llvm/lib/Transforms/Coroutines/CoroElide.cpp
Gor Nishanov bce16c69f0 [Coroutines] Part 9: Add cleanup subfunction.
Summary:
[Coroutines] Part 9: Add cleanup subfunction.

This patch completes coroutine heap allocation elision. Now, the heap elision example from docs\Coroutines.rst compiles and produces expected result (see test/Transform/Coroutines/ex3.ll)

Intrinsic Changes:
* coro.free gets a token parameter tying it to coro.id to allow reliably discovering all coro.frees associated with a particular coroutine.
* coro.id gets an extra parameter that points back to a coroutine function. This allows to check whether a coro.id describes the enclosing function or it belongs to a different function that was later inlined.

CoroSplit now creates three subfunctions:
# f$resume - resume logic
# f$destroy - cleanup logic, followed by a deallocation code
# f$cleanup - just the cleanup code

CoroElide pass during devirtualization replaces coro.destroy with either f$destroy or f$cleanup depending whether heap elision is performed or not.

Other fixes, improvements:
* Fixed buglet in Shape::buildFrame that was not creating coro.save properly if coroutine has more than one suspend point.

* Switched to using variable width suspend index field (no longer limited to 32 bit index field can be as little as i1 or as large as i<whatever-size_t-is>)

Reviewers: majnemer

Subscribers: llvm-commits, mehdi_amini

Differential Revision: https://reviews.llvm.org/D23844

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279971 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-29 14:34:12 +00:00

