mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-28 22:20:37 +00:00
c3791a9351
As shown in the diff, we used to add to CFLAA's cache by doing `Cache[Fn] = buildSetsFrom(Fn)`. `buildSetsFrom(Fn)` may cause `Cache` to reallocate its underlying storage, if this happens and `Cache[Fn]` was evaluated prior to `buildSetsFrom(Fn)`, then we'll store the result to a bad address. Patch by Jia Chen. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268269 91177308-0d34-0410-b5e6-96231b3b80d8
1113 lines
38 KiB
C++
1113 lines
38 KiB
C++
//===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a CFL-based context-insensitive alias analysis
|
|
// algorithm. It does not depend on types. The algorithm is a mixture of the one
|
|
// described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
|
|
// Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
|
|
// Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
|
|
// papers, we build a graph of the uses of a variable, where each node is a
|
|
// memory location, and each edge is an action that happened on that memory
|
|
// location. The "actions" can be one of Dereference, Reference, or Assign.
|
|
//
|
|
// Two variables are considered as aliasing iff you can reach one value's node
|
|
// from the other value's node and the language formed by concatenating all of
|
|
// the edge labels (actions) conforms to a context-free grammar.
|
|
//
|
|
// Because this algorithm requires a graph search on each query, we execute the
|
|
// algorithm outlined in "Fast algorithms..." (mentioned above)
|
|
// in order to transform the graph into sets of variables that may alias in
|
|
// ~nlogn time (n = number of variables), which makes queries take constant
|
|
// time.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
|
|
// CFLAA is interprocedural. This is *technically* A Bad Thing, because
|
|
// FunctionPasses are only allowed to inspect the Function that they're being
|
|
// run on. Realistically, this likely isn't a problem until we allow
|
|
// FunctionPasses to run concurrently.
|
|
|
|
#include "llvm/Analysis/CFLAliasAnalysis.h"
|
|
#include "StratifiedSets.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <tuple>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "cfl-aa"
|
|
|
|
CFLAAResult::CFLAAResult() : AAResultBase() {}
|
|
CFLAAResult::CFLAAResult(CFLAAResult &&Arg) : AAResultBase(std::move(Arg)) {}
|
|
CFLAAResult::~CFLAAResult() {}
|
|
|
|
/// Information we have about a function and would like to keep around.
|
|
struct CFLAAResult::FunctionInfo {
|
|
StratifiedSets<Value *> Sets;
|
|
// Lots of functions have < 4 returns. Adjust as necessary.
|
|
SmallVector<Value *, 4> ReturnedValues;
|
|
|
|
FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV)
|
|
: Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
|
|
};
|
|
|
|
/// Try to go from a Value* to a Function*. Never returns nullptr.
|
|
static Optional<Function *> parentFunctionOfValue(Value *);
|
|
|
|
/// Returns possible functions called by the Inst* into the given
|
|
/// SmallVectorImpl. Returns true if targets found, false otherwise. This is
|
|
/// templated so we can use it with CallInsts and InvokeInsts.
|
|
template <typename Inst>
|
|
static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
|
|
|
|
/// Some instructions need to have their users tracked. Instructions like
|
|
/// `add` require you to get the users of the Instruction* itself, other
|
|
/// instructions like `store` require you to get the users of the first
|
|
/// operand. This function gets the "proper" value to track for each
|
|
/// type of instruction we support.
|
|
static Optional<Value *> getTargetValue(Instruction *);
|
|
|
|
/// Determines whether or not we an instruction is useless to us (e.g.
|
|
/// FenceInst)
|
|
static bool hasUsefulEdges(Instruction *);
|
|
|
|
const StratifiedIndex StratifiedLink::SetSentinel =
|
|
std::numeric_limits<StratifiedIndex>::max();
|
|
|
|
namespace {
|
|
/// StratifiedInfo Attribute things.
|
|
typedef unsigned StratifiedAttr;
|
|
LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
|
|
LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
|
|
LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
|
|
LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2;
|
|
LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3;
|
|
LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
|
|
LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
|
|
|
|
LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
|
|
LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
|
|
LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
|
|
|
|
/// StratifiedSets call for knowledge of "direction", so this is how we
|
|
/// represent that locally.
|
|
enum class Level { Same, Above, Below };
|
|
|
|
/// Edges can be one of four "weights" -- each weight must have an inverse
|
|
/// weight (Assign has Assign; Reference has Dereference).
|
|
enum class EdgeType {
|
|
/// The weight assigned when assigning from or to a value. For example, in:
|
|
/// %b = getelementptr %a, 0
|
|
/// ...The relationships are %b assign %a, and %a assign %b. This used to be
|
|
/// two edges, but having a distinction bought us nothing.
|
|
Assign,
|
|
|
|
/// The edge used when we have an edge going from some handle to a Value.
|
|
/// Examples of this include:
|
|
/// %b = load %a (%b Dereference %a)
|
|
/// %b = extractelement %a, 0 (%a Dereference %b)
|
|
Dereference,
|
|
|
|
/// The edge used when our edge goes from a value to a handle that may have
|
|
/// contained it at some point. Examples:
|
|
/// %b = load %a (%a Reference %b)
|
|
/// %b = extractelement %a, 0 (%b Reference %a)
|
|
Reference
|
|
};
|
|
|
|
// \brief Encodes the notion of a "use"
|
|
struct Edge {
|
|
/// Which value the edge is coming from
|
|
Value *From;
|
|
|
|
/// Which value the edge is pointing to
|
|
Value *To;
|
|
|
|
/// Edge weight
|
|
EdgeType Weight;
|
|
|
|
/// Whether we aliased any external values along the way that may be
|
|
/// invisible to the analysis (i.e. landingpad for exceptions, calls for
|
|
/// interprocedural analysis, etc.)
