
|
||
// Convergence is quadratic, so we essentially double the number of digits
|
||
// correct after every iteration. For both FRE and FRSQRTE, the minimum
|
||
// architected relative accuracy is 2^-5. When hasRecipPrec(), this is
|
||
// 2^-14. IEEE float has 23 digits and double has 52 digits.
|
||
RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
|
||
if (VT.getScalarType() == MVT::f64)
|
||
++RefinementSteps;
|
||
return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
|
||
}
|
||
return SDValue();
|
||
}
|
||
|
||
bool PPCTargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
|
||
// Note: This functionality is used only when unsafe-fp-math is enabled, and
|
||
// on cores with reciprocal estimates (which are used when unsafe-fp-math is
|
||
// enabled for division), this functionality is redundant with the default
|
||
// combiner logic (once the division -> reciprocal/multiply transformation
|
||
// has taken place). As a result, this matters more for older cores than for
|
||
// newer ones.
|
||
|
||
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
|
||
// reciprocal if there are two or more FDIVs (for embedded cores with only
|
||
// one FP pipeline) for three or more FDIVs (for generic OOO cores).
|
||
switch (Subtarget.getDarwinDirective()) {
|
||
default:
|
||
return NumUsers > 2;
|
||
case PPC::DIR_440:
|
||
case PPC::DIR_A2:
|
||
case PPC::DIR_E500mc:
|
||
case PPC::DIR_E5500:
|
||
return NumUsers > 1;
|
||
}
|
||
}
|
||
|
||
static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
|
||
unsigned Bytes, int Dist,
|
||
SelectionDAG &DAG) {
|
||
if (VT.getSizeInBits() / 8 != Bytes)
|
||
return false;
|
||
|
||
SDValue BaseLoc = Base->getBasePtr();
|
||
if (Loc.getOpcode() == ISD::FrameIndex) {
|
||
if (BaseLoc.getOpcode() != ISD::FrameIndex)
|
||
return false;
|
||
const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
||
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
|
||
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
|
||
int FS = MFI->getObjectSize(FI);
|
||
int BFS = MFI->getObjectSize(BFI);
|
||
if (FS != BFS || FS != (int)Bytes) return false;
|
||
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
|
||
}
|
||
|
||
// Handle X+C
|
||
if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
|
||
cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
|
||
return true;
|
||
|
||
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
||
const GlobalValue *GV1 = nullptr;
|
||
const GlobalValue *GV2 = nullptr;
|
||
int64_t Offset1 = 0;
|
||
int64_t Offset2 = 0;
|
||
bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
|
||
bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
|
||
if (isGA1 && isGA2 && GV1 == GV2)
|
||
return Offset1 == (Offset2 + Dist*Bytes);
|
||
return false;
|
||
}
|
||
|
||
// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
|
||
// not enforce equality of the chain operands.
|
||
static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
|
||
unsigned Bytes, int Dist,
|
||
SelectionDAG &DAG) {
|
||
if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
|
||
EVT VT = LS->getMemoryVT();
|
||
SDValue Loc = LS->getBasePtr();
|
||
return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
|
||
}
|
||
|
||
if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
|
||
EVT VT;
|
||
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
||
default: return false;
|
||
case Intrinsic::ppc_altivec_lvx:
|
||
case Intrinsic::ppc_altivec_lvxl:
|
||
case Intrinsic::ppc_vsx_lxvw4x:
|
||
VT = MVT::v4i32;
|
||
break;
|
||
case Intrinsic::ppc_vsx_lxvd2x:
|
||
VT = MVT::v2f64;
|
||
break;
|
||
case Intrinsic::ppc_altivec_lvebx:
|
||
VT = MVT::i8;
|
||
break;
|
||
case Intrinsic::ppc_altivec_lvehx:
|
||
VT = MVT::i16;
|
||
break;
|
||
case Intrinsic::ppc_altivec_lvewx:
|
||
VT = MVT::i32;
|
||
break;
|
||
}
|
||
|
||
return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
|
||
}
|
||
|
||
if (N->getOpcode() == ISD::INTRINSIC_VOID) {
|
||
EVT VT;
|
||
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
||
default: return false;
|
||
case Intrinsic::ppc_altivec_stvx:
|
||
case Intrinsic::ppc_altivec_stvxl:
|
||
case Intrinsic::ppc_vsx_stxvw4x:
|
||
VT = MVT::v4i32;
|
||
break;
|
||
case Intrinsic::ppc_vsx_stxvd2x:
|
||
VT = MVT::v2f64;
|
||
break;
|
||
case Intrinsic::ppc_altivec_stvebx:
|
||
VT = MVT::i8;
|
||
break;
|
||
case Intrinsic::ppc_altivec_stvehx:
|
||
VT = MVT::i16;
|
||
break;
|
||
case Intrinsic::ppc_altivec_stvewx:
|
||
VT = MVT::i32;
|
||
break;
|
||
}
|
||
|
||
return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// Return true is there is a nearyby consecutive load to the one provided
|
||
// (regardless of alignment). We search up and down the chain, looking though
|
||
// token factors and other loads (but nothing else). As a result, a true result
|
||
// indicates that it is safe to create a new consecutive load adjacent to the
|
||
// load provided.
|
||
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
|
||
SDValue Chain = LD->getChain();
|
||
EVT VT = LD->getMemoryVT();
|
||
|
||
SmallSet<SDNode *, 16> LoadRoots;
|
||
SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
|
||
SmallSet<SDNode *, 16> Visited;
|
||
|
||
// First, search up the chain, branching to follow all token-factor operands.
|
||
// If we find a consecutive load, then we're done, otherwise, record all
|
||
// nodes just above the top-level loads and token factors.
|
||
while (!Queue.empty()) {
|
||
SDNode *ChainNext = Queue.pop_back_val();
|
||
if (!Visited.insert(ChainNext).second)
|
||
continue;
|
||
|
||
if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
|
||
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
|
||
return true;
|
||
|
||
if (!Visited.count(ChainLD->getChain().getNode()))
|
||
Queue.push_back(ChainLD->getChain().getNode());
|
||
} else if (ChainNext->getOpcode() == ISD::TokenFactor) {
|
||
for (const SDUse &O : ChainNext->ops())
|
||
if (!Visited.count(O.getNode()))
|
||
Queue.push_back(O.getNode());
|
||
} else
|
||
LoadRoots.insert(ChainNext);
|
||
}
|
||
|
||
// Second, search down the chain, starting from the top-level nodes recorded
|
||
// in the first phase. These top-level nodes are the nodes just above all
|
||
// loads and token factors. Starting with their uses, recursively look though
|
||
// all loads (just the chain uses) and token factors to find a consecutive
|
||
// load.
|
||
Visited.clear();
|
||
Queue.clear();
|
||
|
||
for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
|
||
IE = LoadRoots.end(); I != IE; ++I) {
|
||
Queue.push_back(*I);
|
||
|
||
while (!Queue.empty()) {
|
||
SDNode *LoadRoot = Queue.pop_back_val();
|
||
if (!Visited.insert(LoadRoot).second)
|
||
continue;
|
||
|
||
if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
|
||
if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
|
||
return true;
|
||
|
||
for (SDNode::use_iterator UI = LoadRoot->use_begin(),
|
||
UE = LoadRoot->use_end(); UI != UE; ++UI)
|
||
if (((isa<MemSDNode>(*UI) &&
|
||
cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
|
||
UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
|
||
Queue.push_back(*UI);
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
|
||
DAGCombinerInfo &DCI) const {
|
||
SelectionDAG &DAG = DCI.DAG;
|
||
SDLoc dl(N);
|
||
|
||
assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
|
||
// If we're tracking CR bits, we need to be careful that we don't have:
|
||
// trunc(binary-ops(zext(x), zext(y)))
|
||
// or
|
||
// trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
|
||
// such that we're unnecessarily moving things into GPRs when it would be
|
||
// better to keep them in CR bits.
|
||
|
||
// Note that trunc here can be an actual i1 trunc, or can be the effective
|
||
// truncation that comes from a setcc or select_cc.
|
||
if (N->getOpcode() == ISD::TRUNCATE &&
|
||
N->getValueType(0) != MVT::i1)
|
||
return SDValue();
|
||
|
||
if (N->getOperand(0).getValueType() != MVT::i32 &&
|
||
N->getOperand(0).getValueType() != MVT::i64)
|
||
return SDValue();
|
||
|
||
if (N->getOpcode() == ISD::SETCC ||
|
||
N->getOpcode() == ISD::SELECT_CC) {
|
||
// If we're looking at a comparison, then we need to make sure that the
|
||
// high bits (all except for the first) don't matter the result.
|
||
ISD::CondCode CC =
|
||
cast<CondCodeSDNode>(N->getOperand(
|
||
N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
|
||
unsigned OpBits = N->getOperand(0).getValueSizeInBits();
|
||
|
||
if (ISD::isSignedIntSetCC(CC)) {
|
||
if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
|
||
DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
|
||
return SDValue();
|
||
} else if (ISD::isUnsignedIntSetCC(CC)) {
|
||
if (!DAG.MaskedValueIsZero(N->getOperand(0),
|
||
APInt::getHighBitsSet(OpBits, OpBits-1)) ||
|
||
!DAG.MaskedValueIsZero(N->getOperand(1),
|
||
APInt::getHighBitsSet(OpBits, OpBits-1)))
|
||
return SDValue();
|
||
} else {
|
||
// This is neither a signed nor an unsigned comparison, just make sure
|
||
// that the high bits are equal.
|
||
APInt Op1Zero, Op1One;
|
||
APInt Op2Zero, Op2One;
|
||
DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
|
||
DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
|
||
|
||
// We don't really care about what is known about the first bit (if
|
||
// anything), so clear it in all masks prior to comparing them.
