llvm/lib/Target/X86/X86FastISel.cpp
Dan Gohman 863890e2fa Fix copy+pastos in comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55918 91177308-0d34-0410-b5e6-96231b3b80d8
2008-09-08 16:31:35 +00:00

995 lines
31 KiB
C++

//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86-specific support for the FastISel class. Much
// of the target-specific code is generated by tablegen in the file
// X86GenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86ISelLowering.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CallSite.h"
using namespace llvm;
class X86FastISel : public FastISel {
/// MFI - Keep track of objects allocated on the stack.
///
MachineFrameInfo *MFI;
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
/// StackPtr - Register used as the stack pointer.
///
unsigned StackPtr;
/// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
/// floating point ops.
/// When SSE is available, use it for f32 operations.
/// When SSE2 is available, use it for f64 operations.
bool X86ScalarSSEf64;
bool X86ScalarSSEf32;
public:
explicit X86FastISel(MachineFunction &mf,
DenseMap<const Value *, unsigned> &vm,
DenseMap<const BasicBlock *, MachineBasicBlock *> &bm)
: FastISel(mf, vm, bm), MFI(MF.getFrameInfo()) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
X86ScalarSSEf64 = Subtarget->hasSSE2();
X86ScalarSSEf32 = Subtarget->hasSSE1();
}
virtual bool TargetSelectInstruction(Instruction *I);
#include "X86GenFastISel.inc"
private:
bool X86FastEmitLoad(MVT VT, unsigned Op0, Value *V, unsigned &RR);
bool X86FastEmitStore(MVT VT, unsigned Val,
unsigned Ptr, unsigned Offset, Value *V);
bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
unsigned &ResultReg);
bool X86SelectConstAddr(Value *V, unsigned &Op0, bool isCall = false);
bool X86SelectLoad(Instruction *I);
bool X86SelectStore(Instruction *I);
bool X86SelectCmp(Instruction *I);
bool X86SelectZExt(Instruction *I);
bool X86SelectBranch(Instruction *I);
bool X86SelectShift(Instruction *I);
bool X86SelectSelect(Instruction *I);
bool X86SelectTrunc(Instruction *I);
bool X86SelectCall(Instruction *I);
CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
unsigned TargetMaterializeConstant(Constant *C, MachineConstantPool* MCP);
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
/// computed in an SSE register, not on the X87 floating point stack.
bool isScalarFPTypeInSSEReg(MVT VT) const {
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
}
};
static bool isTypeLegal(const Type *Ty, const TargetLowering &TLI, MVT &VT) {
VT = MVT::getMVT(Ty, /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
if (VT == MVT::iPTR)
// Use pointer type.
VT = TLI.getPointerTy();
// We only handle legal types. For example, on x86-32 the instruction
// selector contains all of the 64-bit instructions from x86-64,
// under the assumption that i64 won't be used if the target doesn't
// support it.
return TLI.isTypeLegal(VT);
}
#include "X86GenCallingConv.inc"
/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
/// convention.
CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
if (Subtarget->is64Bit()) {
if (Subtarget->isTargetWin64())
return CC_X86_Win64_C;
else if (CC == CallingConv::Fast && isTaillCall)
return CC_X86_64_TailCall;
else
return CC_X86_64_C;
}
if (CC == CallingConv::X86_FastCall)
return CC_X86_32_FastCall;
else if (CC == CallingConv::Fast && isTaillCall)
return CC_X86_32_TailCall;
else if (CC == CallingConv::Fast)
return CC_X86_32_FastCC;
else
return CC_X86_32_C;
}
/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
/// Return true and the result register by reference if it is possible.
bool X86FastISel::X86FastEmitLoad(MVT VT, unsigned Ptr, Value *GV,
unsigned &ResultReg) {
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
switch (VT.getSimpleVT()) {
default: return false;
case MVT::i8:
Opc = X86::MOV8rm;
RC = X86::GR8RegisterClass;
break;
case MVT::i16:
Opc = X86::MOV16rm;
RC = X86::GR16RegisterClass;
break;
case MVT::i32:
Opc = X86::MOV32rm;
RC = X86::GR32RegisterClass;
break;
case MVT::i64:
// Must be in x86-64 mode.
