mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-07 12:30:44 +00:00
6d6e2b5a35
Summary: It is fairly common to call SE->getConstant(Ty, 0) or SE->getConstant(Ty, 1); this change makes such uses a little bit briefer. I've refactored the call sites I could find easily to use getZero / getOne. Reviewers: hfinkel, majnemer, reames Subscribers: sanjoy, llvm-commits Differential Revision: http://reviews.llvm.org/D12947 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248362 91177308-0d34-0410-b5e6-96231b3b80d8
725 lines
29 KiB
C++
725 lines
29 KiB
C++
//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements straight-line strength reduction (SLSR). Unlike loop
|
|
// strength reduction, this algorithm is designed to reduce arithmetic
|
|
// redundancy in straight-line code instead of loops. It has proven to be
|
|
// effective in simplifying arithmetic statements derived from an unrolled loop.
|
|
// It can also simplify the logic of SeparateConstOffsetFromGEP.
|
|
//
|
|
// There are many optimizations we can perform in the domain of SLSR. This file
|
|
// for now contains only an initial step. Specifically, we look for strength
|
|
// reduction candidates in the following forms:
|
|
//
|
|
// Form 1: B + i * S
|
|
// Form 2: (B + i) * S
|
|
// Form 3: &B[i * S]
|
|
//
|
|
// where S is an integer variable, and i is a constant integer. If we found two
|
|
// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
|
|
// in a simpler way with respect to S1. For example,
|
|
//
|
|
// S1: X = B + i * S
|
|
// S2: Y = B + i' * S => X + (i' - i) * S
|
|
//
|
|
// S1: X = (B + i) * S
|
|
// S2: Y = (B + i') * S => X + (i' - i) * S
|
|
//
|
|
// S1: X = &B[i * S]
|
|
// S2: Y = &B[i' * S] => &X[(i' - i) * S]
|
|
//
|
|
// Note: (i' - i) * S is folded to the extent possible.
|
|
//
|
|
// This rewriting is in general a good idea. The code patterns we focus on
|
|
// usually come from loop unrolling, so (i' - i) * S is likely the same
|
|
// across iterations and can be reused. When that happens, the optimized form
|
|
// takes only one add starting from the second iteration.
|
|
//
|
|
// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
|
|
// multiple bases, we choose to rewrite S2 with respect to its "immediate"
|
|
// basis, the basis that is the closest ancestor in the dominator tree.
|
|
//
|
|
// TODO:
|
|
//
|
|
// - Floating point arithmetics when fast math is enabled.
|
|
//
|
|
// - SLSR may decrease ILP at the architecture level. Targets that are very
|
|
// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
|
|
// left as future work.
|
|
//
|
|
// - When (i' - i) is constant but i and i' are not, we could still perform
|
|
// SLSR.
|
|
#include <vector>
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
namespace {
|
|
|
|
class StraightLineStrengthReduce : public FunctionPass {
|
|
public:
|
|
// SLSR candidate. Such a candidate must be in one of the forms described in
|
|
// the header comments.
|
|
struct Candidate : public ilist_node<Candidate> {
|
|
enum Kind {
|
|
Invalid, // reserved for the default constructor
|
|
Add, // B + i * S
|
|
Mul, // (B + i) * S
|
|
GEP, // &B[..][i * S][..]
|
|
};
|
|
|
|
Candidate()
|
|
: CandidateKind(Invalid), Base(nullptr), Index(nullptr),
|
|
Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
|
|
Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
|
|
Instruction *I)
|
|
: CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
|
|
Basis(nullptr) {}
|
|
Kind CandidateKind;
|
|
const SCEV *Base;
|
|
// Note that Index and Stride of a GEP candidate do not necessarily have the
|
|
// same integer type. In that case, during rewriting, Stride will be
|
|
// sign-extended or truncated to Index's type.
|
|
ConstantInt *Index;
|
|
Value *Stride;
|
|
// The instruction this candidate corresponds to. It helps us to rewrite a
|
|
// candidate with respect to its immediate basis. Note that one instruction
|
|
// can correspond to multiple candidates depending on how you associate the
|
|
// expression. For instance,
|
|
//
|
|
// (a + 1) * (b + 2)
|
|
//
|
|
// can be treated as
|
|
//
|
|
// <Base: a, Index: 1, Stride: b + 2>
|
|
//
|
|
// or
|
|
//
|
|
// <Base: b, Index: 2, Stride: a + 1>
|
|
Instruction *Ins;
|
|
// Points to the immediate basis of this candidate, or nullptr if we cannot
|
|
// find any basis for this candidate.
|
|
Candidate *Basis;
|
|
};
|
|
|
|
static char ID;
|
|
|
|
StraightLineStrengthReduce()
|
|
: FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
|
|
initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
// We do not modify the shape of the CFG.