|
||
Op1Zero.clearBit(0); Op1One.clearBit(0);
|
||
Op2Zero.clearBit(0); Op2One.clearBit(0);
|
||
|
||
if (Op1Zero != Op2Zero || Op1One != Op2One)
|
||
return SDValue();
|
||
}
|
||
}
|
||
|
||
// We now know that the higher-order bits are irrelevant, we just need to
|
||
// make sure that all of the intermediate operations are bit operations, and
|
||
// all inputs are extensions.
|
||
if (N->getOperand(0).getOpcode() != ISD::AND &&
|
||
N->getOperand(0).getOpcode() != ISD::OR &&
|
||
N->getOperand(0).getOpcode() != ISD::XOR &&
|
||
N->getOperand(0).getOpcode() != ISD::SELECT &&
|
||
N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
|
||
N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
|
||
N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
|
||
N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
|
||
N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
|
||
return SDValue();
|
||
|
||
if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
|
||
N->getOperand(1).getOpcode() != ISD::AND &&
|
||
N->getOperand(1).getOpcode() != ISD::OR &&
|
||
N->getOperand(1).getOpcode() != ISD::XOR &&
|
||
N->getOperand(1).getOpcode() != ISD::SELECT &&
|
||
N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
|
||
N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
|
||
N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
|
||
N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
|
||
N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
|
||
return SDValue();
|
||
|
||
SmallVector<SDValue, 4> Inputs;
|
||
SmallVector<SDValue, 8> BinOps, PromOps;
|
||
SmallPtrSet<SDNode *, 16> Visited;
|
||
|
||
for (unsigned i = 0; i < 2; ++i) {
|
||
if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
|
||
N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
|
||
N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
|
||
N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
|
||
isa<ConstantSDNode>(N->getOperand(i)))
|
||
Inputs.push_back(N->getOperand(i));
|
||
else
|
||
BinOps.push_back(N->getOperand(i));
|
||
|
||
if (N->getOpcode() == ISD::TRUNCATE)
|
||
break;
|
||
}
|
||
|
||
// Visit all inputs, collect all binary operations (and, or, xor and
|
||
// select) that are all fed by extensions.
|
||
while (!BinOps.empty()) {
|
||
SDValue BinOp = BinOps.back();
|
||
BinOps.pop_back();
|
||
|
||
if (!Visited.insert(BinOp.getNode()).second)
|
||
continue;
|
||
|
||
PromOps.push_back(BinOp);
|
||
|
||
for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
|
||
// The condition of the select is not promoted.
|
||
if (BinOp.getOpcode() == ISD::SELECT && i == 0)
|
||
continue;
|
||
if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
|
||
continue;
|
||
|
||
if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
|
||
BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
|
||
isa<ConstantSDNode>(BinOp.getOperand(i))) {
|
||
Inputs.push_back(BinOp.getOperand(i));
|
||
} else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::OR ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::XOR ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
|
||
BinOps.push_back(BinOp.getOperand(i));
|
||
} else {
|
||
// We have an input that is not an extension or another binary
|
||
// operation; we'll abort this transformation.
|
||
return SDValue();
|
||
}
|
||
}
|
||
}
|
||
|
||
// Make sure that this is a self-contained cluster of operations (which
|
||
// is not quite the same thing as saying that everything has only one
|
||
// use).
|
||
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
||
if (isa<ConstantSDNode>(Inputs[i]))
|
||
continue;
|
||
|
||
for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
|
||
UE = Inputs[i].getNode()->use_end();
|
||
UI != UE; ++UI) {
|
||
SDNode *User = *UI;
|
||
if (User != N && !Visited.count(User))
|
||
return SDValue();
|
||
|
||
// Make sure that we're not going to promote the non-output-value
|
||
// operand(s) or SELECT or SELECT_CC.
|
||
// FIXME: Although we could sometimes handle this, and it does occur in
|
||
// practice that one of the condition inputs to the select is also one of
|
||
// the outputs, we currently can't deal with this.
|
||
if (User->getOpcode() == ISD::SELECT) {
|
||
if (User->getOperand(0) == Inputs[i])
|
||
return SDValue();
|
||
} else if (User->getOpcode() == ISD::SELECT_CC) {
|
||
if (User->getOperand(0) == Inputs[i] ||
|
||
User->getOperand(1) == Inputs[i])
|
||
return SDValue();
|
||
}
|
||
}
|
||
}
|
||
|
||
for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
|
||
for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
|
||
UE = PromOps[i].getNode()->use_end();
|
||
UI != UE; ++UI) {
|
||
SDNode *User = *UI;
|
||
if (User != N && !Visited.count(User))
|
||
return SDValue();
|
||
|
||
// Make sure that we're not going to promote the non-output-value
|
||
// operand(s) or SELECT or SELECT_CC.
|
||
// FIXME: Although we could sometimes handle this, and it does occur in
|
||
// practice that one of the condition inputs to the select is also one of
|
||
// the outputs, we currently can't deal with this.
|
||
if (User->getOpcode() == ISD::SELECT) {
|
||
if (User->getOperand(0) == PromOps[i])
|
||
return SDValue();
|
||
} else if (User->getOpcode() == ISD::SELECT_CC) {
|
||
if (User->getOperand(0) == PromOps[i] ||
|
||
User->getOperand(1) == PromOps[i])
|
||
return SDValue();
|
||
}
|
||
}
|
||
}
|
||
|
||
// Replace all inputs with the extension operand.
|
||
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
||
// Constants may have users outside the cluster of to-be-promoted nodes,
|
||
// and so we need to replace those as we do the promotions.
|
||
if (isa<ConstantSDNode>(Inputs[i]))
|
||
continue;
|
||
else
|
||
DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
|
||
}
|
||
|
||
// Replace all operations (these are all the same, but have a different
|
||
// (i1) return type). DAG.getNode will validate that the types of
|
||
// a binary operator match, so go through the list in reverse so that
|
||
// we've likely promoted both operands first. Any intermediate truncations or
|
||
// extensions disappear.
|
||
while (!PromOps.empty()) {
|
||
SDValue PromOp = PromOps.back();
|
||
PromOps.pop_back();
|
||
|
||
if (PromOp.getOpcode() == ISD::TRUNCATE ||
|
||
PromOp.getOpcode() == ISD::SIGN_EXTEND ||
|
||
PromOp.getOpcode() == ISD::ZERO_EXTEND ||
|
||
PromOp.getOpcode() == ISD::ANY_EXTEND) {
|
||
if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
|
||
PromOp.getOperand(0).getValueType() != MVT::i1) {
|
||
// The operand is not yet ready (see comment below).
|
||
PromOps.insert(PromOps.begin(), PromOp);
|
||
continue;
|
||
}
|
||
|
||
SDValue RepValue = PromOp.getOperand(0);
|
||
if (isa<ConstantSDNode>(RepValue))
|
||
RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
|
||
|
||
DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
|
||
continue;
|
||
}
|
||
|
||
unsigned C;
|
||
switch (PromOp.getOpcode()) {
|
||
default: C = 0; break;
|
||
case ISD::SELECT: C = 1; break;
|
||
case ISD::SELECT_CC: C = 2; break;
|
||
}
|
||
|
||
if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
|
||
PromOp.getOperand(C).getValueType() != MVT::i1) ||
|
||
(!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
|
||
PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
|
||
// The to-be-promoted operands of this node have not yet been
|
||
// promoted (this should be rare because we're going through the
|
||
// list backward, but if one of the operands has several users in
|
||
// this cluster of to-be-promoted nodes, it is possible).
|
||
PromOps.insert(PromOps.begin(), PromOp);
|
||
continue;
|
||
}
|
||
|
||
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
|
||
PromOp.getNode()->op_end());
|
||
|
||
// If there are any constant inputs, make sure they're replaced now.
|
||
for (unsigned i = 0; i < 2; ++i)
|
||
if (isa<ConstantSDNode>(Ops[C+i]))
|
||
Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
|
||
|
||
DAG.ReplaceAllUsesOfValueWith(PromOp,
|
||
DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
|
||
}
|
||
|
||
// Now we're left with the initial truncation itself.
|
||
if (N->getOpcode() == ISD::TRUNCATE)
|
||
return N->getOperand(0);
|
||
|
||
// Otherwise, this is a comparison. The operands to be compared have just
|
||
// changed type (to i1), but everything else is the same.
|
||
return SDValue(N, 0);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
|
||
DAGCombinerInfo &DCI) const {
|
||
SelectionDAG &DAG = DCI.DAG;
|
||
SDLoc dl(N);
|
||
|
||
// If we're tracking CR bits, we need to be careful that we don't have:
|
||
// zext(binary-ops(trunc(x), trunc(y)))
|
||
// or
|
||
// zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
|
||
// such that we're unnecessarily moving things into CR bits that can more
|
||
// efficiently stay in GPRs. Note that if we're not certain that the high
|
||
// bits are set as required by the final extension, we still may need to do
|
||
// some masking to get the proper behavior.
|
||
|
||
// This same functionality is important on PPC64 when dealing with
|
||
// 32-to-64-bit extensions; these occur often when 32-bit values are used as
|
||
// the return values of functions. Because it is so similar, it is handled
|
||
// here as well.
|
||
|
||
if (N->getValueType(0) != MVT::i32 &&
|
||
N->getValueType(0) != MVT::i64)
|
||
return SDValue();
|
||
|
||
if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
|
||
(N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
|
||
return SDValue();
|
||
|
||
if (N->getOperand(0).getOpcode() != ISD::AND &&
|
||
N->getOperand(0).getOpcode() != ISD::OR &&
|
||
N->getOperand(0).getOpcode() != ISD::XOR &&
|
||
N->getOperand(0).getOpcode() != ISD::SELECT &&
|
||
N->getOperand(0).getOpcode() != ISD::SELECT_CC)
|
||
return SDValue();
|
||
|
||
SmallVector<SDValue, 4> Inputs;
|
||
SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
|
||
SmallPtrSet<SDNode *, 16> Visited;
|
||
|
||
// Visit all inputs, collect all binary operations (and, or, xor and
|
||
// select) that are all fed by truncations.