|
|
StratifiedAttrs AdditionalAttrs;
|
|
|
|
Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
|
|
: From(From), To(To), Weight(W), AdditionalAttrs(A) {}
|
|
};
|
|
|
|
/// Gets the edges our graph should have, based on an Instruction*
|
|
class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
|
|
CFLAAResult &AA;
|
|
SmallVectorImpl<Edge> &Output;
|
|
|
|
public:
|
|
GetEdgesVisitor(CFLAAResult &AA, SmallVectorImpl<Edge> &Output)
|
|
: AA(AA), Output(Output) {}
|
|
|
|
void visitInstruction(Instruction &) {
|
|
llvm_unreachable("Unsupported instruction encountered");
|
|
}
|
|
|
|
void visitPtrToIntInst(PtrToIntInst &Inst) {
|
|
auto *Ptr = Inst.getOperand(0);
|
|
Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
|
|
}
|
|
|
|
void visitIntToPtrInst(IntToPtrInst &Inst) {
|
|
auto *Ptr = &Inst;
|
|
Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
|
|
}
|
|
|
|
void visitCastInst(CastInst &Inst) {
|
|
Output.push_back(
|
|
Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone));
|
|
}
|
|
|
|
void visitBinaryOperator(BinaryOperator &Inst) {
|
|
auto *Op1 = Inst.getOperand(0);
|
|
auto *Op2 = Inst.getOperand(1);
|
|
Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
|
|
Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
|
|
}
|
|
|
|
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
|
|
auto *Ptr = Inst.getPointerOperand();
|
|
auto *Val = Inst.getNewValOperand();
|
|
Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
|
|
}
|
|
|
|
void visitAtomicRMWInst(AtomicRMWInst &Inst) {
|
|
auto *Ptr = Inst.getPointerOperand();
|
|
auto *Val = Inst.getValOperand();
|
|
Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
|
|
}
|
|
|
|
void visitPHINode(PHINode &Inst) {
|
|
for (Value *Val : Inst.incoming_values())
|
|
Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
|
|
}
|
|
|
|
void visitGetElementPtrInst(GetElementPtrInst &Inst) {
|
|
auto *Op = Inst.getPointerOperand();
|
|
Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
|
|
for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
|
|
Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
|
|
}
|
|
|
|
void visitSelectInst(SelectInst &Inst) {
|
|
// Condition is not processed here (The actual statement producing
|
|
// the condition result is processed elsewhere). For select, the
|
|
// condition is evaluated, but not loaded, stored, or assigned
|
|
// simply as a result of being the condition of a select.
|
|
|
|
auto *TrueVal = Inst.getTrueValue();
|
|
Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
|
|
auto *FalseVal = Inst.getFalseValue();
|
|
Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
|
|
}
|
|
|
|
void visitAllocaInst(AllocaInst &) {}
|
|
|
|
void visitLoadInst(LoadInst &Inst) {
|
|
auto *Ptr = Inst.getPointerOperand();
|
|
auto *Val = &Inst;
|
|
Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
|
|
}
|
|
|
|
void visitStoreInst(StoreInst &Inst) {
|
|
auto *Ptr = Inst.getPointerOperand();
|
|
auto *Val = Inst.getValueOperand();
|
|
Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
|
|
}
|
|
|
|
void visitVAArgInst(VAArgInst &Inst) {
|
|
// We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
|
|
// two things:
|
|
// 1. Loads a value from *((T*)*Ptr).
|
|
// 2. Increments (stores to) *Ptr by some target-specific amount.
|
|
// For now, we'll handle this like a landingpad instruction (by placing the
|
|
// result in its own group, and having that group alias externals).
|
|
auto *Val = &Inst;
|
|
Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
|
|
}
|
|
|
|
static bool isFunctionExternal(Function *Fn) {
|
|
return Fn->isDeclaration() || !Fn->hasLocalLinkage();
|
|
}
|
|
|
|
/// Gets whether the sets at Index1 above, below, or equal to the sets at
|
|
/// Index2. Returns None if they are not in the same set chain.
|
|
static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
|
|
StratifiedIndex Index1,
|
|
StratifiedIndex Index2) {
|
|
if (Index1 == Index2)
|
|
return Level::Same;
|
|
|
|
const auto *Current = &Sets.getLink(Index1);
|
|
while (Current->hasBelow()) {
|
|
if (Current->Below == Index2)
|
|
return Level::Below;
|
|
Current = &Sets.getLink(Current->Below);
|
|
}
|
|
|
|
Current = &Sets.getLink(Index1);
|
|
while (Current->hasAbove()) {
|
|
if (Current->Above == Index2)
|
|
return Level::Above;
|
|
Current = &Sets.getLink(Current->Above);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
bool
|
|
tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
|
|
Value *FuncValue,
|
|
const iterator_range<User::op_iterator> &Args) {
|
|
const unsigned ExpectedMaxArgs = 8;
|
|
const unsigned MaxSupportedArgs = 50;
|
|
assert(Fns.size() > 0);
|
|
|
|
// This algorithm is n^2, so an arbitrary upper-bound of 50 args was
|
|
// selected, so it doesn't take too long in insane cases.