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool doInitialization(Module &M) override {
|
|
DL = &M.getDataLayout();
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
|
|
// share the same base and stride.
|
|
bool isBasisFor(const Candidate &Basis, const Candidate &C);
|
|
// Returns whether the candidate can be folded into an addressing mode.
|
|
bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
|
|
const DataLayout *DL);
|
|
// Returns true if C is already in a simplest form and not worth being
|
|
// rewritten.
|
|
bool isSimplestForm(const Candidate &C);
|
|
// Checks whether I is in a candidate form. If so, adds all the matching forms
|
|
// to Candidates, and tries to find the immediate basis for each of them.
|
|
void allocateCandidatesAndFindBasis(Instruction *I);
|
|
// Allocate candidates and find bases for Add instructions.
|
|
void allocateCandidatesAndFindBasisForAdd(Instruction *I);
|
|
// Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
|
|
// candidate.
|
|
void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
|
|
Instruction *I);
|
|
// Allocate candidates and find bases for Mul instructions.
|
|
void allocateCandidatesAndFindBasisForMul(Instruction *I);
|
|
// Splits LHS into Base + Index and, if succeeds, calls
|
|
// allocateCandidatesAndFindBasis.
|
|
void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
|
|
Instruction *I);
|
|
// Allocate candidates and find bases for GetElementPtr instructions.
|
|
void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
|
|
// A helper function that scales Idx with ElementSize before invoking
|
|
// allocateCandidatesAndFindBasis.
|
|
void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
|
|
Value *S, uint64_t ElementSize,
|
|
Instruction *I);
|
|
// Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
|
|
// basis.
|
|
void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
|
|
ConstantInt *Idx, Value *S,
|
|
Instruction *I);
|
|
// Rewrites candidate C with respect to Basis.
|
|
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
|
|
// A helper function that factors ArrayIdx to a product of a stride and a
|
|
// constant index, and invokes allocateCandidatesAndFindBasis with the
|
|
// factorings.
|
|
void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
|
|
GetElementPtrInst *GEP);
|
|
// Emit code that computes the "bump" from Basis to C. If the candidate is a
|
|
// GEP and the bump is not divisible by the element size of the GEP, this
|
|
// function sets the BumpWithUglyGEP flag to notify its caller to bump the
|
|
// basis using an ugly GEP.
|
|
static Value *emitBump(const Candidate &Basis, const Candidate &C,
|
|
IRBuilder<> &Builder, const DataLayout *DL,
|
|
bool &BumpWithUglyGEP);
|
|
|
|
const DataLayout *DL;
|
|
DominatorTree *DT;
|
|
ScalarEvolution *SE;
|
|
TargetTransformInfo *TTI;
|
|
ilist<Candidate> Candidates;
|
|
// Temporarily holds all instructions that are unlinked (but not deleted) by
|
|
// rewriteCandidateWithBasis. These instructions will be actually removed
|
|
// after all rewriting finishes.
|
|
std::vector<Instruction *> UnlinkedInstructions;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
char StraightLineStrengthReduce::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
|
|
"Straight line strength reduction", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
|
|
"Straight line strength reduction", false, false)
|
|
|
|
FunctionPass *llvm::createStraightLineStrengthReducePass() {
|
|
return new StraightLineStrengthReduce();
|
|
}
|
|
|
|
bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
|
|
const Candidate &C) {
|
|
return (Basis.Ins != C.Ins && // skip the same instruction
|
|
// They must have the same type too. Basis.Base == C.Base doesn't
|
|
// guarantee their types are the same (PR23975).
|
|
Basis.Ins->getType() == C.Ins->getType() &&
|
|
// Basis must dominate C in order to rewrite C with respect to Basis.
|
|
DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
|
|
// They share the same base, stride, and candidate kind.
|
|
Basis.Base == C.Base && Basis.Stride == C.Stride &&
|
|
Basis.CandidateKind == C.CandidateKind);
|
|
}
|
|
|
|
// TODO: use TTI->getGEPCost.