|
||
while (!BinOps.empty()) {
|
||
SDValue BinOp = BinOps.back();
|
||
BinOps.pop_back();
|
||
|
||
if (!Visited.insert(BinOp.getNode()).second)
|
||
continue;
|
||
|
||
PromOps.push_back(BinOp);
|
||
|
||
for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
|
||
// The condition of the select is not promoted.
|
||
if (BinOp.getOpcode() == ISD::SELECT && i == 0)
|
||
continue;
|
||
if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
|
||
continue;
|
||
|
||
if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
|
||
isa<ConstantSDNode>(BinOp.getOperand(i))) {
|
||
Inputs.push_back(BinOp.getOperand(i));
|
||
} else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::OR ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::XOR ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
|
||
BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
|
||
BinOps.push_back(BinOp.getOperand(i));
|
||
} else {
|
||
// We have an input that is not a truncation or another binary
|
||
// operation; we'll abort this transformation.
|
||
return SDValue();
|
||
}
|
||
}
|
||
}
|
||
|
||
// The operands of a select that must be truncated when the select is
|
||
// promoted because the operand is actually part of the to-be-promoted set.
|
||
DenseMap<SDNode *, EVT> SelectTruncOp[2];
|
||
|
||
// Make sure that this is a self-contained cluster of operations (which
|
||
// is not quite the same thing as saying that everything has only one
|
||
// use).
|
||
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
||
if (isa<ConstantSDNode>(Inputs[i]))
|
||
continue;
|
||
|
||
for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
|
||
UE = Inputs[i].getNode()->use_end();
|
||
UI != UE; ++UI) {
|
||
SDNode *User = *UI;
|
||
if (User != N && !Visited.count(User))
|
||
return SDValue();
|
||
|
||
// If we're going to promote the non-output-value operand(s) or SELECT or
|
||
// SELECT_CC, record them for truncation.
|
||
if (User->getOpcode() == ISD::SELECT) {
|
||
if (User->getOperand(0) == Inputs[i])
|
||
SelectTruncOp[0].insert(std::make_pair(User,
|
||
User->getOperand(0).getValueType()));
|
||
} else if (User->getOpcode() == ISD::SELECT_CC) {
|
||
if (User->getOperand(0) == Inputs[i])
|
||
SelectTruncOp[0].insert(std::make_pair(User,
|
||
User->getOperand(0).getValueType()));
|
||
if (User->getOperand(1) == Inputs[i])
|
||
SelectTruncOp[1].insert(std::make_pair(User,
|
||
User->getOperand(1).getValueType()));
|
||
}
|
||
}
|
||
}
|
||
|
||
for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
|
||
for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
|
||
UE = PromOps[i].getNode()->use_end();
|
||
UI != UE; ++UI) {
|
||
SDNode *User = *UI;
|
||
if (User != N && !Visited.count(User))
|
||
return SDValue();
|
||
|
||
// If we're going to promote the non-output-value operand(s) or SELECT or
|
||
// SELECT_CC, record them for truncation.
|
||
if (User->getOpcode() == ISD::SELECT) {
|
||
if (User->getOperand(0) == PromOps[i])
|
||
SelectTruncOp[0].insert(std::make_pair(User,
|
||
User->getOperand(0).getValueType()));
|
||
} else if (User->getOpcode() == ISD::SELECT_CC) {
|
||
if (User->getOperand(0) == PromOps[i])
|
||
SelectTruncOp[0].insert(std::make_pair(User,
|
||
User->getOperand(0).getValueType()));
|
||
if (User->getOperand(1) == PromOps[i])
|
||
SelectTruncOp[1].insert(std::make_pair(User,
|
||
User->getOperand(1).getValueType()));
|
||
}
|
||
}
|
||
}
|
||
|
||
unsigned PromBits = N->getOperand(0).getValueSizeInBits();
|
||
bool ReallyNeedsExt = false;
|
||
if (N->getOpcode() != ISD::ANY_EXTEND) {
|
||
// If all of the inputs are not already sign/zero extended, then
|
||
// we'll still need to do that at the end.
|
||
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
||
if (isa<ConstantSDNode>(Inputs[i]))
|
||
continue;
|
||
|
||
unsigned OpBits =
|
||
Inputs[i].getOperand(0).getValueSizeInBits();
|
||
assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
|
||
|
||
if ((N->getOpcode() == ISD::ZERO_EXTEND &&
|
||
!DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
|
||
APInt::getHighBitsSet(OpBits,
|
||
OpBits-PromBits))) ||
|
||
(N->getOpcode() == ISD::SIGN_EXTEND &&
|
||
DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
|
||
(OpBits-(PromBits-1)))) {
|
||
ReallyNeedsExt = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Replace all inputs, either with the truncation operand, or a
|
||
// truncation or extension to the final output type.
|
||
for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
|
||
// Constant inputs need to be replaced with the to-be-promoted nodes that
|
||
// use them because they might have users outside of the cluster of
|
||
// promoted nodes.
|
||
if (isa<ConstantSDNode>(Inputs[i]))
|
||
continue;
|
||
|
||
SDValue InSrc = Inputs[i].getOperand(0);
|
||
if (Inputs[i].getValueType() == N->getValueType(0))
|
||
DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
|
||
else if (N->getOpcode() == ISD::SIGN_EXTEND)
|
||
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
|
||
DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
|
||
else if (N->getOpcode() == ISD::ZERO_EXTEND)
|
||
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
|
||
DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
|
||
else
|
||
DAG.ReplaceAllUsesOfValueWith(Inputs[i],
|
||
DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
|
||
}
|
||
|
||
// Replace all operations (these are all the same, but have a different
|
||
// (promoted) return type). DAG.getNode will validate that the types of
|
||
// a binary operator match, so go through the list in reverse so that
|
||
// we've likely promoted both operands first.
|
||
while (!PromOps.empty()) {
|
||
SDValue PromOp = PromOps.back();
|
||
PromOps.pop_back();
|
||
|
||
unsigned C;
|
||
switch (PromOp.getOpcode()) {
|
||
default: C = 0; break;
|
||
case ISD::SELECT: C = 1; break;
|
||
case ISD::SELECT_CC: C = 2; break;
|
||
}
|
||
|
||
if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
|
||
PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
|
||
(!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
|
||
PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
|
||
// The to-be-promoted operands of this node have not yet been
|
||
// promoted (this should be rare because we're going through the
|
||
// list backward, but if one of the operands has several users in
|
||
// this cluster of to-be-promoted nodes, it is possible).
|
||
PromOps.insert(PromOps.begin(), PromOp);
|
||
continue;
|
||
}
|
||
|
||
// For SELECT and SELECT_CC nodes, we do a similar check for any
|
||
// to-be-promoted comparison inputs.
|
||
if (PromOp.getOpcode() == ISD::SELECT ||
|
||
PromOp.getOpcode() == ISD::SELECT_CC) {
|
||
if ((SelectTruncOp[0].count(PromOp.getNode()) &&
|
||
PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
|
||
(SelectTruncOp[1].count(PromOp.getNode()) &&
|
||
PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
|
||
PromOps.insert(PromOps.begin(), PromOp);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
|
||
PromOp.getNode()->op_end());
|
||
|
||
// If this node has constant inputs, then they'll need to be promoted here.
|
||
for (unsigned i = 0; i < 2; ++i) {
|
||
if (!isa<ConstantSDNode>(Ops[C+i]))
|
||
continue;
|
||
if (Ops[C+i].getValueType() == N->getValueType(0))
|
||
continue;
|
||
|
||
if (N->getOpcode() == ISD::SIGN_EXTEND)
|
||
Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
|
||
else if (N->getOpcode() == ISD::ZERO_EXTEND)
|
||
Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
|
||
else
|
||
Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
|
||
}
|
||
|
||
// If we've promoted the comparison inputs of a SELECT or SELECT_CC,
|
||
// truncate them again to the original value type.
|
||
if (PromOp.getOpcode() == ISD::SELECT ||
|
||
PromOp.getOpcode() == ISD::SELECT_CC) {
|
||
auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
|
||
if (SI0 != SelectTruncOp[0].end())
|
||
Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
|
||
auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
|
||
if (SI1 != SelectTruncOp[1].end())
|
||
Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
|
||
}
|
||
|
||
DAG.ReplaceAllUsesOfValueWith(PromOp,
|
||
DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
|
||
}
|
||
|
||
// Now we're left with the initial extension itself.
|
||
if (!ReallyNeedsExt)
|
||
return N->getOperand(0);
|
||
|
||
// To zero extend, just mask off everything except for the first bit (in the
|
||
// i1 case).
|
||
if (N->getOpcode() == ISD::ZERO_EXTEND)
|
||
return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
|
||
DAG.getConstant(APInt::getLowBitsSet(
|
||
N->getValueSizeInBits(0), PromBits),
|
||
N->getValueType(0)));
|
||
|
||
assert(N->getOpcode() == ISD::SIGN_EXTEND &&
|
||
"Invalid extension type");
|
||
EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
|
||
SDValue ShiftCst =
|
||
DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
|
||
return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
|
||
DAG.getNode(ISD::SHL, dl, N->getValueType(0),
|
||
N->getOperand(0), ShiftCst), ShiftCst);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
|
||
DAGCombinerInfo &DCI) const {
|
||
assert((N->getOpcode() == ISD::SINT_TO_FP ||
|
||
N->getOpcode() == ISD::UINT_TO_FP) &&
|
||
"Need an int -> FP conversion node here");
|
||
|
||
if (!Subtarget.has64BitSupport())
|
||
return SDValue();
|
||
|
||
SelectionDAG &DAG = DCI.DAG;
|
||
SDLoc dl(N);
|
||
SDValue Op(N, 0);
|
||
|
||
// Don't handle ppc_fp128 here or i1 conversions.
|
||
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
|
||
return SDValue();
|
||
if (Op.getOperand(0).getValueType() == MVT::i1)
|
||
return SDValue();
|
||
|
||
// For i32 intermediate values, unfortunately, the conversion functions
|
||
// leave the upper 32 bits of the value are undefined. Within the set of
|
||
// scalar instructions, we have no method for zero- or sign-extending the
|
||
// value. Thus, we cannot handle i32 intermediate values here.