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
break;
case MVT::f32:
if (Subtarget->hasSSE1()) {
Opc = X86::MOVSSrm;
RC = X86::FR32RegisterClass;
} else {
Opc = X86::LD_Fp32m;
RC = X86::RFP32RegisterClass;
}
break;
case MVT::f64:
if (Subtarget->hasSSE2()) {
Opc = X86::MOVSDrm;
RC = X86::FR64RegisterClass;
} else {
Opc = X86::LD_Fp64m;
RC = X86::RFP64RegisterClass;
}
break;
case MVT::f80:
Opc = X86::LD_Fp80m;
RC = X86::RFP80RegisterClass;
break;
}
ResultReg = createResultReg(RC);
X86AddressMode AM;
if (Ptr)
// Address is in register.
AM.Base.Reg = Ptr;
else
AM.GV = cast<GlobalValue>(GV);
addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
return true;
}
/// X86FastEmitStore - Emit a machine instruction to store a value Val of
/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
/// and a displacement offset, or a GlobalAddress,
/// i.e. V. Return true if it is possible.
bool
X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
unsigned Ptr, unsigned Offset, Value *V) {
// Get opcode and regclass of the output for the given store instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
switch (VT.getSimpleVT()) {
default: return false;
case MVT::i8:
Opc = X86::MOV8mr;
RC = X86::GR8RegisterClass;
break;
case MVT::i16:
Opc = X86::MOV16mr;
RC = X86::GR16RegisterClass;
break;
case MVT::i32:
Opc = X86::MOV32mr;
RC = X86::GR32RegisterClass;
break;
case MVT::i64:
// Must be in x86-64 mode.
Opc = X86::MOV64mr;
RC = X86::GR64RegisterClass;
break;
case MVT::f32:
if (Subtarget->hasSSE1()) {
Opc = X86::MOVSSmr;
RC = X86::FR32RegisterClass;
} else {
Opc = X86::ST_Fp32m;
RC = X86::RFP32RegisterClass;
}
break;
case MVT::f64:
if (Subtarget->hasSSE2()) {
Opc = X86::MOVSDmr;
RC = X86::FR64RegisterClass;
} else {
Opc = X86::ST_Fp64m;
RC = X86::RFP64RegisterClass;
}
break;
case MVT::f80:
Opc = X86::ST_FP80m;
RC = X86::RFP80RegisterClass;
break;
}
X86AddressMode AM;
if (Ptr) {
// Address is in register.
AM.Base.Reg = Ptr;
AM.Disp = Offset;
} else
AM.GV = cast<GlobalValue>(V);
addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addReg(Val);
return true;
}
/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
/// ISD::SIGN_EXTEND).
bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
unsigned Src, MVT SrcVT,
unsigned &ResultReg) {
ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
return ResultReg != 0;
}
/// X86SelectConstAddr - Select and emit code to materialize constant address.
///
bool X86FastISel::X86SelectConstAddr(Value *V, unsigned &Op0, bool isCall) {
// FIXME: Only GlobalAddress for now.
GlobalValue *GV = dyn_cast<GlobalValue>(V);
if (!GV)
return false;
if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
// Issue load from stub if necessary.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
if (TLI.getPointerTy() == MVT::i32) {
Opc = X86::MOV32rm;
RC = X86::GR32RegisterClass;
} else {
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
}
Op0 = createResultReg(RC);
X86AddressMode AM;
AM.GV = GV;
addFullAddress(BuildMI(MBB, TII.get(Opc), Op0), AM);
// Prevent loading GV stub multiple times in same MBB.