|
|
static bool isGEPFoldable(GetElementPtrInst *GEP,
|
|
const TargetTransformInfo *TTI,
|
|
const DataLayout *DL) {
|
|
GlobalVariable *BaseGV = nullptr;
|
|
int64_t BaseOffset = 0;
|
|
bool HasBaseReg = false;
|
|
int64_t Scale = 0;
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
|
|
BaseGV = GV;
|
|
else
|
|
HasBaseReg = true;
|
|
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
|
|
if (isa<SequentialType>(*GTI)) {
|
|
int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
|
|
if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
|
|
BaseOffset += ConstIdx->getSExtValue() * ElementSize;
|
|
} else {
|
|
// Needs scale register.
|
|
if (Scale != 0) {
|
|
// No addressing mode takes two scale registers.
|
|
return false;
|
|
}
|
|
Scale = ElementSize;
|
|
}
|
|
} else {
|
|
StructType *STy = cast<StructType>(*GTI);
|
|
uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
|
|
BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
|
|
}
|
|
}
|
|
|
|
unsigned AddrSpace = GEP->getPointerAddressSpace();
|
|
return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
|
|
BaseOffset, HasBaseReg, Scale, AddrSpace);
|
|
}
|
|
|
|
// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
|
|
static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
|
|
TargetTransformInfo *TTI) {
|
|
return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
|
|
Index->getSExtValue());
|
|
}
|
|
|
|
bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
|
|
TargetTransformInfo *TTI,
|
|
const DataLayout *DL) {
|
|
if (C.CandidateKind == Candidate::Add)
|
|
return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
|
|
if (C.CandidateKind == Candidate::GEP)
|
|
return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
|
|
return false;
|
|
}
|
|
|
|
// Returns true if GEP has zero or one non-zero index.
|
|
static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
|
|
unsigned NumNonZeroIndices = 0;
|
|
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
|
|
ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
|
|
if (ConstIdx == nullptr || !ConstIdx->isZero())
|
|
++NumNonZeroIndices;
|
|
}
|
|
return NumNonZeroIndices <= 1;
|
|
}
|
|
|
|
bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
|
|
if (C.CandidateKind == Candidate::Add) {
|
|
// B + 1 * S or B + (-1) * S
|
|
return C.Index->isOne() || C.Index->isMinusOne();
|
|
}
|
|
if (C.CandidateKind == Candidate::Mul) {
|
|
// (B + 0) * S
|
|
return C.Index->isZero();
|
|
}
|
|
if (C.CandidateKind == Candidate::GEP) {
|
|
// (char*)B + S or (char*)B - S
|
|
return ((C.Index->isOne() || C.Index->isMinusOne()) &&
|
|
hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// TODO: We currently implement an algorithm whose time complexity is linear in
|
|
// the number of existing candidates. However, we could do better by using
|
|
// ScopedHashTable. Specifically, while traversing the dominator tree, we could
|
|
// maintain all the candidates that dominate the basic block being traversed in
|
|
// a ScopedHashTable. This hash table is indexed by the base and the stride of
|
|
// a candidate. Therefore, finding the immediate basis of a candidate boils down
|
|
// to one hash-table look up.
|
|
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
|
|
Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
|
|
Instruction *I) {
|
|
Candidate C(CT, B, Idx, S, I);
|
|
// SLSR can complicate an instruction in two cases:
|
|
//
|
|
// 1. If we can fold I into an addressing mode, computing I is likely free or
|
|
// takes only one instruction.
|
|
//
|
|
// 2. I is already in a simplest form. For example, when
|
|
// X = B + 8 * S
|
|
// Y = B + S,
|
|
// rewriting Y to X - 7 * S is probably a bad idea.
|
|
//
|
|
// In the above cases, we still add I to the candidate list so that I can be
|
|
// the basis of other candidates, but we leave I's basis blank so that I
|
|
// won't be rewritten.
|
|
if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
|
|
// Try to compute the immediate basis of C.
|
|
unsigned NumIterations = 0;
|
|
// Limit the scan radius to avoid running in quadratice time.
|
|
static const unsigned MaxNumIterations = 50;
|
|
for (auto Basis = Candidates.rbegin();
|
|
Basis != Candidates.rend() && NumIterations < MaxNumIterations;
|
|
++Basis, ++NumIterations) {
|
|
if (isBasisFor(*Basis, C)) {
|
|
C.Basis = &(*Basis);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Regardless of whether we find a basis for C, we need to push C to the
|
|
// candidate list so that it can be the basis of other candidates.