|
||
if (Op.getOperand(0).getValueType() == MVT::i32)
|
||
return SDValue();
|
||
|
||
assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
|
||
"UINT_TO_FP is supported only with FPCVT");
|
||
|
||
// If we have FCFIDS, then use it when converting to single-precision.
|
||
// Otherwise, convert to double-precision and then round.
|
||
unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
|
||
? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
|
||
: PPCISD::FCFIDS)
|
||
: (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
|
||
: PPCISD::FCFID);
|
||
MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
|
||
? MVT::f32
|
||
: MVT::f64;
|
||
|
||
// If we're converting from a float, to an int, and back to a float again,
|
||
// then we don't need the store/load pair at all.
|
||
if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
|
||
Subtarget.hasFPCVT()) ||
|
||
(Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
|
||
SDValue Src = Op.getOperand(0).getOperand(0);
|
||
if (Src.getValueType() == MVT::f32) {
|
||
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
|
||
DCI.AddToWorklist(Src.getNode());
|
||
}
|
||
|
||
unsigned FCTOp =
|
||
Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
|
||
PPCISD::FCTIDUZ;
|
||
|
||
SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
|
||
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
|
||
|
||
if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
|
||
FP = DAG.getNode(ISD::FP_ROUND, dl,
|
||
MVT::f32, FP, DAG.getIntPtrConstant(0));
|
||
DCI.AddToWorklist(FP.getNode());
|
||
}
|
||
|
||
return FP;
|
||
}
|
||
|
||
return SDValue();
|
||
}
|
||
|
||
// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
|
||
// builtins) into loads with swaps.
|
||
SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
|
||
DAGCombinerInfo &DCI) const {
|
||
SelectionDAG &DAG = DCI.DAG;
|
||
SDLoc dl(N);
|
||
SDValue Chain;
|
||
SDValue Base;
|
||
MachineMemOperand *MMO;
|
||
|
||
switch (N->getOpcode()) {
|
||
default:
|
||
llvm_unreachable("Unexpected opcode for little endian VSX load");
|
||
case ISD::LOAD: {
|
||
LoadSDNode *LD = cast<LoadSDNode>(N);
|
||
Chain = LD->getChain();
|
||
Base = LD->getBasePtr();
|
||
MMO = LD->getMemOperand();
|
||
// If the MMO suggests this isn't a load of a full vector, leave
|
||
// things alone. For a built-in, we have to make the change for
|
||
// correctness, so if there is a size problem that will be a bug.
|
||
if (MMO->getSize() < 16)
|
||
return SDValue();
|
||
break;
|
||
}
|
||
case ISD::INTRINSIC_W_CHAIN: {
|
||
MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
|
||
Chain = Intrin->getChain();
|
||
Base = Intrin->getBasePtr();
|
||
MMO = Intrin->getMemOperand();
|
||
break;
|
||
}
|
||
}
|
||
|
||
MVT VecTy = N->getValueType(0).getSimpleVT();
|
||
SDValue LoadOps[] = { Chain, Base };
|
||
SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
|
||
DAG.getVTList(VecTy, MVT::Other),
|
||
LoadOps, VecTy, MMO);
|
||
DCI.AddToWorklist(Load.getNode());
|
||
Chain = Load.getValue(1);
|
||
SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
|
||
DAG.getVTList(VecTy, MVT::Other), Chain, Load);
|
||
DCI.AddToWorklist(Swap.getNode());
|
||
return Swap;
|
||
}
|
||
|
||
// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
|
||
// builtins) into stores with swaps.
|
||
SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
|
||
DAGCombinerInfo &DCI) const {
|
||
SelectionDAG &DAG = DCI.DAG;
|
||
SDLoc dl(N);
|
||
SDValue Chain;
|
||
SDValue Base;
|
||
unsigned SrcOpnd;
|
||
MachineMemOperand *MMO;
|
||
|
||
switch (N->getOpcode()) {
|
||
default:
|
||
llvm_unreachable("Unexpected opcode for little endian VSX store");
|
||
case ISD::STORE: {
|
||
StoreSDNode *ST = cast<StoreSDNode>(N);
|
||
Chain = ST->getChain();
|
||
Base = ST->getBasePtr();
|
||
MMO = ST->getMemOperand();
|
||
SrcOpnd = 1;
|
||
// If the MMO suggests this isn't a store of a full vector, leave
|
||
// things alone. For a built-in, we have to make the change for
|
||
// correctness, so if there is a size problem that will be a bug.
|
||
if (MMO->getSize() < 16)
|
||
return SDValue();
|
||
break;
|
||
}
|
||
case ISD::INTRINSIC_VOID: {
|
||
MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
|
||
Chain = Intrin->getChain();
|
||
// Intrin->getBasePtr() oddly does not get what we want.
|
||
Base = Intrin->getOperand(3);
|
||
MMO = Intrin->getMemOperand();
|
||
SrcOpnd = 2;
|
||
break;
|
||
}
|
||
}
|
||
|
||
SDValue Src = N->getOperand(SrcOpnd);
|
||
MVT VecTy = Src.getValueType().getSimpleVT();
|
||
SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
|
||
DAG.getVTList(VecTy, MVT::Other), Chain, Src);
|
||
DCI.AddToWorklist(Swap.getNode());
|
||
Chain = Swap.getValue(1);
|
||
SDValue StoreOps[] = { Chain, Swap, Base };
|
||
SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
|
||
DAG.getVTList(MVT::Other),
|
||
StoreOps, VecTy, MMO);
|
||
DCI.AddToWorklist(Store.getNode());
|
||
return Store;
|
||
}
|
||
|
||
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
|
||
DAGCombinerInfo &DCI) const {
|
||
SelectionDAG &DAG = DCI.DAG;
|
||
SDLoc dl(N);
|
||
switch (N->getOpcode()) {
|
||
default: break;
|
||
case PPCISD::SHL:
|
||
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
||
if (C->isNullValue()) // 0 << V -> 0.
|
||
return N->getOperand(0);
|
||
}
|
||
break;
|
||
case PPCISD::SRL:
|
||
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
||
if (C->isNullValue()) // 0 >>u V -> 0.
|
||
return N->getOperand(0);
|
||
}
|
||
break;
|
||
case PPCISD::SRA:
|
||
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
||
if (C->isNullValue() || // 0 >>s V -> 0.
|
||
C->isAllOnesValue()) // -1 >>s V -> -1.
|
||
return N->getOperand(0);
|
||
}
|
||
break;
|
||
case ISD::SIGN_EXTEND:
|
||
case ISD::ZERO_EXTEND:
|
||
case ISD::ANY_EXTEND:
|
||
return DAGCombineExtBoolTrunc(N, DCI);
|
||
case ISD::TRUNCATE:
|
||
case ISD::SETCC:
|
||
case ISD::SELECT_CC:
|
||
return DAGCombineTruncBoolExt(N, DCI);
|
||
case ISD::SINT_TO_FP:
|
||
case ISD::UINT_TO_FP:
|
||
return combineFPToIntToFP(N, DCI);
|
||
case ISD::STORE: {
|
||
// Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
|
||
if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
|
||
N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
|
||
N->getOperand(1).getValueType() == MVT::i32 &&
|
||
N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
|
||
SDValue Val = N->getOperand(1).getOperand(0);
|
||
if (Val.getValueType() == MVT::f32) {
|
||
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
|
||
DCI.AddToWorklist(Val.getNode());
|
||
}
|
||
Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
|
||
DCI.AddToWorklist(Val.getNode());
|
||
|
||
SDValue Ops[] = {
|
||
N->getOperand(0), Val, N->getOperand(2),
|
||
DAG.getValueType(N->getOperand(1).getValueType())
|
||
};
|
||
|
||
Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
|
||
DAG.getVTList(MVT::Other), Ops,
|
||
cast<StoreSDNode>(N)->getMemoryVT(),
|
||
cast<StoreSDNode>(N)->getMemOperand());
|
||
DCI.AddToWorklist(Val.getNode());
|
||
return Val;
|
||
}
|
||
|
||
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
|
||
if (cast<StoreSDNode>(N)->isUnindexed() &&
|
||
N->getOperand(1).getOpcode() == ISD::BSWAP &&
|
||
N->getOperand(1).getNode()->hasOneUse() &&
|
||
(N->getOperand(1).getValueType() == MVT::i32 ||
|
||
N->getOperand(1).getValueType() == MVT::i16 ||
|
||
(Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
|
||
N->getOperand(1).getValueType() == MVT::i64))) {
|
||
SDValue BSwapOp = N->getOperand(1).getOperand(0);
|
||
// Do an any-extend to 32-bits if this is a half-word input.
|
||
if (BSwapOp.getValueType() == MVT::i16)
|
||
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
|
||
|
||
SDValue Ops[] = {
|
||
N->getOperand(0), BSwapOp, N->getOperand(2),
|
||
DAG.getValueType(N->getOperand(1).getValueType())
|
||
};
|
||
return
|
||
DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
|
||
Ops, cast<StoreSDNode>(N)->getMemoryVT(),
|
||
cast<StoreSDNode>(N)->getMemOperand());
|
||
}
|
||
|
||
// For little endian, VSX stores require generating xxswapd/lxvd2x.
|
||
EVT VT = N->getOperand(1).getValueType();
|
||
if (VT.isSimple()) {
|
||
MVT StoreVT = VT.getSimpleVT();
|
||
if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
|
||
(StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
|
||
StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
|
||
return expandVSXStoreForLE(N, DCI);
|
||
}
|
||
break;
|
||
}
|
||
case ISD::LOAD: {
|
||
LoadSDNode *LD = cast<LoadSDNode>(N);
|
||
EVT VT = LD->getValueType(0);
|
||
|
||
// For little endian, VSX loads require generating lxvd2x/xxswapd.
