mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-30 15:10:33 +00:00
bbb28e7e98
to be a ManagedStatic in r218163 to not be a global variable written and read to from within the innards of SpillPlacement. This will fix a really scary race condition for anyone that has two copies of LLVM running spill placement concurrently. Yikes! This will also fix a really significant compile time hit that r218163 caused because the spill placement threshold read is actually in the *very* hot path of this code. The memory fence on each read was showing up as huge compile time regressions when spilling is responsible for most of the compile time. For example, optimizing sanitized code showed over 50% compile time regressions here. =/ git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218921 91177308-0d34-0410-b5e6-96231b3b80d8
392 lines
13 KiB
C++
392 lines
13 KiB
C++
//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the spill code placement analysis.
|
|
//
|
|
// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
|
|
// basic blocks are weighted by the block frequency and added to become the node
|
|
// bias.
|
|
//
|
|
// Transparent basic blocks have the variable live through, but don't care if it
|
|
// is spilled or in a register. These blocks become connections in the Hopfield
|
|
// network, again weighted by block frequency.
|
|
//
|
|
// The Hopfield network minimizes (possibly locally) its energy function:
|
|
//
|
|
// E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
|
|
//
|
|
// The energy function represents the expected spill code execution frequency,
|
|
// or the cost of spilling. This is a Lyapunov function which never increases
|
|
// when a node is updated. It is guaranteed to converge to a local minimum.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SpillPlacement.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/CodeGen/EdgeBundles.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "spillplacement"
|
|
|
|
char SpillPlacement::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
|
|
"Spill Code Placement Analysis", true, true)
|
|
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
|
|
"Spill Code Placement Analysis", true, true)
|
|
|
|
char &llvm::SpillPlacementID = SpillPlacement::ID;
|
|
|
|
void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addRequiredTransitive<EdgeBundles>();
|
|
AU.addRequiredTransitive<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Node - Each edge bundle corresponds to a Hopfield node.
|
|
///
|
|
/// The node contains precomputed frequency data that only depends on the CFG,
|
|
/// but Bias and Links are computed each time placeSpills is called.
|
|
///
|
|
/// The node Value is positive when the variable should be in a register. The
|
|
/// value can change when linked nodes change, but convergence is very fast
|
|
/// because all weights are positive.
|
|
///
|
|
struct SpillPlacement::Node {
|
|
/// BiasN - Sum of blocks that prefer a spill.
|
|
BlockFrequency BiasN;
|
|
/// BiasP - Sum of blocks that prefer a register.
|
|
BlockFrequency BiasP;
|
|
|
|
/// Value - Output value of this node computed from the Bias and links.
|
|
/// This is always on of the values {-1, 0, 1}. A positive number means the
|
|
/// variable should go in a register through this bundle.
|
|
int Value;
|
|
|
|
typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
|
|
|
|
/// Links - (Weight, BundleNo) for all transparent blocks connecting to other
|
|
/// bundles. The weights are all positive block frequencies.
|
|
LinkVector Links;
|
|
|
|
/// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
|
|
BlockFrequency SumLinkWeights;
|
|
|
|
/// preferReg - Return true when this node prefers to be in a register.
|
|
bool preferReg() const {
|
|
// Undecided nodes (Value==0) go on the stack.
|
|
return Value > 0;
|
|
}
|
|
|
|
/// mustSpill - Return True if this node is so biased that it must spill.
|
|
bool mustSpill() const {
|
|
// We must spill if Bias < -sum(weights) or the MustSpill flag was set.
|
|
// BiasN is saturated when MustSpill is set, make sure this still returns
|
|
// true when the RHS saturates. Note that SumLinkWeights includes Threshold.
|
|
return BiasN >= BiasP + SumLinkWeights;
|
|
}
|
|
|
|
/// clear - Reset per-query data, but preserve frequencies that only depend on
|
|
// the CFG.
|
|
void clear(const BlockFrequency &Threshold) {
|
|
BiasN = BiasP = Value = 0;
|
|
SumLinkWeights = Threshold;
|
|
Links.clear();
|
|
}
|
|
|
|
/// addLink - Add a link to bundle b with weight w.
|
|
void addLink(unsigned b, BlockFrequency w) {
|
|
// Update cached sum.
|
|
SumLinkWeights += w;
|
|
|
|
// There can be multiple links to the same bundle, add them up.
|
|
for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
|
|
if (I->second == b) {
|
|
I->first += w;
|
|
return;
|
|
}
|
|
// This must be the first link to b.
|
|
Links.push_back(std::make_pair(w, b));
|
|
}
|
|
|
|
/// addBias - Bias this node.
|
|
void addBias(BlockFrequency freq, BorderConstraint direction) {
|
|
switch (direction) {
|
|
default:
|
|
break;
|
|
case PrefReg:
|
|
BiasP += freq;
|
|
break;
|
|
case PrefSpill:
|
|
BiasN += freq;
|
|
break;
|
|
case MustSpill:
|
|
BiasN = BlockFrequency::getMaxFrequency();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// update - Recompute Value from Bias and Links. Return true when node
|
|
/// preference changes.