|
|
if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs)
|
|
return false;
|
|
|
|
// Exit early if we'll fail anyway
|
|
for (auto *Fn : Fns) {
|
|
if (isFunctionExternal(Fn) || Fn->isVarArg())
|
|
return false;
|
|
auto &MaybeInfo = AA.ensureCached(Fn);
|
|
if (!MaybeInfo.hasValue())
|
|
return false;
|
|
}
|
|
|
|
SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
|
|
SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
|
|
for (auto *Fn : Fns) {
|
|
auto &Info = *AA.ensureCached(Fn);
|
|
auto &Sets = Info.Sets;
|
|
auto &RetVals = Info.ReturnedValues;
|
|
|
|
Parameters.clear();
|
|
for (auto &Param : Fn->args()) {
|
|
auto MaybeInfo = Sets.find(&Param);
|
|
// Did a new parameter somehow get added to the function/slip by?
|
|
if (!MaybeInfo.hasValue())
|
|
return false;
|
|
Parameters.push_back(*MaybeInfo);
|
|
}
|
|
|
|
// Adding an edge from argument -> return value for each parameter that
|
|
// may alias the return value
|
|
for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
|
|
auto &ParamInfo = Parameters[I];
|
|
auto &ArgVal = Arguments[I];
|
|
bool AddEdge = false;
|
|
StratifiedAttrs Externals;
|
|
for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
|
|
auto MaybeInfo = Sets.find(RetVals[X]);
|
|
if (!MaybeInfo.hasValue())
|
|
return false;
|
|
|
|
auto &RetInfo = *MaybeInfo;
|
|
auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
|
|
auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
|
|
auto MaybeRelation =
|
|
getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
|
|
if (MaybeRelation.hasValue()) {
|
|
AddEdge = true;
|
|
Externals |= RetAttrs | ParamAttrs;
|
|
}
|
|
}
|
|
if (AddEdge)
|
|
Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
|
|
StratifiedAttrs().flip()));
|
|
}
|
|
|
|
if (Parameters.size() != Arguments.size())
|
|
return false;
|
|
|
|
/// Adding edges between arguments for arguments that may end up aliasing
|
|
/// each other. This is necessary for functions such as
|
|
/// void foo(int** a, int** b) { *a = *b; }
|
|
/// (Technically, the proper sets for this would be those below
|
|
/// Arguments[I] and Arguments[X], but our algorithm will produce
|
|
/// extremely similar, and equally correct, results either way)
|
|
for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
|
|
auto &MainVal = Arguments[I];
|
|
auto &MainInfo = Parameters[I];
|
|
auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
|
|
for (unsigned X = I + 1; X != E; ++X) {
|
|
auto &SubInfo = Parameters[X];
|
|
auto &SubVal = Arguments[X];
|
|
auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
|
|
auto MaybeRelation =
|
|
getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
|
|
|
|
if (!MaybeRelation.hasValue())
|
|
continue;
|
|
|
|
auto NewAttrs = SubAttrs | MainAttrs;
|
|
Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename InstT> void visitCallLikeInst(InstT &Inst) {
|
|
// TODO: Add support for noalias args/all the other fun function attributes
|
|
// that we can tack on.
|
|
SmallVector<Function *, 4> Targets;
|
|
if (getPossibleTargets(&Inst, Targets)) {
|
|
if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
|
|
return;
|
|
// Cleanup from interprocedural analysis
|
|
Output.clear();
|
|
}
|
|
|
|
// Because the function is opaque, we need to note that anything
|
|
// could have happened to the arguments, and that the result could alias
|
|
// just about anything, too.
|
|
// The goal of the loop is in part to unify many Values into one set, so we
|
|
// don't care if the function is void there.
|
|
for (Value *V : Inst.arg_operands())
|
|
Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
|
|
if (Inst.getNumArgOperands() == 0 &&
|
|
Inst.getType() != Type::getVoidTy(Inst.getContext()))
|
|
Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
|
|
}
|
|
|
|
void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
|
|
|
|
void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
|
|
|
|
/// Because vectors/aggregates are immutable and unaddressable, there's
|
|
/// nothing we can do to coax a value out of them, other than calling
|
|
/// Extract{Element,Value}. We can effectively treat them as pointers to
|
|
/// arbitrary memory locations we can store in and load from.
|
|
void visitExtractElementInst(ExtractElementInst &Inst) {
|
|
auto *Ptr = Inst.getVectorOperand();
|
|
auto *Val = &Inst;
|
|
Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
|
|
}
|
|
|
|
void visitInsertElementInst(InsertElementInst &Inst) {
|
|
auto *Vec = Inst.getOperand(0);
|
|
auto *Val = Inst.getOperand(1);
|
|
Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
|
|
Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
|
|
}
|
|
|
|
void visitLandingPadInst(LandingPadInst &Inst) {
|
|
// Exceptions come from "nowhere", from our analysis' perspective.
|
|
// So we place the instruction its own group, noting that said group may
|
|
// alias externals
|
|
Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
|
|
}
|
|
|
|
void visitInsertValueInst(InsertValueInst &Inst) {
|
|
auto *Agg = Inst.getOperand(0);
|
|
auto *Val = Inst.getOperand(1);
|
|
Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
|
|
Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
|
|
}
|
|
|
|
void visitExtractValueInst(ExtractValueInst &Inst) {
|
|
auto *Ptr = Inst.getAggregateOperand();
|
|
Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
|
|
}
|
|
|
|
void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
|
|
auto *From1 = Inst.getOperand(0);
|
|
auto *From2 = Inst.getOperand(1);
|
|
Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
|
|
Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
|
|
}
|
|
|
|
void visitConstantExpr(ConstantExpr *CE) {
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown instruction type encountered!");
|
|
// Build the switch statement using the Instruction.def file.