|
||
if (VT.isSimple()) {
|
||
MVT LoadVT = VT.getSimpleVT();
|
||
if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
|
||
(LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
|
||
LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
|
||
return expandVSXLoadForLE(N, DCI);
|
||
}
|
||
|
||
Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
|
||
unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
|
||
if (ISD::isNON_EXTLoad(N) && VT.isVector() && Subtarget.hasAltivec() &&
|
||
// P8 and later hardware should just use LOAD.
|
||
!Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
|
||
VT == MVT::v4i32 || VT == MVT::v4f32) &&
|
||
LD->getAlignment() < ABIAlignment) {
|
||
// This is a type-legal unaligned Altivec load.
|
||
SDValue Chain = LD->getChain();
|
||
SDValue Ptr = LD->getBasePtr();
|
||
bool isLittleEndian = Subtarget.isLittleEndian();
|
||
|
||
// This implements the loading of unaligned vectors as described in
|
||
// the venerable Apple Velocity Engine overview. Specifically:
|
||
// https://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||
// https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
|
||
//
|
||
// The general idea is to expand a sequence of one or more unaligned
|
||
// loads into an alignment-based permutation-control instruction (lvsl
|
||
// or lvsr), a series of regular vector loads (which always truncate
|
||
// their input address to an aligned address), and a series of
|
||
// permutations. The results of these permutations are the requested
|
||
// loaded values. The trick is that the last "extra" load is not taken
|
||
// from the address you might suspect (sizeof(vector) bytes after the
|
||
// last requested load), but rather sizeof(vector) - 1 bytes after the
|
||
// last requested vector. The point of this is to avoid a page fault if
|
||
// the base address happened to be aligned. This works because if the
|
||
// base address is aligned, then adding less than a full vector length
|
||
// will cause the last vector in the sequence to be (re)loaded.
|
||
// Otherwise, the next vector will be fetched as you might suspect was
|
||
// necessary.
|
||
|
||
// We might be able to reuse the permutation generation from
|
||
// a different base address offset from this one by an aligned amount.
|
||
// The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
|
||
// optimization later.
|
||
Intrinsic::ID Intr = (isLittleEndian ?
|
||
Intrinsic::ppc_altivec_lvsr :
|
||
Intrinsic::ppc_altivec_lvsl);
|
||
SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8);
|
||
|
||
// Create the new MMO for the new base load. It is like the original MMO,
|
||
// but represents an area in memory almost twice the vector size centered
|
||
// on the original address. If the address is unaligned, we might start
|
||
// reading up to (sizeof(vector)-1) bytes below the address of the
|
||
// original unaligned load.
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineMemOperand *BaseMMO =
|
||
MF.getMachineMemOperand(LD->getMemOperand(),
|
||
-LD->getMemoryVT().getStoreSize()+1,
|
||
2*LD->getMemoryVT().getStoreSize()-1);
|
||
|
||
// Create the new base load.
|
||
SDValue LDXIntID = DAG.getTargetConstant(Intrinsic::ppc_altivec_lvx,
|
||
getPointerTy());
|
||
SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
|
||
SDValue BaseLoad =
|
||
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
|
||
DAG.getVTList(MVT::v4i32, MVT::Other),
|
||
BaseLoadOps, MVT::v4i32, BaseMMO);
|
||
|
||
// Note that the value of IncOffset (which is provided to the next
|
||
// load's pointer info offset value, and thus used to calculate the
|
||
// alignment), and the value of IncValue (which is actually used to
|
||
// increment the pointer value) are different! This is because we
|
||
// require the next load to appear to be aligned, even though it
|
||
// is actually offset from the base pointer by a lesser amount.
|
||
int IncOffset = VT.getSizeInBits() / 8;
|
||
int IncValue = IncOffset;
|
||
|
||
// Walk (both up and down) the chain looking for another load at the real
|
||
// (aligned) offset (the alignment of the other load does not matter in
|
||
// this case). If found, then do not use the offset reduction trick, as
|
||
// that will prevent the loads from being later combined (as they would
|
||
// otherwise be duplicates).
|
||
if (!findConsecutiveLoad(LD, DAG))
|
||
--IncValue;
|
||
|
||
SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
|
||
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
|
||
|
||
MachineMemOperand *ExtraMMO =
|
||
MF.getMachineMemOperand(LD->getMemOperand(),
|
||
1, 2*LD->getMemoryVT().getStoreSize()-1);
|
||
SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
|
||
SDValue ExtraLoad =
|
||
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
|
||
DAG.getVTList(MVT::v4i32, MVT::Other),
|
||
ExtraLoadOps, MVT::v4i32, ExtraMMO);
|
||
|
||
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
||
BaseLoad.getValue(1), ExtraLoad.getValue(1));
|
||
|
||
// Because vperm has a big-endian bias, we must reverse the order
|
||
// of the input vectors and complement the permute control vector
|
||
// when generating little endian code. We have already handled the
|
||
// latter by using lvsr instead of lvsl, so just reverse BaseLoad
|
||
// and ExtraLoad here.
|
||
SDValue Perm;
|
||
if (isLittleEndian)
|
||
Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
|
||
ExtraLoad, BaseLoad, PermCntl, DAG, dl);
|
||
else
|
||
Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
|
||
BaseLoad, ExtraLoad, PermCntl, DAG, dl);
|
||
|
||
if (VT != MVT::v4i32)
|
||
Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
|
||
|
||
// The output of the permutation is our loaded result, the TokenFactor is
|
||
// our new chain.
|
||
DCI.CombineTo(N, Perm, TF);
|
||
return SDValue(N, 0);
|
||
}
|
||
}
|
||
break;
|
||
case ISD::INTRINSIC_WO_CHAIN: {
|
||
bool isLittleEndian = Subtarget.isLittleEndian();
|
||
Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
|
||
: Intrinsic::ppc_altivec_lvsl);
|
||
if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr &&
|
||
N->getOperand(1)->getOpcode() == ISD::ADD) {
|
||
SDValue Add = N->getOperand(1);
|
||
|
||
if (DAG.MaskedValueIsZero(
|
||
Add->getOperand(1),
|
||
APInt::getAllOnesValue(4 /* 16 byte alignment */)
|
||
.zext(
|
||
Add.getValueType().getScalarType().getSizeInBits()))) {
|
||
SDNode *BasePtr = Add->getOperand(0).getNode();
|
||
for (SDNode::use_iterator UI = BasePtr->use_begin(),
|
||
UE = BasePtr->use_end();
|
||
UI != UE; ++UI) {
|
||
if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
|
||
cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
|
||
Intr) {
|
||
// We've found another LVSL/LVSR, and this address is an aligned
|
||
// multiple of that one. The results will be the same, so use the
|
||
// one we've just found instead.
|
||
|
||
return SDValue(*UI, 0);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
case ISD::INTRINSIC_W_CHAIN: {
|
||
// For little endian, VSX loads require generating lxvd2x/xxswapd.
|
||
if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
|
||
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
||
default:
|
||
break;
|
||
case Intrinsic::ppc_vsx_lxvw4x:
|
||
case Intrinsic::ppc_vsx_lxvd2x:
|
||
return expandVSXLoadForLE(N, DCI);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case ISD::INTRINSIC_VOID: {
|
||
// For little endian, VSX stores require generating xxswapd/stxvd2x.
|
||
if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
|
||
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
||
default:
|
||
break;
|
||
case Intrinsic::ppc_vsx_stxvw4x:
|
||
case Intrinsic::ppc_vsx_stxvd2x:
|
||
return expandVSXStoreForLE(N, DCI);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case ISD::BSWAP:
|
||
// Turn BSWAP (LOAD) -> lhbrx/lwbrx.
|
||
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
|
||
N->getOperand(0).hasOneUse() &&
|
||
(N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
|
||
(Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
|
||
N->getValueType(0) == MVT::i64))) {
|
||
SDValue Load = N->getOperand(0);
|
||
LoadSDNode *LD = cast<LoadSDNode>(Load);
|
||
// Create the byte-swapping load.
|
||
SDValue Ops[] = {
|
||
LD->getChain(), // Chain
|
||
LD->getBasePtr(), // Ptr
|
||
DAG.getValueType(N->getValueType(0)) // VT
|
||
};
|
||
SDValue BSLoad =
|
||
DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
|
||
DAG.getVTList(N->getValueType(0) == MVT::i64 ?
|
||
MVT::i64 : MVT::i32, MVT::Other),
|
||
Ops, LD->getMemoryVT(), LD->getMemOperand());
|
||
|
||
// If this is an i16 load, insert the truncate.
|
||
SDValue ResVal = BSLoad;
|
||
if (N->getValueType(0) == MVT::i16)
|
||
ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
|
||
|
||
// First, combine the bswap away. This makes the value produced by the
|
||
// load dead.
|
||
DCI.CombineTo(N, ResVal);
|
||
|
||
// Next, combine the load away, we give it a bogus result value but a real
|
||
// chain result. The result value is dead because the bswap is dead.
|
||
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
|
||
|
||
// Return N so it doesn't get rechecked!
|
||
return SDValue(N, 0);
|
||
}
|
||
|
||
break;
|
||
case PPCISD::VCMP: {
|
||
// If a VCMPo node already exists with exactly the same operands as this
|
||
// node, use its result instead of this node (VCMPo computes both a CR6 and
|
||
// a normal output).
|
||
//
|
||
if (!N->getOperand(0).hasOneUse() &&
|
||
!N->getOperand(1).hasOneUse() &&
|
||
!N->getOperand(2).hasOneUse()) {
|
||
|
||
// Scan all of the users of the LHS, looking for VCMPo's that match.
|
||
SDNode *VCMPoNode = nullptr;
|
||
|
||
SDNode *LHSN = N->getOperand(0).getNode();
|
||
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
|
||
UI != E; ++UI)
|
||
if (UI->getOpcode() == PPCISD::VCMPo &&
|
||
UI->getOperand(1) == N->getOperand(1) &&
|
||
UI->getOperand(2) == N->getOperand(2) &&
|
||
UI->getOperand(0) == N->getOperand(0)) {
|
||
VCMPoNode = *UI;
|
||
break;
|
||
}
|
||
|
||
// If there is no VCMPo node, or if the flag value has a single use, don't
|
||
// transform this.