|
|
bool update(const Node nodes[], const BlockFrequency &Threshold) {
|
|
// Compute the weighted sum of inputs.
|
|
BlockFrequency SumN = BiasN;
|
|
BlockFrequency SumP = BiasP;
|
|
for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
|
|
if (nodes[I->second].Value == -1)
|
|
SumN += I->first;
|
|
else if (nodes[I->second].Value == 1)
|
|
SumP += I->first;
|
|
}
|
|
|
|
// Each weighted sum is going to be less than the total frequency of the
|
|
// bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
|
|
// will add a dead zone around 0 for two reasons:
|
|
//
|
|
// 1. It avoids arbitrary bias when all links are 0 as is possible during
|
|
// initial iterations.
|
|
// 2. It helps tame rounding errors when the links nominally sum to 0.
|
|
//
|
|
bool Before = preferReg();
|
|
if (SumN >= SumP + Threshold)
|
|
Value = -1;
|
|
else if (SumP >= SumN + Threshold)
|
|
Value = 1;
|
|
else
|
|
Value = 0;
|
|
return Before != preferReg();
|
|
}
|
|
};
|
|
|
|
bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
|
|
MF = &mf;
|
|
bundles = &getAnalysis<EdgeBundles>();
|
|
loops = &getAnalysis<MachineLoopInfo>();
|
|
|
|
assert(!nodes && "Leaking node array");
|
|
nodes = new Node[bundles->getNumBundles()];
|
|
|
|
// Compute total ingoing and outgoing block frequencies for all bundles.
|
|
BlockFrequencies.resize(mf.getNumBlockIDs());
|
|
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
|
|
setThreshold(MBFI->getEntryFreq());
|
|
for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
|
|
unsigned Num = I->getNumber();
|
|
BlockFrequencies[Num] = MBFI->getBlockFreq(I);
|
|
}
|
|
|
|
// We never change the function.
|
|
return false;
|
|
}
|
|
|
|
void SpillPlacement::releaseMemory() {
|
|
delete[] nodes;
|
|
nodes = nullptr;
|
|
}
|
|
|
|
/// activate - mark node n as active if it wasn't already.
|
|
void SpillPlacement::activate(unsigned n) {
|
|
if (ActiveNodes->test(n))
|
|
return;
|
|
ActiveNodes->set(n);
|
|
nodes[n].clear(Threshold);
|
|
|
|
// Very large bundles usually come from big switches, indirect branches,
|
|
// landing pads, or loops with many 'continue' statements. It is difficult to
|
|
// allocate registers when so many different blocks are involved.
|
|
//
|
|
// Give a small negative bias to large bundles such that a substantial
|
|
// fraction of the connected blocks need to be interested before we consider
|
|
// expanding the region through the bundle. This helps compile time by
|
|
// limiting the number of blocks visited and the number of links in the
|
|
// Hopfield network.
|
|
if (bundles->getBlocks(n).size() > 100) {
|
|
nodes[n].BiasP = 0;
|
|
nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
|
|
}
|
|
}
|
|
|
|
/// \brief Set the threshold for a given entry frequency.
|
|
///
|
|
/// Set the threshold relative to \c Entry. Since the threshold is used as a
|
|
/// bound on the open interval (-Threshold;Threshold), 1 is the minimum
|
|
/// threshold.
|
|
void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
|
|
// Apparently 2 is a good threshold when Entry==2^14, but we need to scale
|
|
// it. Divide by 2^13, rounding as appropriate.
|
|
uint64_t Freq = Entry.getFrequency();
|
|
uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
|
|
Threshold = std::max(UINT64_C(1), Scaled);
|
|
}
|
|
|
|
/// addConstraints - Compute node biases and weights from a set of constraints.
|
|
/// Set a bit in NodeMask for each active node.
|
|
void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
|
|
for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
|
|
E = LiveBlocks.end(); I != E; ++I) {
|
|
BlockFrequency Freq = BlockFrequencies[I->Number];
|
|
|
|
// Live-in to block?
|
|
if (I->Entry != DontCare) {
|
|
unsigned ib = bundles->getBundle(I->Number, 0);
|
|
activate(ib);
|
|
nodes[ib].addBias(Freq, I->Entry);
|
|
}
|
|
|
|
// Live-out from block?