LocalValueMap[V] = Op0;
}
return true;
}
/// X86SelectStore - Select and emit code to implement store instructions.
bool X86FastISel::X86SelectStore(Instruction* I) {
MVT VT;
if (!isTypeLegal(I->getOperand(0)->getType(), TLI, VT))
return false;
unsigned Val = getRegForValue(I->getOperand(0));
if (Val == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
Value *V = I->getOperand(1);
unsigned Ptr = getRegForValue(V);
if (Ptr == 0) {
// Handle constant store address.
if (!isa<Constant>(V) || !X86SelectConstAddr(V, Ptr))
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
return X86FastEmitStore(VT, Val, Ptr, 0, V);
}
/// X86SelectLoad - Select and emit code to implement load instructions.
///
bool X86FastISel::X86SelectLoad(Instruction *I) {
MVT VT;
if (!isTypeLegal(I->getType(), TLI, VT))
return false;
Value *V = I->getOperand(0);
unsigned Ptr = getRegForValue(V);
if (Ptr == 0) {
// Handle constant load address.
// FIXME: If load type is something we can't handle, this can result in
// a dead stub load instruction.
if (!isa<Constant>(V) || !X86SelectConstAddr(V, Ptr))
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
unsigned ResultReg = 0;
if (X86FastEmitLoad(VT, Ptr, V, ResultReg)) {
UpdateValueMap(I, ResultReg);
return true;
}
return false;
}
bool X86FastISel::X86SelectCmp(Instruction *I) {
CmpInst *CI = cast<CmpInst>(I);
MVT VT = TLI.getValueType(I->getOperand(0)->getType());
if (!TLI.isTypeLegal(VT))
return false;
unsigned Op0Reg = getRegForValue(CI->getOperand(0));
if (Op0Reg == 0) return false;
unsigned Op1Reg = getRegForValue(CI->getOperand(1));
if (Op1Reg == 0) return false;
unsigned Opc;
switch (VT.getSimpleVT()) {
case MVT::i8: Opc = X86::CMP8rr; break;
case MVT::i16: Opc = X86::CMP16rr; break;
case MVT::i32: Opc = X86::CMP32rr; break;
case MVT::i64: Opc = X86::CMP64rr; break;
case MVT::f32: Opc = X86::UCOMISSrr; break;
case MVT::f64: Opc = X86::UCOMISDrr; break;
default: return false;
}
unsigned ResultReg = createResultReg(&X86::GR8RegClass);
switch (CI->getPredicate()) {
case CmpInst::FCMP_OEQ: {
unsigned EReg = createResultReg(&X86::GR8RegClass);
unsigned NPReg = createResultReg(&X86::GR8RegClass);
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETEr), EReg);
BuildMI(MBB, TII.get(X86::SETNPr), NPReg);
BuildMI(MBB, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
break;
}
case CmpInst::FCMP_UNE: {
unsigned NEReg = createResultReg(&X86::GR8RegClass);
unsigned PReg = createResultReg(&X86::GR8RegClass);
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETNEr), NEReg);
BuildMI(MBB, TII.get(X86::SETPr), PReg);
BuildMI(MBB, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
break;
}
case CmpInst::FCMP_OGT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
break;
case CmpInst::FCMP_OGE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
break;
case CmpInst::FCMP_OLT:
BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
break;
case CmpInst::FCMP_OLE:
BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
break;
case CmpInst::FCMP_ONE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETNEr), ResultReg);
break;
case CmpInst::FCMP_ORD:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETNPr), ResultReg);
break;
case CmpInst::FCMP_UNO:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETPr), ResultReg);
break;
case CmpInst::FCMP_UEQ:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETEr), ResultReg);
break;
case CmpInst::FCMP_UGT:
BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
break;
case CmpInst::FCMP_UGE:
BuildMI(MBB, TII.get(Opc)).addReg(Op1Reg).addReg(Op0Reg);
BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
break;
case CmpInst::FCMP_ULT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
break;
case CmpInst::FCMP_ULE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
break;
case CmpInst::ICMP_EQ:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETEr), ResultReg);
break;
case CmpInst::ICMP_NE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETNEr), ResultReg);
break;
case CmpInst::ICMP_UGT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETAr), ResultReg);
break;
case CmpInst::ICMP_UGE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETAEr), ResultReg);
break;
case CmpInst::ICMP_ULT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETBr), ResultReg);
break;
case CmpInst::ICMP_ULE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETBEr), ResultReg);
break;
case CmpInst::ICMP_SGT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETGr), ResultReg);
break;
case CmpInst::ICMP_SGE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETGEr), ResultReg);
break;
case CmpInst::ICMP_SLT:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETLr), ResultReg);
break;
case CmpInst::ICMP_SLE:
BuildMI(MBB, TII.get(Opc)).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(MBB, TII.get(X86::SETLEr), ResultReg);
break;
default:
return false;
}
UpdateValueMap(I, ResultReg);
return true;
}
bool X86FastISel::X86SelectZExt(Instruction *I) {
// Special-case hack: The only i1 values we know how to produce currently
// set the upper bits of an i8 value to zero.