|
||
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
|
||
break;
|
||
|
||
// Look at the (necessarily single) use of the flag value. If it has a
|
||
// chain, this transformation is more complex. Note that multiple things
|
||
// could use the value result, which we should ignore.
|
||
SDNode *FlagUser = nullptr;
|
||
for (SDNode::use_iterator UI = VCMPoNode->use_begin();
|
||
FlagUser == nullptr; ++UI) {
|
||
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
|
||
SDNode *User = *UI;
|
||
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
|
||
if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
|
||
FlagUser = User;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// If the user is a MFOCRF instruction, we know this is safe.
|
||
// Otherwise we give up for right now.
|
||
if (FlagUser->getOpcode() == PPCISD::MFOCRF)
|
||
return SDValue(VCMPoNode, 0);
|
||
}
|
||
break;
|
||
}
|
||
case ISD::BRCOND: {
|
||
SDValue Cond = N->getOperand(1);
|
||
SDValue Target = N->getOperand(2);
|
||
|
||
if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
|
||
cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
|
||
Intrinsic::ppc_is_decremented_ctr_nonzero) {
|
||
|
||
// We now need to make the intrinsic dead (it cannot be instruction
|
||
// selected).
|
||
DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
|
||
assert(Cond.getNode()->hasOneUse() &&
|
||
"Counter decrement has more than one use");
|
||
|
||
return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
|
||
N->getOperand(0), Target);
|
||
}
|
||
}
|
||
break;
|
||
case ISD::BR_CC: {
|
||
// If this is a branch on an altivec predicate comparison, lower this so
|
||
// that we don't have to do a MFOCRF: instead, branch directly on CR6. This
|
||
// lowering is done pre-legalize, because the legalizer lowers the predicate
|
||
// compare down to code that is difficult to reassemble.
|
||
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
|
||
SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
|
||
|
||
// Sometimes the promoted value of the intrinsic is ANDed by some non-zero
|
||
// value. If so, pass-through the AND to get to the intrinsic.
|
||
if (LHS.getOpcode() == ISD::AND &&
|
||
LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
|
||
cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
|
||
Intrinsic::ppc_is_decremented_ctr_nonzero &&
|
||
isa<ConstantSDNode>(LHS.getOperand(1)) &&
|
||
!cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
|
||
isZero())
|
||
LHS = LHS.getOperand(0);
|
||
|
||
if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
|
||
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
|
||
Intrinsic::ppc_is_decremented_ctr_nonzero &&
|
||
isa<ConstantSDNode>(RHS)) {
|
||
assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
|
||
"Counter decrement comparison is not EQ or NE");
|
||
|
||
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
|
||
bool isBDNZ = (CC == ISD::SETEQ && Val) ||
|
||
(CC == ISD::SETNE && !Val);
|
||
|
||
// We now need to make the intrinsic dead (it cannot be instruction
|
||
// selected).
|
||
DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
|
||
assert(LHS.getNode()->hasOneUse() &&
|
||
"Counter decrement has more than one use");
|
||
|
||
return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
|
||
N->getOperand(0), N->getOperand(4));
|
||
}
|
||
|
||
int CompareOpc;
|
||
bool isDot;
|
||
|
||
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
|
||
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
|
||
getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
|
||
assert(isDot && "Can't compare against a vector result!");
|
||
|
||
// If this is a comparison against something other than 0/1, then we know
|
||
// that the condition is never/always true.
|
||
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
|
||
if (Val != 0 && Val != 1) {
|
||
if (CC == ISD::SETEQ) // Cond never true, remove branch.
|
||
return N->getOperand(0);
|
||
// Always !=, turn it into an unconditional branch.
|
||
return DAG.getNode(ISD::BR, dl, MVT::Other,
|
||
N->getOperand(0), N->getOperand(4));
|
||
}
|
||
|
||
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
|
||
|
||
// Create the PPCISD altivec 'dot' comparison node.
|
||
SDValue Ops[] = {
|
||
LHS.getOperand(2), // LHS of compare
|
||
LHS.getOperand(3), // RHS of compare
|
||
DAG.getConstant(CompareOpc, MVT::i32)
|
||
};
|
||
EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
|
||
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
|
||
|
||
// Unpack the result based on how the target uses it.
|
||
PPC::Predicate CompOpc;
|
||
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
|
||
default: // Can't happen, don't crash on invalid number though.
|
||
case 0: // Branch on the value of the EQ bit of CR6.
|
||
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
|
||
break;
|
||
case 1: // Branch on the inverted value of the EQ bit of CR6.
|
||
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
|
||
break;
|
||
case 2: // Branch on the value of the LT bit of CR6.
|
||
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
|
||
break;
|
||
case 3: // Branch on the inverted value of the LT bit of CR6.
|
||
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
|
||
break;
|
||
}
|
||
|
||
return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
|
||
DAG.getConstant(CompOpc, MVT::i32),
|
||
DAG.getRegister(PPC::CR6, MVT::i32),
|
||
N->getOperand(4), CompNode.getValue(1));
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
return SDValue();
|
||
}
|
||
|
||
SDValue
|
||
PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
|
||
SelectionDAG &DAG,
|
||
std::vector<SDNode *> *Created) const {
|
||
// fold (sdiv X, pow2)
|
||
EVT VT = N->getValueType(0);
|
||
if (VT == MVT::i64 && !Subtarget.isPPC64())
|
||
return SDValue();
|
||
if ((VT != MVT::i32 && VT != MVT::i64) ||
|
||
!(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
|
||
return SDValue();
|
||
|
||
SDLoc DL(N);
|
||
SDValue N0 = N->getOperand(0);
|
||
|
||
bool IsNegPow2 = (-Divisor).isPowerOf2();
|
||
unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
|
||
SDValue ShiftAmt = DAG.getConstant(Lg2, VT);
|
||
|
||
SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
|
||
if (Created)
|
||
Created->push_back(Op.getNode());
|
||
|
||
if (IsNegPow2) {
|
||
Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), Op);
|
||
if (Created)
|
||
Created->push_back(Op.getNode());
|
||
}
|
||
|
||
return Op;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Inline Assembly Support
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
|
||
APInt &KnownZero,
|
||
APInt &KnownOne,
|
||
const SelectionDAG &DAG,
|
||
unsigned Depth) const {
|
||
KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
|
||
switch (Op.getOpcode()) {
|
||
default: break;
|
||
case PPCISD::LBRX: {
|
||
// lhbrx is known to have the top bits cleared out.
|
||
if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
|
||
KnownZero = 0xFFFF0000;
|
||
break;
|
||
}
|
||
case ISD::INTRINSIC_WO_CHAIN: {
|
||
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
|
||
default: break;
|
||
case Intrinsic::ppc_altivec_vcmpbfp_p:
|
||
case Intrinsic::ppc_altivec_vcmpeqfp_p:
|
||
case Intrinsic::ppc_altivec_vcmpequb_p:
|
||
case Intrinsic::ppc_altivec_vcmpequh_p:
|
||
case Intrinsic::ppc_altivec_vcmpequw_p:
|
||
case Intrinsic::ppc_altivec_vcmpgefp_p:
|
||
case Intrinsic::ppc_altivec_vcmpgtfp_p:
|
||
case Intrinsic::ppc_altivec_vcmpgtsb_p:
|
||
case Intrinsic::ppc_altivec_vcmpgtsh_p:
|
||
case Intrinsic::ppc_altivec_vcmpgtsw_p:
|
||
case Intrinsic::ppc_altivec_vcmpgtub_p:
|
||
case Intrinsic::ppc_altivec_vcmpgtuh_p:
|
||
case Intrinsic::ppc_altivec_vcmpgtuw_p:
|
||
KnownZero = ~1U; // All bits but the low one are known to be zero.
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
|
||
switch (Subtarget.getDarwinDirective()) {
|
||
default: break;
|
||
case PPC::DIR_970:
|
||
case PPC::DIR_PWR4:
|
||
case PPC::DIR_PWR5:
|
||
case PPC::DIR_PWR5X:
|
||
case PPC::DIR_PWR6:
|
||
case PPC::DIR_PWR6X:
|
||
case PPC::DIR_PWR7:
|
||
case PPC::DIR_PWR8: {
|
||
if (!ML)
|
||
break;
|
||
|
||
const PPCInstrInfo *TII = Subtarget.getInstrInfo();
|
||
|
||
// For small loops (between 5 and 8 instructions), align to a 32-byte
|
||
// boundary so that the entire loop fits in one instruction-cache line.
|
||
uint64_t LoopSize = 0;
|
||
for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
|
||
for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J)
|
||
LoopSize += TII->GetInstSizeInBytes(J);
|
||
|
||
if (LoopSize > 16 && LoopSize <= 32)
|
||
return 5;
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TargetLowering::getPrefLoopAlignment(ML);
|
||
}
|
||
|
||
/// getConstraintType - Given a constraint, return the type of
|
||
/// constraint it is for this target.
|
||
PPCTargetLowering::ConstraintType
|
||
PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
|
||
if (Constraint.size() == 1) {
|
||
switch (Constraint[0]) {
|
||
default: break;
|
||
case 'b':
|
||
case 'r':
|
||
case 'f':
|
||
case 'v':
|
||
case 'y':
|
||
return C_RegisterClass;
|
||
case 'Z':
|
||
// FIXME: While Z does indicate a memory constraint, it specifically
|
||
// indicates an r+r address (used in conjunction with the 'y' modifier
|
||
// in the replacement string). Currently, we're forcing the base
|
||
// register to be r0 in the asm printer (which is interpreted as zero)
|
||
// and forming the complete address in the second register. This is
|
||
// suboptimal.
|
||
return C_Memory;
|
||
}
|
||
} else if (Constraint == "wc") { // individual CR bits.