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE: \
|
|
visit##OPCODE(*(CLASS *)CE); \
|
|
break;
|
|
#include "llvm/IR/Instruction.def"
|
|
}
|
|
}
|
|
};
|
|
|
|
/// For a given instruction, we need to know which Value* to get the
|
|
/// users of in order to build our graph. In some cases (i.e. add),
|
|
/// we simply need the Instruction*. In other cases (i.e. store),
|
|
/// finding the users of the Instruction* is useless; we need to find
|
|
/// the users of the first operand. This handles determining which
|
|
/// value to follow for us.
|
|
///
|
|
/// Note: we *need* to keep this in sync with GetEdgesVisitor. Add
|
|
/// something to GetEdgesVisitor, add it here -- remove something from
|
|
/// GetEdgesVisitor, remove it here.
|
|
class GetTargetValueVisitor
|
|
: public InstVisitor<GetTargetValueVisitor, Value *> {
|
|
public:
|
|
Value *visitInstruction(Instruction &Inst) { return &Inst; }
|
|
|
|
Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
|
|
|
|
Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
|
|
return Inst.getPointerOperand();
|
|
}
|
|
|
|
Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
|
|
return Inst.getPointerOperand();
|
|
}
|
|
|
|
Value *visitInsertElementInst(InsertElementInst &Inst) {
|
|
return Inst.getOperand(0);
|
|
}
|
|
|
|
Value *visitInsertValueInst(InsertValueInst &Inst) {
|
|
return Inst.getAggregateOperand();
|
|
}
|
|
};
|
|
|
|
/// Set building requires a weighted bidirectional graph.
|
|
template <typename EdgeTypeT> class WeightedBidirectionalGraph {
|
|
public:
|
|
typedef std::size_t Node;
|
|
|
|
private:
|
|
const static Node StartNode = Node(0);
|
|
|
|
struct Edge {
|
|
EdgeTypeT Weight;
|
|
Node Other;
|
|
|
|
Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {}
|
|
|
|
bool operator==(const Edge &E) const {
|
|
return Weight == E.Weight && Other == E.Other;
|
|
}
|
|
|
|
bool operator!=(const Edge &E) const { return !operator==(E); }
|
|
};
|
|
|
|
struct NodeImpl {
|
|
std::vector<Edge> Edges;
|
|
};
|
|
|
|
std::vector<NodeImpl> NodeImpls;
|
|
|
|
bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
|
|
|
|
const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
|
|
NodeImpl &getNode(Node N) { return NodeImpls[N]; }
|
|
|
|
public:
|
|
/// \brief Iterator for edges. Because this graph is bidirected, we don't
|
|
/// allow modification of the edges using this iterator. Additionally, the
|
|
/// iterator becomes invalid if you add edges to or from the node you're
|
|
/// getting the edges of.
|
|
struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
|
|
std::tuple<EdgeTypeT, Node *>> {
|
|
EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
|
|
: Current(Iter) {}
|
|
|
|
EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
|
|
|
|
EdgeIterator &operator++() {
|
|
++Current;
|
|
return *this;
|
|
}
|
|
|
|
EdgeIterator operator++(int) {
|
|
EdgeIterator Copy(Current);
|
|
operator++();
|
|
return Copy;
|
|
}
|
|
|
|
std::tuple<EdgeTypeT, Node> &operator*() {
|
|
Store = std::make_tuple(Current->Weight, Current->Other);
|
|
return Store;
|
|
}
|
|
|
|
bool operator==(const EdgeIterator &Other) const {
|
|
return Current == Other.Current;
|
|
}
|
|
|
|
bool operator!=(const EdgeIterator &Other) const {
|
|
return !operator==(Other);
|
|
}
|
|
|
|
private:
|
|
typename std::vector<Edge>::const_iterator Current;
|
|
std::tuple<EdgeTypeT, Node> Store;
|
|
};
|
|
|
|
/// Wrapper for EdgeIterator with begin()/end() calls.
