llvm/docs/GoldPlugin.rst
Rafael Espindola fe8f9e7a03 Remove remaining references to -O4.
Thanks to Hal Finkel for noticing it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191216 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-23 19:50:59 +00:00

179 lines
5.5 KiB
ReStructuredText

====================
The LLVM gold plugin
====================
Introduction
============
Building with link time optimization requires cooperation from
the system linker. LTO support on Linux systems requires that you use the
`gold linker`_ which supports LTO via plugins. This is the same mechanism
used by the `GCC LTO`_ project.
The LLVM gold plugin implements the gold plugin interface on top of
:ref:`libLTO`. The same plugin can also be used by other tools such as
``ar`` and ``nm``.
.. _`gold linker`: http://sourceware.org/binutils
.. _`GCC LTO`: http://gcc.gnu.org/wiki/LinkTimeOptimization
.. _`gold plugin interface`: http://gcc.gnu.org/wiki/whopr/driver
.. _lto-how-to-build:
How to build it
===============
You need to have gold with plugin support and build the LLVMgold plugin.
Check whether you have gold running ``/usr/bin/ld -v``. It will report "GNU
gold" or else "GNU ld" if not. If you have gold, check for plugin support
by running ``/usr/bin/ld -plugin``. If it complains "missing argument" then
you have plugin support. If not, such as an "unknown option" error then you
will either need to build gold or install a version with plugin support.
* To build gold with plugin support:
.. code-block:: bash
$ mkdir binutils
$ cd binutils
$ cvs -z 9 -d :pserver:anoncvs@sourceware.org:/cvs/src login
{enter "anoncvs" as the password}
$ cvs -z 9 -d :pserver:anoncvs@sourceware.org:/cvs/src co binutils
$ mkdir build
$ cd build
$ ../src/configure --enable-gold --enable-plugins
$ make all-gold
That should leave you with ``binutils/build/gold/ld-new`` which supports
the ``-plugin`` option. It also built would have
``binutils/build/binutils/ar`` and ``nm-new`` which support plugins but
don't have a visible -plugin option, instead relying on the gold plugin
being present in ``../lib/bfd-plugins`` relative to where the binaries
are placed.
* Build the LLVMgold plugin: Configure LLVM with
``--with-binutils-include=/path/to/binutils/src/include`` and run
``make``.
Usage
=====
The linker takes a ``-plugin`` option that points to the path of
the plugin ``.so`` file. To find out what link command ``gcc``
would run in a given situation, run ``gcc -v [...]`` and
look for the line where it runs ``collect2``. Replace that with
``ld-new -plugin /path/to/LLVMgold.so`` to test it out. Once you're
ready to switch to using gold, backup your existing ``/usr/bin/ld``
then replace it with ``ld-new``.
You should produce bitcode files from ``clang`` with the option
``-flto``. This flag will also cause ``clang`` to look for the gold plugin in
the ``lib`` directory under its prefix and pass the ``-plugin`` option to
``ld``. It will not look for an alternate linker, which is why you need
gold to be the installed system linker in your path.
If you want ``ar`` and ``nm`` to work seamlessly as well, install
``LLVMgold.so`` to ``/usr/lib/bfd-plugins``. If you built your own gold, be
sure to install the ``ar`` and ``nm-new`` you built to ``/usr/bin``.
Example of link time optimization
---------------------------------
The following example shows a worked example of the gold plugin mixing LLVM
bitcode and native code.
.. code-block:: c
--- a.c ---
#include <stdio.h>
extern void foo1(void);
extern void foo4(void);
void foo2(void) {
printf("Foo2\n");
}
void foo3(void) {
foo4();
}
int main(void) {
foo1();
}
--- b.c ---
#include <stdio.h>
extern void foo2(void);
void foo1(void) {
foo2();
}
void foo4(void) {
printf("Foo4");
}
.. code-block:: bash
--- command lines ---
$ clang -flto a.c -c -o a.o # <-- a.o is LLVM bitcode file
$ ar q a.a a.o # <-- a.a is an archive with LLVM bitcode
$ clang b.c -c -o b.o # <-- b.o is native object file
$ clang -flto a.a b.o -o main # <-- link with LLVMgold plugin
Gold informs the plugin that foo3 is never referenced outside the IR,
leading LLVM to delete that function. However, unlike in the :ref:`libLTO
example <libLTO-example>` gold does not currently eliminate foo4.
Quickstart for using LTO with autotooled projects
=================================================
Once your system ``ld``, ``ar``, and ``nm`` all support LLVM bitcode,
everything is in place for an easy to use LTO build of autotooled projects:
* Follow the instructions :ref:`on how to build LLVMgold.so
<lto-how-to-build>`.
* Install the newly built binutils to ``$PREFIX``
* Copy ``Release/lib/LLVMgold.so`` to ``$PREFIX/lib/bfd-plugins/``
* Set environment variables (``$PREFIX`` is where you installed clang and
binutils):
.. code-block:: bash
export CC="$PREFIX/bin/clang -flto"
export CXX="$PREFIX/bin/clang++ -flto"
export AR="$PREFIX/bin/ar"
export NM="$PREFIX/bin/nm"
export RANLIB=/bin/true #ranlib is not needed, and doesn't support .bc files in .a
* Or you can just set your path:
.. code-block:: bash
export PATH="$PREFIX/bin:$PATH"
export CC="clang -flto"
export CXX="clang++ -flto"
export RANLIB=/bin/true
* Configure and build the project as usual:
.. code-block:: bash
% ./configure && make && make check
The environment variable settings may work for non-autotooled projects too,
but you may need to set the ``LD`` environment variable as well.
Licensing
=========
Gold is licensed under the GPLv3. LLVMgold uses the interface file
``plugin-api.h`` from gold which means that the resulting ``LLVMgold.so``
binary is also GPLv3. This can still be used to link non-GPLv3 programs
just as much as gold could without the plugin.