|
||
return C_RegisterClass;
|
||
} else if (Constraint == "wa" || Constraint == "wd" ||
|
||
Constraint == "wf" || Constraint == "ws") {
|
||
return C_RegisterClass; // VSX registers.
|
||
}
|
||
return TargetLowering::getConstraintType(Constraint);
|
||
}
|
||
|
||
/// Examine constraint type and operand type and determine a weight value.
|
||
/// This object must already have been set up with the operand type
|
||
/// and the current alternative constraint selected.
|
||
TargetLowering::ConstraintWeight
|
||
PPCTargetLowering::getSingleConstraintMatchWeight(
|
||
AsmOperandInfo &info, const char *constraint) const {
|
||
ConstraintWeight weight = CW_Invalid;
|
||
Value *CallOperandVal = info.CallOperandVal;
|
||
// If we don't have a value, we can't do a match,
|
||
// but allow it at the lowest weight.
|
||
if (!CallOperandVal)
|
||
return CW_Default;
|
||
Type *type = CallOperandVal->getType();
|
||
|
||
// Look at the constraint type.
|
||
if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
|
||
return CW_Register; // an individual CR bit.
|
||
else if ((StringRef(constraint) == "wa" ||
|
||
StringRef(constraint) == "wd" ||
|
||
StringRef(constraint) == "wf") &&
|
||
type->isVectorTy())
|
||
return CW_Register;
|
||
else if (StringRef(constraint) == "ws" && type->isDoubleTy())
|
||
return CW_Register;
|
||
|
||
switch (*constraint) {
|
||
default:
|
||
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
||
break;
|
||
case 'b':
|
||
if (type->isIntegerTy())
|
||
weight = CW_Register;
|
||
break;
|
||
case 'f':
|
||
if (type->isFloatTy())
|
||
weight = CW_Register;
|
||
break;
|
||
case 'd':
|
||
if (type->isDoubleTy())
|
||
weight = CW_Register;
|
||
break;
|
||
case 'v':
|
||
if (type->isVectorTy())
|
||
weight = CW_Register;
|
||
break;
|
||
case 'y':
|
||
weight = CW_Register;
|
||
break;
|
||
case 'Z':
|
||
weight = CW_Memory;
|
||
break;
|
||
}
|
||
return weight;
|
||
}
|
||
|
||
std::pair<unsigned, const TargetRegisterClass*>
|
||
PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
||
MVT VT) const {
|
||
if (Constraint.size() == 1) {
|
||
// GCC RS6000 Constraint Letters
|
||
switch (Constraint[0]) {
|
||
case 'b': // R1-R31
|
||
if (VT == MVT::i64 && Subtarget.isPPC64())
|
||
return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
|
||
return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
|
||
case 'r': // R0-R31
|
||
if (VT == MVT::i64 && Subtarget.isPPC64())
|
||
return std::make_pair(0U, &PPC::G8RCRegClass);
|
||
return std::make_pair(0U, &PPC::GPRCRegClass);
|
||
case 'f':
|
||
if (VT == MVT::f32 || VT == MVT::i32)
|
||
return std::make_pair(0U, &PPC::F4RCRegClass);
|
||
if (VT == MVT::f64 || VT == MVT::i64)
|
||
return std::make_pair(0U, &PPC::F8RCRegClass);
|
||
break;
|
||
case 'v':
|
||
return std::make_pair(0U, &PPC::VRRCRegClass);
|
||
case 'y': // crrc
|
||
return std::make_pair(0U, &PPC::CRRCRegClass);
|
||
}
|
||
} else if (Constraint == "wc") { // an individual CR bit.
|
||
return std::make_pair(0U, &PPC::CRBITRCRegClass);
|
||
} else if (Constraint == "wa" || Constraint == "wd" ||
|
||
Constraint == "wf") {
|
||
return std::make_pair(0U, &PPC::VSRCRegClass);
|
||
} else if (Constraint == "ws") {
|
||
return std::make_pair(0U, &PPC::VSFRCRegClass);
|
||
}
|
||
|
||
std::pair<unsigned, const TargetRegisterClass*> R =
|
||
TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
||
|
||
// r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
|
||
// (which we call X[0-9]+). If a 64-bit value has been requested, and a
|
||
// 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
|
||
// register.
|
||
// FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
|
||
// the AsmName field from *RegisterInfo.td, then this would not be necessary.
|
||
if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
|
||
PPC::GPRCRegClass.contains(R.first)) {
|
||
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
||
return std::make_pair(TRI->getMatchingSuperReg(R.first,
|
||
PPC::sub_32, &PPC::G8RCRegClass),
|
||
&PPC::G8RCRegClass);
|
||
}
|
||
|
||
// GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
|
||
if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
|
||
R.first = PPC::CR0;
|
||
R.second = &PPC::CRRCRegClass;
|
||
}
|
||
|
||
return R;
|
||
}
|
||
|
||
|
||
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
||
/// vector. If it is invalid, don't add anything to Ops.
|
||
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
||
std::string &Constraint,
|
||
std::vector<SDValue>&Ops,
|
||
SelectionDAG &DAG) const {
|
||
SDValue Result;
|
||
|
||
// Only support length 1 constraints.
|
||
if (Constraint.length() > 1) return;
|
||
|
||
char Letter = Constraint[0];
|
||
switch (Letter) {
|
||
default: break;
|
||
case 'I':
|
||
case 'J':
|
||
case 'K':
|
||
case 'L':
|
||
case 'M':
|
||
case 'N':
|
||
case 'O':
|
||
case 'P': {
|
||
ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
|
||
if (!CST) return; // Must be an immediate to match.
|
||
int64_t Value = CST->getSExtValue();
|
||
EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
|
||
// numbers are printed as such.
|
||
switch (Letter) {
|
||
default: llvm_unreachable("Unknown constraint letter!");
|
||
case 'I': // "I" is a signed 16-bit constant.
|
||
if (isInt<16>(Value))
|
||
Result = DAG.getTargetConstant(Value, TCVT);
|
||
break;
|
||
case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
|
||
if (isShiftedUInt<16, 16>(Value))
|
||
Result = DAG.getTargetConstant(Value, TCVT);
|
||
break;
|
||
case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
|
||
if (isShiftedInt<16, 16>(Value))
|
||
Result = DAG.getTargetConstant(Value, TCVT);
|
||
break;
|
||
case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
|
||
if (isUInt<16>(Value))
|
||
Result = DAG.getTargetConstant(Value, TCVT);
|
||
break;
|
||
case 'M': // "M" is a constant that is greater than 31.
|
||
if (Value > 31)
|
||
Result = DAG.getTargetConstant(Value, TCVT);
|
||
break;
|
||
case 'N': // "N" is a positive constant that is an exact power of two.
|
||
if (Value > 0 && isPowerOf2_64(Value))
|
||
Result = DAG.getTargetConstant(Value, TCVT);
|
||
break;
|
||
case 'O': // "O" is the constant zero.
|
||
if (Value == 0)
|
||
Result = DAG.getTargetConstant(Value, TCVT);
|
||
break;
|
||
case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
|
||
if (isInt<16>(-Value))
|
||
Result = DAG.getTargetConstant(Value, TCVT);
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (Result.getNode()) {
|
||
Ops.push_back(Result);
|
||
return;
|
||
}
|
||
|
||
// Handle standard constraint letters.
|
||
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
||
}
|
||
|
||
// isLegalAddressingMode - Return true if the addressing mode represented
|
||
// by AM is legal for this target, for a load/store of the specified type.
|
||
bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
||
Type *Ty) const {
|
||
// FIXME: PPC does not allow r+i addressing modes for vectors!
|
||
|
||
// PPC allows a sign-extended 16-bit immediate field.
|
||
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
|
||
return false;
|
||
|
||
// No global is ever allowed as a base.
|
||
if (AM.BaseGV)
|
||
return false;
|
||
|
||
// PPC only support r+r,
|
||
switch (AM.Scale) {
|
||
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
||
break;
|
||
case 1:
|
||
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
|
||
return false;
|
||
// Otherwise we have r+r or r+i.
|
||
break;
|
||
case 2:
|
||
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
|
||
return false;
|
||
// Allow 2*r as r+r.
|
||
break;
|
||
default:
|
||
// No other scales are supported.
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineFrameInfo *MFI = MF.getFrameInfo();
|
||
MFI->setReturnAddressIsTaken(true);
|
||
|
||
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
||
return SDValue();
|
||
|
||
SDLoc dl(Op);
|
||
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
||
|
||
// Make sure the function does not optimize away the store of the RA to
|
||
// the stack.
|
||
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
||
FuncInfo->setLRStoreRequired();
|
||
bool isPPC64 = Subtarget.isPPC64();
|
||
|
||
if (Depth > 0) {
|
||
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
||
SDValue Offset =
|
||
DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(),
|
||
isPPC64 ? MVT::i64 : MVT::i32);
|
||
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
|
||
DAG.getNode(ISD::ADD, dl, getPointerTy(),
|
||
FrameAddr, Offset),
|
||
MachinePointerInfo(), false, false, false, 0);
|
||
}
|
||
|
||
// Just load the return address off the stack.
|
||
SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
|
||
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
|
||
RetAddrFI, MachinePointerInfo(), false, false, false, 0);
|
||
}
|
||
|
||
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
|
||
SelectionDAG &DAG) const {
|
||
SDLoc dl(Op);
|
||
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
||
|
||
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
||
bool isPPC64 = PtrVT == MVT::i64;
|
||
|
||
MachineFunction &MF = DAG.getMachineFunction();
|
||
MachineFrameInfo *MFI = MF.getFrameInfo();
|
||
MFI->setFrameAddressIsTaken(true);
|
||
|
||
// Naked functions never have a frame pointer, and so we use r1. For all
|
||
// other functions, this decision must be delayed until during PEI.