|
|
struct EdgeIterable {
|
|
EdgeIterable(const std::vector<Edge> &Edges)
|
|
: BeginIter(Edges.begin()), EndIter(Edges.end()) {}
|
|
|
|
EdgeIterator begin() { return EdgeIterator(BeginIter); }
|
|
|
|
EdgeIterator end() { return EdgeIterator(EndIter); }
|
|
|
|
private:
|
|
typename std::vector<Edge>::const_iterator BeginIter;
|
|
typename std::vector<Edge>::const_iterator EndIter;
|
|
};
|
|
|
|
// ----- Actual graph-related things ----- //
|
|
|
|
WeightedBidirectionalGraph() {}
|
|
|
|
WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
|
|
: NodeImpls(std::move(Other.NodeImpls)) {}
|
|
|
|
WeightedBidirectionalGraph<EdgeTypeT> &
|
|
operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
|
|
NodeImpls = std::move(Other.NodeImpls);
|
|
return *this;
|
|
}
|
|
|
|
Node addNode() {
|
|
auto Index = NodeImpls.size();
|
|
auto NewNode = Node(Index);
|
|
NodeImpls.push_back(NodeImpl());
|
|
return NewNode;
|
|
}
|
|
|
|
void addEdge(Node From, Node To, const EdgeTypeT &Weight,
|
|
const EdgeTypeT &ReverseWeight) {
|
|
assert(inbounds(From));
|
|
assert(inbounds(To));
|
|
auto &FromNode = getNode(From);
|
|
auto &ToNode = getNode(To);
|
|
FromNode.Edges.push_back(Edge(Weight, To));
|
|
ToNode.Edges.push_back(Edge(ReverseWeight, From));
|
|
}
|
|
|
|
iterator_range<EdgeIterator> edgesFor(const Node &N) const {
|
|
const auto &Node = getNode(N);
|
|
return make_range(EdgeIterator(Node.Edges.begin()),
|
|
EdgeIterator(Node.Edges.end()));
|
|
}
|
|
|
|
bool empty() const { return NodeImpls.empty(); }
|
|
std::size_t size() const { return NodeImpls.size(); }
|
|
|
|
/// Gets an arbitrary node in the graph as a starting point for traversal.
|
|
Node getEntryNode() {
|
|
assert(inbounds(StartNode));
|
|
return StartNode;
|
|
}
|
|
};
|
|
|
|
typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
|
|
typedef DenseMap<Value *, GraphT::Node> NodeMapT;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Function declarations that require types defined in the namespace above
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Given an argument number, returns the appropriate Attr index to set.
|
|
static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum);
|
|
|
|
/// Given a Value, potentially return which AttrIndex it maps to.
|
|
static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
|
|
|
|
/// Gets the inverse of a given EdgeType.
|
|
static EdgeType flipWeight(EdgeType Initial);
|
|
|
|
/// Gets edges of the given Instruction*, writing them to the SmallVector*.
|
|
static void argsToEdges(CFLAAResult &, Instruction *, SmallVectorImpl<Edge> &);
|
|
|
|
/// Gets edges of the given ConstantExpr*, writing them to the SmallVector*.
|
|
static void argsToEdges(CFLAAResult &, ConstantExpr *, SmallVectorImpl<Edge> &);
|
|
|
|
/// Gets the "Level" that one should travel in StratifiedSets
|
|
/// given an EdgeType.
|
|
static Level directionOfEdgeType(EdgeType);
|
|
|
|
/// Builds the graph needed for constructing the StratifiedSets for the
|
|
/// given function
|
|
static void buildGraphFrom(CFLAAResult &, Function *,
|
|
SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
|
|
|
|
/// Gets the edges of a ConstantExpr as if it was an Instruction. This function
|
|
/// also acts on any nested ConstantExprs, adding the edges of those to the
|
|
/// given SmallVector as well.
|
|
static void constexprToEdges(CFLAAResult &, ConstantExpr &,
|
|
SmallVectorImpl<Edge> &);
|
|
|
|
/// Given an Instruction, this will add it to the graph, along with any
|
|
/// Instructions that are potentially only available from said Instruction
|
|
/// For example, given the following line:
|
|
/// %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
|
|
/// addInstructionToGraph would add both the `load` and `getelementptr`
|
|
/// instructions to the graph appropriately.
|
|
static void addInstructionToGraph(CFLAAResult &, Instruction &,
|
|
SmallVectorImpl<Value *> &, NodeMapT &,
|
|
GraphT &);
|
|
|
|
/// Determines whether it would be pointless to add the given Value to our sets.
|
|
static bool canSkipAddingToSets(Value *Val);
|
|
|
|
static Optional<Function *> parentFunctionOfValue(Value *Val) {
|
|
if (auto *Inst = dyn_cast<Instruction>(Val)) {
|
|
auto *Bb = Inst->getParent();
|
|
return Bb->getParent();
|
|
}
|
|
|
|
if (auto *Arg = dyn_cast<Argument>(Val))
|
|
return Arg->getParent();
|
|
return None;
|
|
}
|
|
|
|
template <typename Inst>
|
|
static bool getPossibleTargets(Inst *Call,
|
|
SmallVectorImpl<Function *> &Output) {
|
|
if (auto *Fn = Call->getCalledFunction()) {
|
|
Output.push_back(Fn);
|
|
return true;
|
|
}
|
|
|
|
// TODO: If the call is indirect, we might be able to enumerate all potential
|
|
// targets of the call and return them, rather than just failing.
|
|
return false;
|
|
}
|
|
|
|
static Optional<Value *> getTargetValue(Instruction *Inst) {
|
|
GetTargetValueVisitor V;
|
|
return V.visit(Inst);
|
|
}
|
|
|
|
static bool hasUsefulEdges(Instruction *Inst) {
|
|
bool IsNonInvokeTerminator =
|
|
isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
|
|
return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
|
|
}
|
|
|
|
static bool hasUsefulEdges(ConstantExpr *CE) {
|
|
// ConstantExpr doesn't have terminators, invokes, or fences, so only needs
|
|
// to check for compares.