if (I->getType() == Type::Int8Ty &&
I->getOperand(0)->getType() == Type::Int1Ty) {
unsigned ResultReg = getRegForValue(I->getOperand(0));
if (ResultReg == 0) return false;
UpdateValueMap(I, ResultReg);
return true;
}
return false;
}
bool X86FastISel::X86SelectBranch(Instruction *I) {
BranchInst *BI = cast<BranchInst>(I);
// Unconditional branches are selected by tablegen-generated code.
unsigned OpReg = getRegForValue(BI->getCondition());
if (OpReg == 0) return false;
MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
BuildMI(MBB, TII.get(X86::JNE)).addMBB(TrueMBB);
BuildMI(MBB, TII.get(X86::JMP)).addMBB(FalseMBB);
MBB->addSuccessor(TrueMBB);
MBB->addSuccessor(FalseMBB);
return true;
}
bool X86FastISel::X86SelectShift(Instruction *I) {
unsigned CReg = 0;
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
if (I->getType() == Type::Int8Ty) {
CReg = X86::CL;
RC = &X86::GR8RegClass;
switch (I->getOpcode()) {
case Instruction::LShr: Opc = X86::SHR8rCL; break;
case Instruction::AShr: Opc = X86::SAR8rCL; break;
case Instruction::Shl: Opc = X86::SHL8rCL; break;
default: return false;
}
} else if (I->getType() == Type::Int16Ty) {
CReg = X86::CX;
RC = &X86::GR16RegClass;
switch (I->getOpcode()) {
case Instruction::LShr: Opc = X86::SHR16rCL; break;
case Instruction::AShr: Opc = X86::SAR16rCL; break;
case Instruction::Shl: Opc = X86::SHL16rCL; break;
default: return false;
}
} else if (I->getType() == Type::Int32Ty) {
CReg = X86::ECX;
RC = &X86::GR32RegClass;
switch (I->getOpcode()) {
case Instruction::LShr: Opc = X86::SHR32rCL; break;
case Instruction::AShr: Opc = X86::SAR32rCL; break;
case Instruction::Shl: Opc = X86::SHL32rCL; break;
default: return false;
}
} else if (I->getType() == Type::Int64Ty) {
CReg = X86::RCX;
RC = &X86::GR64RegClass;
switch (I->getOpcode()) {
case Instruction::LShr: Opc = X86::SHR64rCL; break;
case Instruction::AShr: Opc = X86::SAR64rCL; break;
case Instruction::Shl: Opc = X86::SHL64rCL; break;
default: return false;
}
} else {
return false;
}
MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !TLI.isTypeLegal(VT))
return false;
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (Op0Reg == 0) return false;
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0) return false;
TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
unsigned ResultReg = createResultReg(RC);
BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op0Reg);
UpdateValueMap(I, ResultReg);
return true;
}
bool X86FastISel::X86SelectSelect(Instruction *I) {
const Type *Ty = I->getType();
if (isa<PointerType>(Ty))
Ty = TLI.getTargetData()->getIntPtrType();
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
if (Ty == Type::Int16Ty) {
Opc = X86::CMOVE16rr;
RC = &X86::GR16RegClass;
} else if (Ty == Type::Int32Ty) {
Opc = X86::CMOVE32rr;
RC = &X86::GR32RegClass;
} else if (Ty == Type::Int64Ty) {
Opc = X86::CMOVE64rr;
RC = &X86::GR64RegClass;
} else {
return false;
}
MVT VT = MVT::getMVT(Ty, /*HandleUnknown=*/true);
if (VT == MVT::Other || !TLI.isTypeLegal(VT))
return false;
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (Op0Reg == 0) return false;
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0) return false;
unsigned Op2Reg = getRegForValue(I->getOperand(2));
if (Op2Reg == 0) return false;
BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
unsigned ResultReg = createResultReg(RC);
BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
UpdateValueMap(I, ResultReg);
return true;
}
bool X86FastISel::X86SelectTrunc(Instruction *I) {
if (Subtarget->is64Bit())
// All other cases should be handled by the tblgen generated code.