|
||
unsigned FrameReg;
|
||
if (MF.getFunction()->getAttributes().hasAttribute(
|
||
AttributeSet::FunctionIndex, Attribute::Naked))
|
||
FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
|
||
else
|
||
FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
|
||
|
||
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
|
||
PtrVT);
|
||
while (Depth--)
|
||
FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
|
||
FrameAddr, MachinePointerInfo(), false, false,
|
||
false, 0);
|
||
return FrameAddr;
|
||
}
|
||
|
||
// FIXME? Maybe this could be a TableGen attribute on some registers and
|
||
// this table could be generated automatically from RegInfo.
|
||
unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
|
||
EVT VT) const {
|
||
bool isPPC64 = Subtarget.isPPC64();
|
||
bool isDarwinABI = Subtarget.isDarwinABI();
|
||
|
||
if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
|
||
(!isPPC64 && VT != MVT::i32))
|
||
report_fatal_error("Invalid register global variable type");
|
||
|
||
bool is64Bit = isPPC64 && VT == MVT::i64;
|
||
unsigned Reg = StringSwitch<unsigned>(RegName)
|
||
.Case("r1", is64Bit ? PPC::X1 : PPC::R1)
|
||
.Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
|
||
.Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
|
||
(is64Bit ? PPC::X13 : PPC::R13))
|
||
.Default(0);
|
||
|
||
if (Reg)
|
||
return Reg;
|
||
report_fatal_error("Invalid register name global variable");
|
||
}
|
||
|
||
bool
|
||
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
||
// The PowerPC target isn't yet aware of offsets.
|
||
return false;
|
||
}
|
||
|
||
bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
||
const CallInst &I,
|
||
unsigned Intrinsic) const {
|
||
|
||
switch (Intrinsic) {
|
||
case Intrinsic::ppc_altivec_lvx:
|
||
case Intrinsic::ppc_altivec_lvxl:
|
||
case Intrinsic::ppc_altivec_lvebx:
|
||
case Intrinsic::ppc_altivec_lvehx:
|
||
case Intrinsic::ppc_altivec_lvewx:
|
||
case Intrinsic::ppc_vsx_lxvd2x:
|
||
case Intrinsic::ppc_vsx_lxvw4x: {
|
||
EVT VT;
|
||
switch (Intrinsic) {
|
||
case Intrinsic::ppc_altivec_lvebx:
|
||
VT = MVT::i8;
|
||
break;
|
||
case Intrinsic::ppc_altivec_lvehx:
|
||
VT = MVT::i16;
|
||
break;
|
||
case Intrinsic::ppc_altivec_lvewx:
|
||
VT = MVT::i32;
|
||
break;
|
||
case Intrinsic::ppc_vsx_lxvd2x:
|
||
VT = MVT::v2f64;
|
||
break;
|
||
default:
|
||
VT = MVT::v4i32;
|
||
break;
|
||
}
|
||
|
||
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
||
Info.memVT = VT;
|
||
Info.ptrVal = I.getArgOperand(0);
|
||
Info.offset = -VT.getStoreSize()+1;
|
||
Info.size = 2*VT.getStoreSize()-1;
|
||
Info.align = 1;
|
||
Info.vol = false;
|
||
Info.readMem = true;
|
||
Info.writeMem = false;
|
||
return true;
|
||
}
|
||
case Intrinsic::ppc_altivec_stvx:
|
||
case Intrinsic::ppc_altivec_stvxl:
|
||
case Intrinsic::ppc_altivec_stvebx:
|
||
case Intrinsic::ppc_altivec_stvehx:
|
||
case Intrinsic::ppc_altivec_stvewx:
|
||
case Intrinsic::ppc_vsx_stxvd2x:
|
||
case Intrinsic::ppc_vsx_stxvw4x: {
|
||
EVT VT;
|
||
switch (Intrinsic) {
|
||
case Intrinsic::ppc_altivec_stvebx:
|
||
VT = MVT::i8;
|
||
break;
|
||
case Intrinsic::ppc_altivec_stvehx:
|
||
VT = MVT::i16;
|
||
break;
|
||
case Intrinsic::ppc_altivec_stvewx:
|
||
VT = MVT::i32;
|
||
break;
|
||
case Intrinsic::ppc_vsx_stxvd2x:
|
||
VT = MVT::v2f64;
|
||
break;
|
||
default:
|
||
VT = MVT::v4i32;
|
||
break;
|
||
}
|
||
|
||
Info.opc = ISD::INTRINSIC_VOID;
|
||
Info.memVT = VT;
|
||
Info.ptrVal = I.getArgOperand(1);
|
||
Info.offset = -VT.getStoreSize()+1;
|
||
Info.size = 2*VT.getStoreSize()-1;
|
||
Info.align = 1;
|
||
Info.vol = false;
|
||
Info.readMem = false;
|
||
Info.writeMem = true;
|
||
return true;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
||
/// and store operations as a result of memset, memcpy, and memmove
|
||
/// lowering. If DstAlign is zero that means it's safe to destination
|
||
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
||
/// means there isn't a need to check it against alignment requirement,
|
||
/// probably because the source does not need to be loaded. If 'IsMemset' is
|
||
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
|
||
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
|
||
/// source is constant so it does not need to be loaded.
|
||
/// It returns EVT::Other if the type should be determined using generic
|
||
/// target-independent logic.
|
||
EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
|
||
unsigned DstAlign, unsigned SrcAlign,
|
||
bool IsMemset, bool ZeroMemset,
|
||
bool MemcpyStrSrc,
|
||
MachineFunction &MF) const {
|
||
if (Subtarget.isPPC64()) {
|
||
return MVT::i64;
|
||
} else {
|
||
return MVT::i32;
|
||
}
|
||
}
|
||
|
||
/// \brief Returns true if it is beneficial to convert a load of a constant
|
||
/// to just the constant itself.
|
||
bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
||
Type *Ty) const {
|
||
assert(Ty->isIntegerTy());
|
||
|
||
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
||
if (BitSize == 0 || BitSize > 64)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
||
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
||
return false;
|
||
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
||
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
||
return NumBits1 == 64 && NumBits2 == 32;
|
||
}
|
||
|
||
bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
|
||
if (!VT1.isInteger() || !VT2.isInteger())
|
||
return false;
|
||
unsigned NumBits1 = VT1.getSizeInBits();
|
||
unsigned NumBits2 = VT2.getSizeInBits();
|
||
return NumBits1 == 64 && NumBits2 == 32;
|
||
}
|
||
|
||
bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
||
// Generally speaking, zexts are not free, but they are free when they can be
|
||
// folded with other operations.
|
||
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
|
||
EVT MemVT = LD->getMemoryVT();
|
||
if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
|
||
(Subtarget.isPPC64() && MemVT == MVT::i32)) &&
|
||
(LD->getExtensionType() == ISD::NON_EXTLOAD ||
|
||
LD->getExtensionType() == ISD::ZEXTLOAD))
|
||
return true;
|
||
}
|
||
|
||
// FIXME: Add other cases...
|
||
// - 32-bit shifts with a zext to i64
|
||
// - zext after ctlz, bswap, etc.
|
||
// - zext after and by a constant mask
|
||
|
||
return TargetLowering::isZExtFree(Val, VT2);
|
||
}
|
||
|
||
bool PPCTargetLowering::isFPExtFree(EVT VT) const {
|
||
assert(VT.isFloatingPoint());
|
||
return true;
|
||
}
|
||
|
||
bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
||
return isInt<16>(Imm) || isUInt<16>(Imm);
|
||
}
|
||
|
||
bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
|
||
return isInt<16>(Imm) || isUInt<16>(Imm);
|
||
}
|
||
|
||
bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
||
unsigned,
|
||
unsigned,
|
||
bool *Fast) const {
|
||
if (DisablePPCUnaligned)
|
||
return false;
|
||
|
||
// PowerPC supports unaligned memory access for simple non-vector types.
|
||
// Although accessing unaligned addresses is not as efficient as accessing
|
||
// aligned addresses, it is generally more efficient than manual expansion,
|
||
// and generally only traps for software emulation when crossing page
|
||
// boundaries.
|
||
|
||
if (!VT.isSimple())
|
||
return false;
|
||
|
||
if (VT.getSimpleVT().isVector()) {
|
||
if (Subtarget.hasVSX()) {
|
||
if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
|
||
VT != MVT::v4f32 && VT != MVT::v4i32)
|
||
return false;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (VT == MVT::ppcf128)
|
||
return false;
|
||
|
||
if (Fast)
|
||
*Fast = true;
|
||
|
||
return true;
|
||
}
|
||
|
||
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
||
VT = VT.getScalarType();
|
||
|
||
if (!VT.isSimple())
|
||
return false;
|
||
|
||
switch (VT.getSimpleVT().SimpleTy) {
|
||
case MVT::f32:
|
||
case MVT::f64:
|
||
return true;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
const MCPhysReg *
|
||
PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
|
||
// LR is a callee-save register, but we must treat it as clobbered by any call
|
||
// site. Hence we include LR in the scratch registers, which are in turn added
|
||
// as implicit-defs for stackmaps and patchpoints. The same reasoning applies
|
||
// to CTR, which is used by any indirect call.
|
||
static const MCPhysReg ScratchRegs[] = {
|
||
PPC::X12, PPC::LR8, PPC::CTR8, 0
|
||
};
|
||
|
||
return ScratchRegs;
|
||
}
|
||
|
||
bool
|
||
PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
|
||
EVT VT , unsigned DefinedValues) const {
|
||
if (VT == MVT::v2i64)
|
||
return false;
|
||
|
||
return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
|
||
}
|
||
|
||
Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
|
||
if (DisableILPPref || Subtarget.enableMachineScheduler())
|
||
return TargetLowering::getSchedulingPreference(N);
|
||
|
||
return Sched::ILP;
|
||
}
|
||
|
||
// Create a fast isel object.
|
||
FastISel *
|
||
PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
|
||
const TargetLibraryInfo *LibInfo) const {
|
||
return PPC::createFastISel(FuncInfo, LibInfo);
|
||
}
|