318 lines
11 KiB
C++

//===- CoroElide.cpp - Coroutine Frame Allocation Elision Pass ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This pass replaces dynamic allocation of coroutine frame with alloca and
// replaces calls to llvm.coro.resume and llvm.coro.destroy with direct calls
// to coroutine sub-functions.
//===----------------------------------------------------------------------===//
#include "CoroInternal.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
#define DEBUG_TYPE "coro-elide"
namespace {
// Created on demand if CoroElide pass has work to do.
struct Lowerer : coro::LowererBase {
SmallVector<CoroIdInst *, 4> CoroIds;
SmallVector<CoroBeginInst *, 1> CoroBegins;
SmallVector<CoroAllocInst *, 1> CoroAllocs;
SmallVector<CoroSubFnInst *, 4> ResumeAddr;
SmallVector<CoroSubFnInst *, 4> DestroyAddr;
SmallVector<CoroFreeInst *, 1> CoroFrees;
Lowerer(Module &M) : LowererBase(M) {}
void elideHeapAllocations(Function *F, Type *FrameTy, AAResults &AA);
bool shouldElide() const;
bool processCoroId(CoroIdInst *, AAResults &AA);
};
} // end anonymous namespace
// Go through the list of coro.subfn.addr intrinsics and replace them with the
// provided constant.
static void replaceWithConstant(Constant *Value,
SmallVectorImpl<CoroSubFnInst *> &Users) {
if (Users.empty())
return;
// See if we need to bitcast the constant to match the type of the intrinsic
// being replaced. Note: All coro.subfn.addr intrinsics return the same type,
// so we only need to examine the type of the first one in the list.
Type *IntrTy = Users.front()->getType();
Type *ValueTy = Value->getType();
if (ValueTy != IntrTy) {
// May need to tweak the function type to match the type expected at the
// use site.
assert(ValueTy->isPointerTy() && IntrTy->isPointerTy());
Value = ConstantExpr::getBitCast(Value, IntrTy);
}
// Now the value type matches the type of the intrinsic. Replace them all!
for (CoroSubFnInst *I : Users)
replaceAndRecursivelySimplify(I, Value);
}
// See if any operand of the call instruction references the coroutine frame.
static bool operandReferences(CallInst *CI, AllocaInst *Frame, AAResults &AA) {
for (Value *Op : CI->operand_values())
if (AA.alias(Op, Frame) != NoAlias)
return true;
return false;
}
// Look for any tail calls referencing the coroutine frame and remove tail
// attribute from them, since now coroutine frame resides on the stack and tail
// call implies that the function does not references anything on the stack.
static void removeTailCallAttribute(AllocaInst *Frame, AAResults &AA) {
Function &F = *Frame->getFunction();
MemoryLocation Mem(Frame);
for (Instruction &I : instructions(F))
if (auto *Call = dyn_cast<CallInst>(&I))
if (Call->isTailCall() && operandReferences(Call, Frame, AA)) {
// FIXME: If we ever hit this check. Evaluate whether it is more
// appropriate to retain musttail and allow the code to compile.
if (Call->isMustTailCall())
report_fatal_error("Call referring to the coroutine frame cannot be "
"marked as musttail");
Call->setTailCall(false);
}
}
// Given a resume function @f.resume(%f.frame* %frame), returns %f.frame type.
static Type *getFrameType(Function *Resume) {
auto *ArgType = Resume->getArgumentList().front().getType();
return cast<PointerType>(ArgType)->getElementType();
}
// Finds first non alloca instruction in the entry block of a function.
static Instruction *getFirstNonAllocaInTheEntryBlock(Function *F) {
for (Instruction &I : F->getEntryBlock())
if (!isa<AllocaInst>(&I))
return &I;
llvm_unreachable("no terminator in the entry block");
}
// To elide heap allocations we need to suppress code blocks guarded by
// llvm.coro.alloc and llvm.coro.free instructions.
void Lowerer::elideHeapAllocations(Function *F, Type *FrameTy, AAResults &AA) {
LLVMContext &C = FrameTy->getContext();
auto *InsertPt =
getFirstNonAllocaInTheEntryBlock(CoroIds.front()->getFunction());
// Replacing llvm.coro.alloc with false will suppress dynamic
// allocation as it is expected for the frontend to generate the code that
// looks like:
// id = coro.id(...)
// mem = coro.alloc(id) ? malloc(coro.size()) : 0;
// coro.begin(id, mem)
auto *False = ConstantInt::getFalse(C);
for (auto *CA : CoroAllocs) {
CA->replaceAllUsesWith(False);
CA->eraseFromParent();
}
// FIXME: Design how to transmit alignment information for every alloca that
// is spilled into the coroutine frame and recreate the alignment information
// here. Possibly we will need to do a mini SROA here and break the coroutine
// frame into individual AllocaInst recreating the original alignment.
auto *Frame = new AllocaInst(FrameTy, "", InsertPt);
auto *FrameVoidPtr =
new BitCastInst(Frame, Type::getInt8PtrTy(C), "vFrame", InsertPt);
for (auto *CB : CoroBegins) {
CB->replaceAllUsesWith(FrameVoidPtr);
CB->eraseFromParent();
}
// Since now coroutine frame lives on the stack we need to make sure that
// any tail call referencing it, must be made non-tail call.