return false;
MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
MVT DstVT = TLI.getValueType(I->getType());
if (DstVT != MVT::i8)
// All other cases should be handled by the tblgen generated code.
return false;
if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
// All other cases should be handled by the tblgen generated code.
return false;
unsigned InputReg = getRegForValue(I->getOperand(0));
if (!InputReg)
// Unhandled operand. Halt "fast" selection and bail.
return false;
// First issue a copy to GR16_ or GR32_.
unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16to16_ : X86::MOV32to32_;
const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
? X86::GR16_RegisterClass : X86::GR32_RegisterClass;
unsigned CopyReg = createResultReg(CopyRC);
BuildMI(MBB, TII.get(CopyOpc), CopyReg).addReg(InputReg);
// Then issue an extract_subreg.
unsigned ResultReg = FastEmitInst_extractsubreg(CopyReg,1); // x86_subreg_8bit
if (!ResultReg)
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool X86FastISel::X86SelectCall(Instruction *I) {
CallInst *CI = cast<CallInst>(I);
Value *Callee = I->getOperand(0);
// Can't handle inline asm yet.
if (isa<InlineAsm>(Callee))
return false;
// FIXME: Handle some intrinsics.
if (Function *F = CI->getCalledFunction()) {
if (F->isDeclaration() &&F->getIntrinsicID())
return false;
}
// Materialize callee address in a register. FIXME: GV address can be
// handled with a CALLpcrel32 instead.
unsigned CalleeOp = getRegForValue(Callee);
if (CalleeOp == 0) {
if (!isa<Constant>(Callee) || !X86SelectConstAddr(Callee, CalleeOp, true))
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
// Handle only C and fastcc calling conventions for now.
CallSite CS(CI);
unsigned CC = CS.getCallingConv();
if (CC != CallingConv::C &&
CC != CallingConv::Fast &&
CC != CallingConv::X86_FastCall)
return false;
// Let SDISel handle vararg functions.
const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
if (FTy->isVarArg())
return false;
// Handle *simple* calls for now.
const Type *RetTy = CS.getType();
MVT RetVT;
if (!isTypeLegal(RetTy, TLI, RetVT))
return false;
// Deal with call operands first.
SmallVector<unsigned, 4> Args;
SmallVector<MVT, 4> ArgVTs;
SmallVector<ISD::ArgFlagsTy, 4> ArgFlags;
Args.reserve(CS.arg_size());
ArgVTs.reserve(CS.arg_size());
ArgFlags.reserve(CS.arg_size());
for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
i != e; ++i) {
unsigned Arg = getRegForValue(*i);
if (Arg == 0)
return false;
ISD::ArgFlagsTy Flags;
unsigned AttrInd = i - CS.arg_begin() + 1;
if (CS.paramHasAttr(AttrInd, ParamAttr::SExt))
Flags.setSExt();
if (CS.paramHasAttr(AttrInd, ParamAttr::ZExt))
Flags.setZExt();
// FIXME: Only handle *easy* calls for now.