|
|
return CE->getOpcode() != Instruction::ICmp &&
|
|
CE->getOpcode() != Instruction::FCmp;
|
|
}
|
|
|
|
static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
|
|
if (isa<GlobalValue>(Val))
|
|
return AttrGlobalIndex;
|
|
|
|
if (auto *Arg = dyn_cast<Argument>(Val))
|
|
// Only pointer arguments should have the argument attribute,
|
|
// because things can't escape through scalars without us seeing a
|
|
// cast, and thus, interaction with them doesn't matter.
|
|
if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
|
|
return argNumberToAttrIndex(Arg->getArgNo());
|
|
return None;
|
|
}
|
|
|
|
static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
|
|
if (ArgNum >= AttrMaxNumArgs)
|
|
return AttrAllIndex;
|
|
return ArgNum + AttrFirstArgIndex;
|
|
}
|
|
|
|
static EdgeType flipWeight(EdgeType Initial) {
|
|
switch (Initial) {
|
|
case EdgeType::Assign:
|
|
return EdgeType::Assign;
|
|
case EdgeType::Dereference:
|
|
return EdgeType::Reference;
|
|
case EdgeType::Reference:
|
|
return EdgeType::Dereference;
|
|
}
|
|
llvm_unreachable("Incomplete coverage of EdgeType enum");
|
|
}
|
|
|
|
static void argsToEdges(CFLAAResult &Analysis, Instruction *Inst,
|
|
SmallVectorImpl<Edge> &Output) {
|
|
assert(hasUsefulEdges(Inst) &&
|
|
"Expected instructions to have 'useful' edges");
|
|
GetEdgesVisitor v(Analysis, Output);
|
|
v.visit(Inst);
|
|
}
|
|
|
|
static void argsToEdges(CFLAAResult &Analysis, ConstantExpr *CE,
|
|
SmallVectorImpl<Edge> &Output) {
|
|
assert(hasUsefulEdges(CE) && "Expected constant expr to have 'useful' edges");
|
|
GetEdgesVisitor v(Analysis, Output);
|
|
v.visitConstantExpr(CE);
|
|
}
|
|
|
|
static Level directionOfEdgeType(EdgeType Weight) {
|
|
switch (Weight) {
|
|
case EdgeType::Reference:
|
|
return Level::Above;
|
|
case EdgeType::Dereference:
|
|
return Level::Below;
|
|
case EdgeType::Assign:
|
|
return Level::Same;
|
|
}
|
|
llvm_unreachable("Incomplete switch coverage");
|
|
}
|
|
|
|
static void constexprToEdges(CFLAAResult &Analysis,
|
|
ConstantExpr &CExprToCollapse,
|
|
SmallVectorImpl<Edge> &Results) {
|
|
SmallVector<ConstantExpr *, 4> Worklist;
|
|
Worklist.push_back(&CExprToCollapse);
|
|
|
|
SmallVector<Edge, 8> ConstexprEdges;
|
|
SmallPtrSet<ConstantExpr *, 4> Visited;
|
|
while (!Worklist.empty()) {
|
|
auto *CExpr = Worklist.pop_back_val();
|
|
|
|
if (!hasUsefulEdges(CExpr))
|
|
continue;
|
|
|
|
ConstexprEdges.clear();
|
|
argsToEdges(Analysis, CExpr, ConstexprEdges);
|
|
for (auto &Edge : ConstexprEdges) {
|
|
if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From))
|
|
if (Visited.insert(Nested).second)
|
|
Worklist.push_back(Nested);
|
|
|
|
if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To))
|
|
if (Visited.insert(Nested).second)
|
|
Worklist.push_back(Nested);
|
|
}
|
|
|
|
Results.append(ConstexprEdges.begin(), ConstexprEdges.end());
|
|
}
|
|
}
|
|
|
|
static void addInstructionToGraph(CFLAAResult &Analysis, Instruction &Inst,
|
|
SmallVectorImpl<Value *> &ReturnedValues,
|
|
NodeMapT &Map, GraphT &Graph) {
|
|
const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
|
|
auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
|
|
auto &Iter = Pair.first;
|
|
if (Pair.second) {
|
|
auto NewNode = Graph.addNode();
|
|
Iter->second = NewNode;
|
|
}
|
|
return Iter->second;
|
|
};
|
|
|
|
// We don't want the edges of most "return" instructions, but we *do* want
|
|
// to know what can be returned.
|
|
if (isa<ReturnInst>(&Inst))
|
|
ReturnedValues.push_back(&Inst);
|
|
|
|
if (!hasUsefulEdges(&Inst))
|
|
return;
|
|
|
|
SmallVector<Edge, 8> Edges;
|
|
argsToEdges(Analysis, &Inst, Edges);
|
|
|
|
// In the case of an unused alloca (or similar), edges may be empty. Note
|
|
// that it exists so we can potentially answer NoAlias.