removeTailCallAttribute(Frame, AA);
}
bool Lowerer::shouldElide() const {
// If no CoroAllocs, we cannot suppress allocation, so elision is not
// possible.
if (CoroAllocs.empty())
return false;
// Check that for every coro.begin there is a coro.destroy directly
// referencing the SSA value of that coro.begin. If the value escaped, then
// coro.destroy would have been referencing a memory location storing that
// value and not the virtual register.
SmallPtrSet<CoroBeginInst *, 8> ReferencedCoroBegins;
for (CoroSubFnInst *DA : DestroyAddr) {
if (auto *CB = dyn_cast<CoroBeginInst>(DA->getFrame()))
ReferencedCoroBegins.insert(CB);
else
return false;
}
// If size of the set is the same as total number of CoroBegins, means we
// found a coro.free or coro.destroy mentioning a coro.begin and we can
// perform heap elision.
return ReferencedCoroBegins.size() == CoroBegins.size();
}
bool Lowerer::processCoroId(CoroIdInst *CoroId, AAResults &AA) {
CoroBegins.clear();
CoroAllocs.clear();
CoroFrees.clear();
ResumeAddr.clear();
DestroyAddr.clear();
// Collect all coro.begin and coro.allocs associated with this coro.id.
for (User *U : CoroId->users()) {
if (auto *CB = dyn_cast<CoroBeginInst>(U))
CoroBegins.push_back(CB);
else if (auto *CA = dyn_cast<CoroAllocInst>(U))
CoroAllocs.push_back(CA);
else if (auto *CF = dyn_cast<CoroFreeInst>(U))
CoroFrees.push_back(CF);
}
// Collect all coro.subfn.addrs associated with coro.begin.
// Note, we only devirtualize the calls if their coro.subfn.addr refers to
// coro.begin directly. If we run into cases where this check is too
// conservative, we can consider relaxing the check.
for (CoroBeginInst *CB : CoroBegins) {
for (User *U : CB->users())
if (auto *II = dyn_cast<CoroSubFnInst>(U))
switch (II->getIndex()) {
case CoroSubFnInst::ResumeIndex:
ResumeAddr.push_back(II);
break;
case CoroSubFnInst::DestroyIndex:
DestroyAddr.push_back(II);
break;
default:
llvm_unreachable("unexpected coro.subfn.addr constant");
}
}
// PostSplit coro.id refers to an array of subfunctions in its Info
// argument.
ConstantArray *Resumers = CoroId->getInfo().Resumers;
assert(Resumers && "PostSplit coro.id Info argument must refer to an array"
"of coroutine subfunctions");
auto *ResumeAddrConstant =
ConstantExpr::getExtractValue(Resumers, CoroSubFnInst::ResumeIndex);
replaceWithConstant(ResumeAddrConstant, ResumeAddr);
bool ShouldElide = shouldElide();
auto *DestroyAddrConstant = ConstantExpr::getExtractValue(
Resumers,
ShouldElide ? CoroSubFnInst::CleanupIndex : CoroSubFnInst::DestroyIndex);
replaceWithConstant(DestroyAddrConstant, DestroyAddr);
if (ShouldElide) {
auto *FrameTy = getFrameType(cast<Function>(ResumeAddrConstant));
elideHeapAllocations(CoroId->getFunction(), FrameTy, AA);
coro::replaceCoroFree(CoroId, /*Elide=*/true);
}
return true;
}
// See if there are any coro.subfn.addr instructions referring to coro.devirt
// trigger, if so, replace them with a direct call to devirt trigger function.
static bool replaceDevirtTrigger(Function &F) {
SmallVector<CoroSubFnInst *, 1> DevirtAddr;
for (auto &I : instructions(F))
if (auto *SubFn = dyn_cast<CoroSubFnInst>(&I))
if (SubFn->getIndex() == CoroSubFnInst::RestartTrigger)
DevirtAddr.push_back(SubFn);
if (DevirtAddr.empty())
return false;
Module &M = *F.getParent();
Function *DevirtFn = M.getFunction(CORO_DEVIRT_TRIGGER_FN);
assert(DevirtFn && "coro.devirt.fn not found");
replaceWithConstant(DevirtFn, DevirtAddr);
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
namespace {
struct CoroElide : FunctionPass {
static char ID;
CoroElide() : FunctionPass(ID) {}
std::unique_ptr<Lowerer> L;
bool doInitialization(Module &M) override {
if (coro::declaresIntrinsics(M, {"llvm.coro.id"}))
L = llvm::make_unique<Lowerer>(M);
return false;
}
bool runOnFunction(Function &F) override {
if (!L)
return false;
bool Changed = false;
if (F.hasFnAttribute(CORO_PRESPLIT_ATTR))
Changed = replaceDevirtTrigger(F);
L->CoroIds.clear();
// Collect all PostSplit coro.ids.
for (auto &I : instructions(F))
if (auto *CII = dyn_cast<CoroIdInst>(&I))
if (CII->getInfo().isPostSplit())
// If it is the coroutine itself, don't touch it.
if (CII->getCoroutine() != CII->getFunction())
L->CoroIds.push_back(CII);
// If we did not find any coro.id, there is nothing to do.
if (L->CoroIds.empty())
return Changed;
AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
for (auto *CII : L->CoroIds)
Changed |= L->processCoroId(CII, AA);
return Changed;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
}
};
}
char CoroElide::ID = 0;
INITIALIZE_PASS_BEGIN(
CoroElide, "coro-elide",
"Coroutine frame allocation elision and indirect calls replacement", false,
false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(
CoroElide, "coro-elide",
"Coroutine frame allocation elision and indirect calls replacement", false,
false)
Pass *llvm::createCoroElidePass() { return new CoroElide(); }