if (CS.paramHasAttr(AttrInd, ParamAttr::InReg) ||
CS.paramHasAttr(AttrInd, ParamAttr::StructRet) ||
CS.paramHasAttr(AttrInd, ParamAttr::Nest) ||
CS.paramHasAttr(AttrInd, ParamAttr::ByVal))
return false;
const Type *ArgTy = (*i)->getType();
MVT ArgVT;
if (!isTypeLegal(ArgTy, TLI, ArgVT))
return false;
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
Flags.setOrigAlign(OriginalAlignment);
Args.push_back(Arg);
ArgVTs.push_back(ArgVT);
ArgFlags.push_back(Flags);
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, false, TM, ArgLocs);
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
// Issue CALLSEQ_START
BuildMI(MBB, TII.get(X86::ADJCALLSTACKDOWN)).addImm(NumBytes);
// Process argumenet: walk the register/memloc assignments, inserting
// copies / loads.
SmallVector<unsigned, 4> RegArgs;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
unsigned Arg = Args[VA.getValNo()];
MVT ArgVT = ArgVTs[VA.getValNo()];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: assert(0 && "Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt: {
bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
assert(Emitted && "Failed to emit a sext!");
ArgVT = VA.getLocVT();
break;
}
case CCValAssign::ZExt: {
bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
assert(Emitted && "Failed to emit a zext!");
ArgVT = VA.getLocVT();
break;
}
case CCValAssign::AExt: {
bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
assert(Emitted && "Failed to emit a aext!");
ArgVT = VA.getLocVT();
break;
}
}
if (VA.isRegLoc()) {
TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
Arg, RC, RC);
assert(Emitted && "Failed to emit a copy instruction!");
RegArgs.push_back(VA.getLocReg());
} else {
unsigned LocMemOffset = VA.getLocMemOffset();
X86FastEmitStore(ArgVT, Arg, StackPtr, LocMemOffset, NULL);
}
}
// Issue the call.
unsigned CallOpc = CalleeOp
? (Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r)
: (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
MachineInstrBuilder MIB = CalleeOp
? BuildMI(MBB, TII.get(CallOpc)).addReg(CalleeOp)
:BuildMI(MBB, TII.get(CallOpc)).addGlobalAddress(cast<GlobalValue>(Callee));
// Add implicit physical register uses to the call.
while (!RegArgs.empty()) {
MIB.addReg(RegArgs.back());
RegArgs.pop_back();
}
// Issue CALLSEQ_END
BuildMI(MBB, TII.get(X86::ADJCALLSTACKUP)).addImm(NumBytes).addImm(0);
// Now handle call return value (if any).
if (RetVT.getSimpleVT() != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CC, false, TM, RVLocs);
CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
MVT CopyVT = RVLocs[0].getValVT();
TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
TargetRegisterClass *SrcRC = DstRC;
// If this is a call to a function that returns an fp value on the x87 fp
// stack, but where we prefer to use the value in xmm registers, copy it
// out as F80 and use a truncate to move it from fp stack reg to xmm reg.
if ((RVLocs[0].getLocReg() == X86::ST0 ||
RVLocs[0].getLocReg() == X86::ST1) &&
isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
CopyVT = MVT::f80;
SrcRC = X86::RSTRegisterClass;
DstRC = X86::RFP80RegisterClass;
}
unsigned ResultReg = createResultReg(DstRC);
bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
RVLocs[0].getLocReg(), DstRC, SrcRC);
assert(Emitted && "Failed to emit a copy instruction!");
if (CopyVT != RVLocs[0].getValVT()) {
// Round the F80 the right size, which also moves to the appropriate xmm
// register. This is accomplished by storing the F80 value in memory and
// then loading it back. Ewww...