|
|
Candidates.push_back(C);
|
|
}
|
|
|
|
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
|
|
Instruction *I) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
allocateCandidatesAndFindBasisForAdd(I);
|
|
break;
|
|
case Instruction::Mul:
|
|
allocateCandidatesAndFindBasisForMul(I);
|
|
break;
|
|
case Instruction::GetElementPtr:
|
|
allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
|
|
Instruction *I) {
|
|
// Try matching B + i * S.
|
|
if (!isa<IntegerType>(I->getType()))
|
|
return;
|
|
|
|
assert(I->getNumOperands() == 2 && "isn't I an add?");
|
|
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
|
allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
|
|
if (LHS != RHS)
|
|
allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
|
|
}
|
|
|
|
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
|
|
Value *LHS, Value *RHS, Instruction *I) {
|
|
Value *S = nullptr;
|
|
ConstantInt *Idx = nullptr;
|
|
if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
|
|
// I = LHS + RHS = LHS + Idx * S
|
|
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
|
|
} else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
|
|
// I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
|
|
APInt One(Idx->getBitWidth(), 1);
|
|
Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
|
|
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
|
|
} else {
|
|
// At least, I = LHS + 1 * RHS
|
|
ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
|
|
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
|
|
I);
|
|
}
|
|
}
|
|
|
|
// Returns true if A matches B + C where C is constant.
|
|
static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
|
|
return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
|
|
match(A, m_Add(m_ConstantInt(C), m_Value(B))));
|
|
}
|
|
|
|
// Returns true if A matches B | C where C is constant.
|
|
static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
|
|
return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
|
|
match(A, m_Or(m_ConstantInt(C), m_Value(B))));
|
|
}
|
|
|
|
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
|
|
Value *LHS, Value *RHS, Instruction *I) {
|
|
Value *B = nullptr;
|
|
ConstantInt *Idx = nullptr;
|
|
if (matchesAdd(LHS, B, Idx)) {
|
|
// If LHS is in the form of "Base + Index", then I is in the form of
|
|
// "(Base + Index) * RHS".
|
|
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
|
|
} else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
|
|
// If LHS is in the form of "Base | Index" and Base and Index have no common
|
|
// bits set, then
|
|
// Base | Index = Base + Index
|
|
// and I is thus in the form of "(Base + Index) * RHS".
|
|
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
|
|
} else {
|
|
// Otherwise, at least try the form (LHS + 0) * RHS.
|
|
ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
|
|
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
|
|
I);
|
|
}
|
|
}
|
|
|
|
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
|
|
Instruction *I) {
|
|
// Try matching (B + i) * S.
|
|
// TODO: we could extend SLSR to float and vector types.
|
|
if (!isa<IntegerType>(I->getType()))
|
|
return;
|
|
|
|
assert(I->getNumOperands() == 2 && "isn't I a mul?");
|
|
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
|
allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
|
|
if (LHS != RHS) {
|
|
// Symmetrically, try to split RHS to Base + Index.
|
|
allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
|
|
}
|
|
}
|
|
|
|
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
|
|
const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
|
|
Instruction *I) {
|
|
// I = B + sext(Idx *nsw S) * ElementSize
|
|
// = B + (sext(Idx) * sext(S)) * ElementSize
|
|
// = B + (sext(Idx) * ElementSize) * sext(S)
|
|
// Casting to IntegerType is safe because we skipped vector GEPs.
|
|
IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
|
|
ConstantInt *ScaledIdx = ConstantInt::get(
|
|
IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
|
|
allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
|
|
}
|
|
|
|
void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
|
|
const SCEV *Base,
|
|
uint64_t ElementSize,
|
|
GetElementPtrInst *GEP) {
|
|
// At least, ArrayIdx = ArrayIdx *nsw 1.
|
|
allocateCandidatesAndFindBasisForGEP(
|
|
Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
|
|
ArrayIdx, ElementSize, GEP);
|
|
Value *LHS = nullptr;
|
|
ConstantInt *RHS = nullptr;
|
|
// One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
|
|
// itself. This would allow us to handle the shl case for free. However,
|
|
// matching SCEVs has two issues:
|
|
//
|
|
// 1. this would complicate rewriting because the rewriting procedure
|
|
// would have to translate SCEVs back to IR instructions. This translation
|
|
// is difficult when LHS is further evaluated to a composite SCEV.
