mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-17 17:06:59 +00:00
db8771af28
rdar://7819990 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100170 91177308-0d34-0410-b5e6-96231b3b80d8
375 lines
13 KiB
C++
375 lines
13 KiB
C++
//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs global common subexpression elimination on machine
|
|
// instructions using a scoped hash table based value numbering scheme. It
|
|
// must be run while the machine function is still in SSA form.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "machine-cse"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumCoalesces, "Number of copies coalesced");
|
|
STATISTIC(NumCSEs, "Number of common subexpression eliminated");
|
|
|
|
namespace {
|
|
class MachineCSE : public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
AliasAnalysis *AA;
|
|
MachineDominatorTree *DT;
|
|
MachineRegisterInfo *MRI;
|
|
public:
|
|
static char ID; // Pass identification
|
|
MachineCSE() : MachineFunctionPass(&ID), CurrVN(0) {}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
}
|
|
|
|
private:
|
|
unsigned CurrVN;
|
|
ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
|
|
SmallVector<MachineInstr*, 64> Exps;
|
|
|
|
bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
|
|
bool isPhysDefTriviallyDead(unsigned Reg,
|
|
MachineBasicBlock::const_iterator I,
|
|
MachineBasicBlock::const_iterator E);
|
|
bool hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB);
|
|
bool isCSECandidate(MachineInstr *MI);
|
|
bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
|
|
MachineInstr *CSMI, MachineInstr *MI);
|
|
bool ProcessBlock(MachineDomTreeNode *Node);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char MachineCSE::ID = 0;
|
|
static RegisterPass<MachineCSE>
|
|
X("machine-cse", "Machine Common Subexpression Elimination");
|
|
|
|
FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
|
|
|
|
bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
continue;
|
|
if (!MRI->hasOneUse(Reg))
|
|
// Only coalesce single use copies. This ensure the copy will be
|
|
// deleted.
|
|
continue;
|
|
MachineInstr *DefMI = MRI->getVRegDef(Reg);
|
|
if (DefMI->getParent() != MBB)
|
|
continue;
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
|
|
TargetRegisterInfo::isVirtualRegister(SrcReg) &&
|
|
!SrcSubIdx && !DstSubIdx) {
|
|
const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC);
|
|
if (!NewRC)
|
|
continue;
|
|
DEBUG(dbgs() << "Coalescing: " << *DefMI);
|
|
DEBUG(dbgs() << "*** to: " << *MI);
|
|
MO.setReg(SrcReg);
|
|
if (NewRC != SRC)
|
|
MRI->setRegClass(SrcReg, NewRC);
|
|
DefMI->eraseFromParent();
|
|
++NumCoalesces;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
|
|
MachineBasicBlock::const_iterator I,
|
|
MachineBasicBlock::const_iterator E) {
|
|
unsigned LookAheadLeft = 5;
|
|
while (LookAheadLeft) {
|
|
// Skip over dbg_value's.
|
|
while (I != E && I->isDebugValue())
|
|
++I;
|
|
|
|
if (I == E)
|
|
// Reached end of block, register is obviously dead.
|
|
return true;
|
|
|
|
bool SeenDef = false;
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = I->getOperand(i);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (!TRI->regsOverlap(MO.getReg(), Reg))
|
|
continue;
|
|
if (MO.isUse())
|
|
return false;
|
|
SeenDef = true;
|
|
}
|
|
if (SeenDef)
|
|
// See a def of Reg (or an alias) before encountering any use, it's
|
|
// trivially dead.
|
|
return true;
|
|
|
|
--LookAheadLeft;
|
|
++I;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// hasLivePhysRegDefUse - Return true if the specified instruction read / write
|
|
/// physical registers (except for dead defs of physical registers).
|
|
bool MachineCSE::hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB){
|
|
unsigned PhysDef = 0;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
if (MO.isUse())
|
|
// Can't touch anything to read a physical register.
|
|
return true;
|
|
if (MO.isDead())
|
|
// If the def is dead, it's ok.
|
|
continue;
|
|
// Ok, this is a physical register def that's not marked "dead". That's
|
|
// common since this pass is run before livevariables. We can scan
|
|
// forward a few instructions and check if it is obviously dead.
|
|
if (PhysDef)
|
|
// Multiple physical register defs. These are rare, forget about it.
|
|
return true;
|
|
PhysDef = Reg;
|
|
}
|
|
}
|
|
|
|
if (PhysDef) {
|
|
MachineBasicBlock::iterator I = MI; I = llvm::next(I);
|
|
if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isCopy(const MachineInstr *MI, const TargetInstrInfo *TII) {
|
|
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
|
|
return TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
|
|
MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg();
|
|
}
|
|
|
|
bool MachineCSE::isCSECandidate(MachineInstr *MI) {
|
|
if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
|
|
MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
|
|
return false;
|
|
|
|
// Ignore copies.
|
|
if (isCopy(MI, TII))
|
|
return false;
|
|
|
|
// Ignore stuff that we obviously can't move.