MVT ResVT = RVLocs[0].getValVT();
unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
unsigned MemSize = ResVT.getSizeInBits()/8;
int FI = MFI->CreateStackObject(MemSize, MemSize);
addFrameReference(BuildMI(MBB, TII.get(Opc)), FI).addReg(ResultReg);
DstRC = ResVT == MVT::f32
? X86::FR32RegisterClass : X86::FR64RegisterClass;
Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
ResultReg = createResultReg(DstRC);
addFrameReference(BuildMI(MBB, TII.get(Opc), ResultReg), FI);
}
UpdateValueMap(I, ResultReg);
}
return true;
}
bool
X86FastISel::TargetSelectInstruction(Instruction *I) {
switch (I->getOpcode()) {
default: break;
case Instruction::Load:
return X86SelectLoad(I);
case Instruction::Store:
return X86SelectStore(I);
case Instruction::ICmp:
case Instruction::FCmp:
return X86SelectCmp(I);
case Instruction::ZExt:
return X86SelectZExt(I);
case Instruction::Br:
return X86SelectBranch(I);
case Instruction::Call:
return X86SelectCall(I);
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
return X86SelectShift(I);
case Instruction::Select:
return X86SelectSelect(I);
case Instruction::Trunc:
return X86SelectTrunc(I);
}
return false;
}
unsigned X86FastISel::TargetMaterializeConstant(Constant *C,
MachineConstantPool* MCP) {
// Can't handle PIC-mode yet.
if (TM.getRelocationModel() == Reloc::PIC_)
return 0;
MVT VT = MVT::getMVT(C->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
if (VT == MVT::iPTR)
// Use pointer type.
VT = TLI.getPointerTy();
// We only handle legal types. For example, on x86-32 the instruction
// selector contains all of the 64-bit instructions from x86-64,
// under the assumption that i64 won't be used if the target doesn't
// support it.
if (!TLI.isTypeLegal(VT))
return false;
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
switch (VT.getSimpleVT()) {
default: return false;
case MVT::i8:
Opc = X86::MOV8rm;
RC = X86::GR8RegisterClass;
break;
case MVT::i16:
Opc = X86::MOV16rm;
RC = X86::GR16RegisterClass;
break;
case MVT::i32:
Opc = X86::MOV32rm;
RC = X86::GR32RegisterClass;
break;
case MVT::i64:
// Must be in x86-64 mode.
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
break;
case MVT::f32:
if (Subtarget->hasSSE1()) {
Opc = X86::MOVSSrm;
RC = X86::FR32RegisterClass;
} else {
Opc = X86::LD_Fp32m;
RC = X86::RFP32RegisterClass;
}
break;
case MVT::f64:
if (Subtarget->hasSSE2()) {
Opc = X86::MOVSDrm;
RC = X86::FR64RegisterClass;
} else {
Opc = X86::LD_Fp64m;
RC = X86::RFP64RegisterClass;
}
break;
case MVT::f80:
Opc = X86::LD_Fp80m;
RC = X86::RFP80RegisterClass;
break;
}
unsigned ResultReg = createResultReg(RC);
if (isa<GlobalValue>(C)) {
// FIXME: If store value type is something we can't handle, this can result
// in a dead stub load instruction.
if (X86SelectConstAddr(C, ResultReg))
return ResultReg;
return 0;
}
// MachineConstantPool wants an explicit alignment.
unsigned Align =
TM.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
if (Align == 0) {
// Alignment of vector types. FIXME!
Align = TM.getTargetData()->getABITypeSize(C->getType());
Align = Log2_64(Align);
}
unsigned MCPOffset = MCP->getConstantPoolIndex(C, Align);
addConstantPoolReference(BuildMI(MBB, TII.get(Opc), ResultReg), MCPOffset);
return ResultReg;
}
namespace llvm {
llvm::FastISel *X86::createFastISel(MachineFunction &mf,
DenseMap<const Value *, unsigned> &vm,
DenseMap<const BasicBlock *, MachineBasicBlock *> &bm) {
return new X86FastISel(mf, vm, bm);
}
}