|
|
//
|
|
// 2. ScalarEvolution is designed to be control-flow oblivious. It tends
|
|
// to strip nsw/nuw flags which are critical for SLSR to trace into
|
|
// sext'ed multiplication.
|
|
if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
|
|
// SLSR is currently unsafe if i * S may overflow.
|
|
// GEP = Base + sext(LHS *nsw RHS) * ElementSize
|
|
allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
|
|
} else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
|
|
// GEP = Base + sext(LHS <<nsw RHS) * ElementSize
|
|
// = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
|
|
APInt One(RHS->getBitWidth(), 1);
|
|
ConstantInt *PowerOf2 =
|
|
ConstantInt::get(RHS->getContext(), One << RHS->getValue());
|
|
allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
|
|
}
|
|
}
|
|
|
|
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
|
|
GetElementPtrInst *GEP) {
|
|
// TODO: handle vector GEPs
|
|
if (GEP->getType()->isVectorTy())
|
|
return;
|
|
|
|
SmallVector<const SCEV *, 4> IndexExprs;
|
|
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
|
|
IndexExprs.push_back(SE->getSCEV(*I));
|
|
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
|
|
if (!isa<SequentialType>(*GTI++))
|
|
continue;
|
|
|
|
const SCEV *OrigIndexExpr = IndexExprs[I - 1];
|
|
IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
|
|
|
|
// The base of this candidate is GEP's base plus the offsets of all
|
|
// indices except this current one.
|
|
const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
|
|
SE->getSCEV(GEP->getPointerOperand()),
|
|
IndexExprs, GEP->isInBounds());
|
|
Value *ArrayIdx = GEP->getOperand(I);
|
|
uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
|
|
factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
|
|
// When ArrayIdx is the sext of a value, we try to factor that value as
|
|
// well. Handling this case is important because array indices are
|
|
// typically sign-extended to the pointer size.
|
|
Value *TruncatedArrayIdx = nullptr;
|
|
if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
|
|
factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
|
|
|
|
IndexExprs[I - 1] = OrigIndexExpr;
|
|
}
|
|
}
|
|
|
|
// A helper function that unifies the bitwidth of A and B.
|
|
static void unifyBitWidth(APInt &A, APInt &B) {
|
|
if (A.getBitWidth() < B.getBitWidth())
|
|
A = A.sext(B.getBitWidth());
|
|
else if (A.getBitWidth() > B.getBitWidth())
|
|
B = B.sext(A.getBitWidth());
|
|
}
|
|
|
|
Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
|
|
const Candidate &C,
|
|
IRBuilder<> &Builder,
|
|
const DataLayout *DL,
|
|
bool &BumpWithUglyGEP) {
|
|
APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
|
|
unifyBitWidth(Idx, BasisIdx);
|
|
APInt IndexOffset = Idx - BasisIdx;
|
|
|
|
BumpWithUglyGEP = false;
|
|
if (Basis.CandidateKind == Candidate::GEP) {
|
|
APInt ElementSize(
|
|
IndexOffset.getBitWidth(),
|
|
DL->getTypeAllocSize(
|
|
cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
|
|
APInt Q, R;
|
|
APInt::sdivrem(IndexOffset, ElementSize, Q, R);
|
|
if (R.getSExtValue() == 0)
|
|
IndexOffset = Q;
|
|
else
|
|
BumpWithUglyGEP = true;
|
|
}
|
|
|
|
// Compute Bump = C - Basis = (i' - i) * S.
|
|
// Common case 1: if (i' - i) is 1, Bump = S.
|
|
if (IndexOffset.getSExtValue() == 1)
|
|
return C.Stride;
|
|
// Common case 2: if (i' - i) is -1, Bump = -S.
|
|
if (IndexOffset.getSExtValue() == -1)
|
|
return Builder.CreateNeg(C.Stride);
|
|
|
|
// Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
|
|
// have different bit widths.
|
|
IntegerType *DeltaType =
|
|
IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
|
|
Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
|
|
if (IndexOffset.isPowerOf2()) {
|
|
// If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
|
|
ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
|
|
return Builder.CreateShl(ExtendedStride, Exponent);
|
|
}
|
|
if ((-IndexOffset).isPowerOf2()) {
|
|
// If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
|
|
ConstantInt *Exponent =
|
|
ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
|
|
return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
|
|
}
|
|
Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
|
|
return Builder.CreateMul(ExtendedStride, Delta);
|
|
}
|
|
|
|
void StraightLineStrengthReduce::rewriteCandidateWithBasis(
|
|
const Candidate &C, const Candidate &Basis) {
|
|
assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
|
|
C.Stride == Basis.Stride);
|
|
// We run rewriteCandidateWithBasis on all candidates in a post-order, so the
|
|
// basis of a candidate cannot be unlinked before the candidate.