|
|
if (Edges.empty()) {
|
|
auto MaybeVal = getTargetValue(&Inst);
|
|
assert(MaybeVal.hasValue());
|
|
auto *Target = *MaybeVal;
|
|
findOrInsertNode(Target);
|
|
return;
|
|
}
|
|
|
|
auto addEdgeToGraph = [&](const Edge &E) {
|
|
auto To = findOrInsertNode(E.To);
|
|
auto From = findOrInsertNode(E.From);
|
|
auto FlippedWeight = flipWeight(E.Weight);
|
|
auto Attrs = E.AdditionalAttrs;
|
|
Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
|
|
std::make_pair(FlippedWeight, Attrs));
|
|
};
|
|
|
|
SmallVector<ConstantExpr *, 4> ConstantExprs;
|
|
for (const Edge &E : Edges) {
|
|
addEdgeToGraph(E);
|
|
if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To))
|
|
ConstantExprs.push_back(Constexpr);
|
|
if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From))
|
|
ConstantExprs.push_back(Constexpr);
|
|
}
|
|
|
|
for (ConstantExpr *CE : ConstantExprs) {
|
|
Edges.clear();
|
|
constexprToEdges(Analysis, *CE, Edges);
|
|
std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph);
|
|
}
|
|
}
|
|
|
|
static void buildGraphFrom(CFLAAResult &Analysis, Function *Fn,
|
|
SmallVectorImpl<Value *> &ReturnedValues,
|
|
NodeMapT &Map, GraphT &Graph) {
|
|
// (N.B. We may remove graph construction entirely, because it doesn't really
|
|
// buy us much.)
|
|
for (auto &Bb : Fn->getBasicBlockList())
|
|
for (auto &Inst : Bb.getInstList())
|
|
addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph);
|
|
}
|
|
|
|
static bool canSkipAddingToSets(Value *Val) {
|
|
// Constants can share instances, which may falsely unify multiple
|
|
// sets, e.g. in
|
|
// store i32* null, i32** %ptr1
|
|
// store i32* null, i32** %ptr2
|
|
// clearly ptr1 and ptr2 should not be unified into the same set, so
|
|
// we should filter out the (potentially shared) instance to
|
|
// i32* null.
|
|
if (isa<Constant>(Val)) {
|
|
// TODO: Because all of these things are constant, we can determine whether
|
|
// the data is *actually* mutable at graph building time. This will probably
|
|
// come for free/cheap with offset awareness.
|
|
bool CanStoreMutableData = isa<GlobalValue>(Val) ||
|
|
isa<ConstantExpr>(Val) ||
|
|
isa<ConstantAggregate>(Val);
|
|
return !CanStoreMutableData;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Builds the graph + StratifiedSets for a function.
|
|
CFLAAResult::FunctionInfo CFLAAResult::buildSetsFrom(Function *Fn) {
|
|
NodeMapT Map;
|
|
GraphT Graph;
|
|
SmallVector<Value *, 4> ReturnedValues;
|
|
|
|
buildGraphFrom(*this, Fn, ReturnedValues, Map, Graph);
|
|
|
|
DenseMap<GraphT::Node, Value *> NodeValueMap;
|
|
NodeValueMap.reserve(Map.size());
|
|
for (const auto &Pair : Map)
|
|
NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
|
|
|
|
const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
|
|
auto ValIter = NodeValueMap.find(Node);
|
|
assert(ValIter != NodeValueMap.end());
|
|
return ValIter->second;
|
|
};
|
|
|
|
StratifiedSetsBuilder<Value *> Builder;
|
|
|
|
SmallVector<GraphT::Node, 16> Worklist;
|
|
for (auto &Pair : Map) {
|
|
Worklist.clear();
|
|
|
|
auto *Value = Pair.first;
|
|
Builder.add(Value);
|
|
auto InitialNode = Pair.second;
|
|
Worklist.push_back(InitialNode);
|
|
while (!Worklist.empty()) {
|
|
auto Node = Worklist.pop_back_val();
|
|
auto *CurValue = findValueOrDie(Node);
|
|
if (canSkipAddingToSets(CurValue))
|
|
continue;
|
|
|
|
Optional<StratifiedAttr> MaybeCurIndex = valueToAttrIndex(CurValue);
|
|
if (MaybeCurIndex)
|
|
Builder.noteAttributes(CurValue, *MaybeCurIndex);
|
|
|
|
for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
|
|
auto Weight = std::get<0>(EdgeTuple);
|
|
auto Label = Weight.first;
|
|
auto &OtherNode = std::get<1>(EdgeTuple);
|
|
auto *OtherValue = findValueOrDie(OtherNode);
|
|
|
|
if (canSkipAddingToSets(OtherValue))
|
|
continue;
|
|
|
|
bool Added;
|
|
switch (directionOfEdgeType(Label)) {
|
|
case Level::Above:
|
|
Added = Builder.addAbove(CurValue, OtherValue);
|
|
break;
|
|
case Level::Below:
|
|
Added = Builder.addBelow(CurValue, OtherValue);
|
|
break;
|
|
case Level::Same:
|
|
Added = Builder.addWith(CurValue, OtherValue);
|
|
break;
|
|
}
|
|
|
|
auto Aliasing = Weight.second;
|
|
if (MaybeCurIndex)
|
|
Aliasing.set(*MaybeCurIndex);
|
|
if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
|
|
Aliasing.set(*MaybeOtherIndex);
|
|
Builder.noteAttributes(CurValue, Aliasing);
|
|
Builder.noteAttributes(OtherValue, Aliasing);
|
|
|
|
if (Added)
|
|
Worklist.push_back(OtherNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
// There are times when we end up with parameters not in our graph (i.e. if
|
|
// it's only used as the condition of a branch). Other bits of code depend on
|
|
// things that were present during construction being present in the graph.
|
|
// So, we add all present arguments here.