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
|
|
TID.hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
if (TID.mayLoad()) {
|
|
// Okay, this instruction does a load. As a refinement, we allow the target
|
|
// to decide whether the loaded value is actually a constant. If so, we can
|
|
// actually use it as a load.
|
|
if (!MI->isInvariantLoad(AA))
|
|
// FIXME: we should be able to hoist loads with no other side effects if
|
|
// there are no other instructions which can change memory in this loop.
|
|
// This is a trivial form of alias analysis.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
|
|
/// common expression that defines Reg.
|
|
bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
|
|
MachineInstr *CSMI, MachineInstr *MI) {
|
|
// FIXME: Heuristics that works around the lack the live range splitting.
|
|
|
|
// Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
|
|
// immediate predecessor. We don't want to increase register pressure and end up
|
|
// causing other computation to be spilled.
|
|
if (MI->getDesc().isAsCheapAsAMove()) {
|
|
MachineBasicBlock *CSBB = CSMI->getParent();
|
|
MachineBasicBlock *BB = MI->getParent();
|
|
if (CSBB != BB &&
|
|
find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
|
|
return false;
|
|
}
|
|
|
|
// Heuristics #2: If the expression doesn't not use a vr and the only use
|
|
// of the redundant computation are copies, do not cse.
|
|
bool HasVRegUse = false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isUse() && MO.getReg() &&
|
|
TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
|
|
HasVRegUse = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasVRegUse) {
|
|
bool HasNonCopyUse = false;
|
|
for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
|
|
E = MRI->use_nodbg_end(); I != E; ++I) {
|
|
MachineInstr *Use = &*I;
|
|
// Ignore copies.
|
|
if (!isCopy(Use, TII)) {
|
|
HasNonCopyUse = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasNonCopyUse)
|
|
return false;
|
|
}
|
|
|
|
// Heuristics #3: If the common subexpression is used by PHIs, do not reuse
|
|
// it unless the defined value is already used in the BB of the new use.
|
|
bool HasPHI = false;
|
|
SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
|
|
for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg),
|
|
E = MRI->use_nodbg_end(); I != E; ++I) {
|
|
MachineInstr *Use = &*I;
|
|
HasPHI |= Use->isPHI();
|
|
CSBBs.insert(Use->getParent());
|
|
}
|
|
|
|
if (!HasPHI)
|
|
return true;
|
|
return CSBBs.count(MI->getParent());
|
|
}
|
|
|
|
bool MachineCSE::ProcessBlock(MachineDomTreeNode *Node) {
|
|
bool Changed = false;
|
|
|
|
SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
|
|
ScopedHashTableScope<MachineInstr*, unsigned,
|
|
MachineInstrExpressionTrait> VNTS(VNT);
|
|
MachineBasicBlock *MBB = Node->getBlock();
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
|
|
MachineInstr *MI = &*I;
|
|
++I;
|
|
|
|
if (!isCSECandidate(MI))
|
|
continue;
|
|
|
|
bool FoundCSE = VNT.count(MI);
|
|
if (!FoundCSE) {
|
|
// Look for trivial copy coalescing opportunities.
|
|
if (PerformTrivialCoalescing(MI, MBB)) {
|
|
// After coalescing MI itself may become a copy.
|
|
if (isCopy(MI, TII))
|
|
continue;
|
|
FoundCSE = VNT.count(MI);
|
|
}
|
|
}
|
|
// FIXME: commute commutable instructions?
|
|
|
|
// If the instruction defines a physical register and the value *may* be
|
|
// used, then it's not safe to replace it with a common subexpression.
|
|
if (FoundCSE && hasLivePhysRegDefUse(MI, MBB))
|
|
FoundCSE = false;
|
|
|
|
if (!FoundCSE) {
|
|
VNT.insert(MI, CurrVN++);
|
|
Exps.push_back(MI);
|
|
continue;
|
|
}
|
|
|
|
// Found a common subexpression, eliminate it.
|
|
unsigned CSVN = VNT.lookup(MI);
|
|
MachineInstr *CSMI = Exps[CSVN];
|
|
DEBUG(dbgs() << "Examining: " << *MI);
|
|
DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
|
|
|
|
// Check if it's profitable to perform this CSE.
|
|
bool DoCSE = true;
|
|
unsigned NumDefs = MI->getDesc().getNumDefs();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned OldReg = MO.getReg();
|
|
unsigned NewReg = CSMI->getOperand(i).getReg();
|
|
if (OldReg == NewReg)
|
|
continue;
|
|
assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
|
|
TargetRegisterInfo::isVirtualRegister(NewReg) &&
|
|
"Do not CSE physical register defs!");
|
|
if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
|
|
DoCSE = false;
|
|
break;
|
|
}
|
|
CSEPairs.push_back(std::make_pair(OldReg, NewReg));
|
|
--NumDefs;
|
|
}
|
|
|
|
// Actually perform the elimination.
|
|
if (DoCSE) {
|
|
for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i)
|
|
MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
|
|
MI->eraseFromParent();
|
|
++NumCSEs;
|
|
} else {
|
|
DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
|
|
VNT.insert(MI, CurrVN++);
|
|
Exps.push_back(MI);
|
|
}
|
|
CSEPairs.clear();
|
|
}
|
|
|
|
// Recursively call ProcessBlock with childred.
|
|
const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
|
|
for (unsigned i = 0, e = Children.size(); i != e; ++i)
|
|
Changed |= ProcessBlock(Children[i]);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
|
|
TII = MF.getTarget().getInstrInfo();
|
|
TRI = MF.getTarget().getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
DT = &getAnalysis<MachineDominatorTree>();
|
|
return ProcessBlock(DT->getRootNode());
|
|
}
|