|
|
assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
|
|
|
|
// An instruction can correspond to multiple candidates. Therefore, instead of
|
|
// simply deleting an instruction when we rewrite it, we mark its parent as
|
|
// nullptr (i.e. unlink it) so that we can skip the candidates whose
|
|
// instruction is already rewritten.
|
|
if (!C.Ins->getParent())
|
|
return;
|
|
|
|
IRBuilder<> Builder(C.Ins);
|
|
bool BumpWithUglyGEP;
|
|
Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
|
|
Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
|
|
switch (C.CandidateKind) {
|
|
case Candidate::Add:
|
|
case Candidate::Mul:
|
|
// C = Basis + Bump
|
|
if (BinaryOperator::isNeg(Bump)) {
|
|
// If Bump is a neg instruction, emit C = Basis - (-Bump).
|
|
Reduced =
|
|
Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
|
|
// We only use the negative argument of Bump, and Bump itself may be
|
|
// trivially dead.
|
|
RecursivelyDeleteTriviallyDeadInstructions(Bump);
|
|
} else {
|
|
// It's tempting to preserve nsw on Bump and/or Reduced. However, it's
|
|
// usually unsound, e.g.,
|
|
//
|
|
// X = (-2 +nsw 1) *nsw INT_MAX
|
|
// Y = (-2 +nsw 3) *nsw INT_MAX
|
|
// =>
|
|
// Y = X + 2 * INT_MAX
|
|
//
|
|
// Neither + and * in the resultant expression are nsw.
|
|
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
|
|
}
|
|
break;
|
|
case Candidate::GEP:
|
|
{
|
|
Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
|
|
bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
|
|
if (BumpWithUglyGEP) {
|
|
// C = (char *)Basis + Bump
|
|
unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
|
|
Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
|
|
Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
|
|
if (InBounds)
|
|
Reduced =
|
|
Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
|
|
else
|
|
Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
|
|
Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
|
|
} else {
|
|
// C = gep Basis, Bump
|
|
// Canonicalize bump to pointer size.
|
|
Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
|
|
if (InBounds)
|
|
Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
|
|
else
|
|
Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
llvm_unreachable("C.CandidateKind is invalid");
|
|
};
|
|
Reduced->takeName(C.Ins);
|
|
C.Ins->replaceAllUsesWith(Reduced);
|
|
// Unlink C.Ins so that we can skip other candidates also corresponding to
|
|
// C.Ins. The actual deletion is postponed to the end of runOnFunction.
|
|
C.Ins->removeFromParent();
|
|
UnlinkedInstructions.push_back(C.Ins);
|
|
}
|
|
|
|
bool StraightLineStrengthReduce::runOnFunction(Function &F) {
|
|
if (skipOptnoneFunction(F))
|
|
return false;
|
|
|
|
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
// Traverse the dominator tree in the depth-first order. This order makes sure
|
|
// all bases of a candidate are in Candidates when we process it.
|
|
for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
|
|
node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
|
|
for (auto &I : *node->getBlock())
|
|
allocateCandidatesAndFindBasis(&I);
|
|
}
|
|
|
|
// Rewrite candidates in the reverse depth-first order. This order makes sure
|
|
// a candidate being rewritten is not a basis for any other candidate.
|
|
while (!Candidates.empty()) {
|
|
const Candidate &C = Candidates.back();
|
|
if (C.Basis != nullptr) {
|
|
rewriteCandidateWithBasis(C, *C.Basis);
|
|
}
|
|
Candidates.pop_back();
|
|
}
|
|
|
|
// Delete all unlink instructions.
|
|
for (auto *UnlinkedInst : UnlinkedInstructions) {
|
|
for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
|
|
Value *Op = UnlinkedInst->getOperand(I);
|
|
UnlinkedInst->setOperand(I, nullptr);
|
|
RecursivelyDeleteTriviallyDeadInstructions(Op);
|
|
}
|
|
delete UnlinkedInst;
|
|
}
|
|
bool Ret = !UnlinkedInstructions.empty();
|
|
UnlinkedInstructions.clear();
|
|
return Ret;
|
|
}
|