|
|
for (auto &Arg : Fn->args()) {
|
|
if (!Builder.add(&Arg))
|
|
continue;
|
|
|
|
auto Attrs = valueToAttrIndex(&Arg);
|
|
if (Attrs.hasValue())
|
|
Builder.noteAttributes(&Arg, *Attrs);
|
|
}
|
|
|
|
return FunctionInfo(Builder.build(), std::move(ReturnedValues));
|
|
}
|
|
|
|
void CFLAAResult::scan(Function *Fn) {
|
|
auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
|
|
(void)InsertPair;
|
|
assert(InsertPair.second &&
|
|
"Trying to scan a function that has already been cached");
|
|
|
|
// Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
|
|
// may get evaluated after operator[], potentially triggering a DenseMap
|
|
// resize and invalidating the reference returned by operator[]
|
|
auto FunInfo = buildSetsFrom(Fn);
|
|
Cache[Fn] = std::move(FunInfo);
|
|
|
|
Handles.push_front(FunctionHandle(Fn, this));
|
|
}
|
|
|
|
void CFLAAResult::evict(Function *Fn) { Cache.erase(Fn); }
|
|
|
|
/// Ensures that the given function is available in the cache, and returns the
|
|
/// entry.
|
|
const Optional<CFLAAResult::FunctionInfo> &
|
|
CFLAAResult::ensureCached(Function *Fn) {
|
|
auto Iter = Cache.find(Fn);
|
|
if (Iter == Cache.end()) {
|
|
scan(Fn);
|
|
Iter = Cache.find(Fn);
|
|
assert(Iter != Cache.end());
|
|
assert(Iter->second.hasValue());
|
|
}
|
|
return Iter->second;
|
|
}
|
|
|
|
AliasResult CFLAAResult::query(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
auto *ValA = const_cast<Value *>(LocA.Ptr);
|
|
auto *ValB = const_cast<Value *>(LocB.Ptr);
|
|
|
|
Function *Fn = nullptr;
|
|
auto MaybeFnA = parentFunctionOfValue(ValA);
|
|
auto MaybeFnB = parentFunctionOfValue(ValB);
|
|
if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
|
|
// The only times this is known to happen are when globals + InlineAsm are
|
|
// involved
|
|
DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n");
|
|
return MayAlias;
|
|
}
|
|
|
|
if (MaybeFnA.hasValue()) {
|
|
Fn = *MaybeFnA;
|
|
assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
|
|
"Interprocedural queries not supported");
|
|
} else {
|
|
Fn = *MaybeFnB;
|
|
}
|
|
|
|
assert(Fn != nullptr);
|
|
auto &MaybeInfo = ensureCached(Fn);
|
|
assert(MaybeInfo.hasValue());
|
|
|
|
auto &Sets = MaybeInfo->Sets;
|
|
auto MaybeA = Sets.find(ValA);
|
|
if (!MaybeA.hasValue())
|
|
return MayAlias;
|
|
|
|
auto MaybeB = Sets.find(ValB);
|
|
if (!MaybeB.hasValue())
|
|
return MayAlias;
|
|
|
|
auto SetA = *MaybeA;
|
|
auto SetB = *MaybeB;
|
|
auto AttrsA = Sets.getLink(SetA.Index).Attrs;
|
|
auto AttrsB = Sets.getLink(SetB.Index).Attrs;
|
|
|
|
// Stratified set attributes are used as markets to signify whether a member
|
|
// of a StratifiedSet (or a member of a set above the current set) has
|
|
// interacted with either arguments or globals. "Interacted with" meaning its
|
|
// value may be different depending on the value of an argument or global. The
|
|
// thought behind this is that, because arguments and globals may alias each
|
|
// other, if AttrsA and AttrsB have touched args/globals, we must
|
|
// conservatively say that they alias. However, if at least one of the sets
|
|
// has no values that could legally be altered by changing the value of an
|
|
// argument or global, then we don't have to be as conservative.
|
|
if (AttrsA.any() && AttrsB.any())
|
|
return MayAlias;
|
|
|
|
// We currently unify things even if the accesses to them may not be in
|
|
// bounds, so we can't return partial alias here because we don't know whether
|
|
// the pointer is really within the object or not.
|
|
// e.g. Given an out of bounds GEP and an alloca'd pointer, we may unify the
|
|
// two. We can't return partial alias for this case. Since we do not currently
|
|
// track enough information to differentiate.
|
|
return SetA.Index == SetB.Index ? MayAlias : NoAlias;
|
|
}
|
|
|
|
char CFLAA::PassID;
|
|
|
|
CFLAAResult CFLAA::run(Function &F, AnalysisManager<Function> &AM) {
|
|
return CFLAAResult();
|
|
}
|
|
|
|
char CFLAAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis", false,
|
|
true)
|
|
|
|
ImmutablePass *llvm::createCFLAAWrapperPass() { return new CFLAAWrapperPass(); }
|
|
|
|
CFLAAWrapperPass::CFLAAWrapperPass() : ImmutablePass(ID) {
|
|
initializeCFLAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool CFLAAWrapperPass::doInitialization(Module &M) {
|
|
Result.reset(new CFLAAResult());
|
|
return false;
|
|
}
|
|
|
|
bool CFLAAWrapperPass::doFinalization(Module &M) {
|
|
Result.reset();
|
|
return false;
|
|
}
|
|
|
|
void CFLAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|