|
|
if (I->Exit != DontCare) {
|
|
unsigned ob = bundles->getBundle(I->Number, 1);
|
|
activate(ob);
|
|
nodes[ob].addBias(Freq, I->Exit);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// addPrefSpill - Same as addConstraints(PrefSpill)
|
|
void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
|
|
for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
|
|
I != E; ++I) {
|
|
BlockFrequency Freq = BlockFrequencies[*I];
|
|
if (Strong)
|
|
Freq += Freq;
|
|
unsigned ib = bundles->getBundle(*I, 0);
|
|
unsigned ob = bundles->getBundle(*I, 1);
|
|
activate(ib);
|
|
activate(ob);
|
|
nodes[ib].addBias(Freq, PrefSpill);
|
|
nodes[ob].addBias(Freq, PrefSpill);
|
|
}
|
|
}
|
|
|
|
void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
|
|
for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
|
|
++I) {
|
|
unsigned Number = *I;
|
|
unsigned ib = bundles->getBundle(Number, 0);
|
|
unsigned ob = bundles->getBundle(Number, 1);
|
|
|
|
// Ignore self-loops.
|
|
if (ib == ob)
|
|
continue;
|
|
activate(ib);
|
|
activate(ob);
|
|
if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
|
|
Linked.push_back(ib);
|
|
if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
|
|
Linked.push_back(ob);
|
|
BlockFrequency Freq = BlockFrequencies[Number];
|
|
nodes[ib].addLink(ob, Freq);
|
|
nodes[ob].addLink(ib, Freq);
|
|
}
|
|
}
|
|
|
|
bool SpillPlacement::scanActiveBundles() {
|
|
Linked.clear();
|
|
RecentPositive.clear();
|
|
for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
|
|
nodes[n].update(nodes, Threshold);
|
|
// A node that must spill, or a node without any links is not going to
|
|
// change its value ever again, so exclude it from iterations.
|
|
if (nodes[n].mustSpill())
|
|
continue;
|
|
if (!nodes[n].Links.empty())
|
|
Linked.push_back(n);
|
|
if (nodes[n].preferReg())
|
|
RecentPositive.push_back(n);
|
|
}
|
|
return !RecentPositive.empty();
|
|
}
|
|
|
|
/// iterate - Repeatedly update the Hopfield nodes until stability or the
|
|
/// maximum number of iterations is reached.
|
|
/// @param Linked - Numbers of linked nodes that need updating.
|
|
void SpillPlacement::iterate() {
|
|
// First update the recently positive nodes. They have likely received new
|
|
// negative bias that will turn them off.
|
|
while (!RecentPositive.empty())
|
|
nodes[RecentPositive.pop_back_val()].update(nodes, Threshold);
|
|
|
|
if (Linked.empty())
|
|
return;
|
|
|
|
// Run up to 10 iterations. The edge bundle numbering is closely related to
|
|
// basic block numbering, so there is a strong tendency towards chains of
|
|
// linked nodes with sequential numbers. By scanning the linked nodes
|
|
// backwards and forwards, we make it very likely that a single node can
|
|
// affect the entire network in a single iteration. That means very fast
|
|
// convergence, usually in a single iteration.
|
|
for (unsigned iteration = 0; iteration != 10; ++iteration) {
|
|
// Scan backwards, skipping the last node when iteration is not zero. When
|
|
// iteration is not zero, the last node was just updated.
|
|
bool Changed = false;
|
|
for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
|
|
iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
|
|
E = Linked.rend(); I != E; ++I) {
|
|
unsigned n = *I;
|
|
if (nodes[n].update(nodes, Threshold)) {
|
|
Changed = true;
|
|
if (nodes[n].preferReg())
|
|
RecentPositive.push_back(n);
|
|
}
|
|
}
|
|
if (!Changed || !RecentPositive.empty())
|
|
return;
|
|
|
|
// Scan forwards, skipping the first node which was just updated.
|
|
Changed = false;
|
|
for (SmallVectorImpl<unsigned>::const_iterator I =
|
|
std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
|
|
unsigned n = *I;
|
|
if (nodes[n].update(nodes, Threshold)) {
|
|
Changed = true;
|
|
if (nodes[n].preferReg())
|
|
RecentPositive.push_back(n);
|
|
}
|
|
}
|
|
if (!Changed || !RecentPositive.empty())
|
|
return;
|
|
}
|
|
}
|
|
|
|
void SpillPlacement::prepare(BitVector &RegBundles) {
|
|
Linked.clear();
|
|
RecentPositive.clear();
|
|
// Reuse RegBundles as our ActiveNodes vector.
|
|
ActiveNodes = &RegBundles;
|
|
ActiveNodes->clear();
|
|
ActiveNodes->resize(bundles->getNumBundles());
|
|
}
|
|
|
|
bool
|
|
SpillPlacement::finish() {
|
|
assert(ActiveNodes && "Call prepare() first");
|
|
|
|
// Write preferences back to ActiveNodes.
|
|
bool Perfect = true;
|
|
for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
|
|
if (!nodes[n].preferReg()) {
|
|
ActiveNodes->reset(n);
|
|
Perfect = false;
|
|
}
|
|
ActiveNodes = nullptr;
|
|
return Perfect;
|
|
}
|