llvm/lib/VMCore/Attributes.cpp
2012-10-09 00:01:21 +00:00

767 lines
23 KiB
C++

//===-- Attributes.cpp - Implement AttributesList -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AttributesList class and Attribute utilities.
//
//===----------------------------------------------------------------------===//
#include "llvm/Attributes.h"
#include "LLVMContextImpl.h"
#include "llvm/Type.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Atomic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Attributes Implementation
//===----------------------------------------------------------------------===//
Attributes::Attributes(uint64_t Val) : Attrs(Val) {}
Attributes::Attributes(Attribute::AttrConst Val) : Attrs(Val.v) {}
Attributes::Attributes(AttributesImpl *A) : Attrs(A->Bits) {}
Attributes::Attributes(const Attributes &A) : Attrs(A.Attrs) {}
// FIXME: This is temporary until we have implemented the uniquified version of
// AttributesImpl.
Attributes Attributes::get(Attributes::Builder &B) {
return Attributes(B.Bits);
}
Attributes Attributes::get(LLVMContext &Context, Attributes::Builder &B) {
// If there are no attributes, return an empty Attributes class.
if (B.Bits == 0)
return Attributes();
// Otherwise, build a key to look up the existing attributes.
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
ID.AddInteger(B.Bits);
void *InsertPoint;
AttributesImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!PA) {
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
PA = new AttributesImpl(B.Bits);
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
}
// Return the AttributesList that we found or created.
return Attributes(PA);
}
bool Attributes::hasAttributes(const Attributes &A) const {
return Attrs.hasAttributes(A);
}
bool Attributes::hasAddressSafetyAttr() const {
return Attrs.hasAttribute(Attribute::AddressSafety_i);
}
bool Attributes::hasAlignmentAttr() const {
return Attrs.hasAttribute(Attribute::Alignment_i);
}
bool Attributes::hasAlwaysInlineAttr() const {
return Attrs.hasAttribute(Attribute::AlwaysInline_i);
}
bool Attributes::hasByValAttr() const {
return Attrs.hasAttribute(Attribute::ByVal_i);
}
bool Attributes::hasInlineHintAttr() const {
return Attrs.hasAttribute(Attribute::InlineHint_i);
}
bool Attributes::hasInRegAttr() const {
return Attrs.hasAttribute(Attribute::InReg_i);
}
bool Attributes::hasNakedAttr() const {
return Attrs.hasAttribute(Attribute::Naked_i);
}
bool Attributes::hasNestAttr() const {
return Attrs.hasAttribute(Attribute::Nest_i);
}
bool Attributes::hasNoAliasAttr() const {
return Attrs.hasAttribute(Attribute::NoAlias_i);
}
bool Attributes::hasNoCaptureAttr() const {
return Attrs.hasAttribute(Attribute::NoCapture_i);
}
bool Attributes::hasNoImplicitFloatAttr() const {
return Attrs.hasAttribute(Attribute::NoImplicitFloat_i);
}
bool Attributes::hasNoInlineAttr() const {
return Attrs.hasAttribute(Attribute::NoInline_i);
}
bool Attributes::hasNonLazyBindAttr() const {
return Attrs.hasAttribute(Attribute::NonLazyBind_i);
}
bool Attributes::hasNoRedZoneAttr() const {
return Attrs.hasAttribute(Attribute::NoRedZone_i);
}
bool Attributes::hasNoReturnAttr() const {
return Attrs.hasAttribute(Attribute::NoReturn_i);
}
bool Attributes::hasNoUnwindAttr() const {
return Attrs.hasAttribute(Attribute::NoUnwind_i);
}
bool Attributes::hasOptimizeForSizeAttr() const {
return Attrs.hasAttribute(Attribute::OptimizeForSize_i);
}
bool Attributes::hasReadNoneAttr() const {
return Attrs.hasAttribute(Attribute::ReadNone_i);
}
bool Attributes::hasReadOnlyAttr() const {
return Attrs.hasAttribute(Attribute::ReadOnly_i);
}
bool Attributes::hasReturnsTwiceAttr() const {
return Attrs.hasAttribute(Attribute::ReturnsTwice_i);
}
bool Attributes::hasSExtAttr() const {
return Attrs.hasAttribute(Attribute::SExt_i);
}
bool Attributes::hasStackAlignmentAttr() const {
return Attrs.hasAttribute(Attribute::StackAlignment_i);
}
bool Attributes::hasStackProtectAttr() const {
return Attrs.hasAttribute(Attribute::StackProtect_i);
}
bool Attributes::hasStackProtectReqAttr() const {
return Attrs.hasAttribute(Attribute::StackProtectReq_i);
}
bool Attributes::hasStructRetAttr() const {
return Attrs.hasAttribute(Attribute::StructRet_i);
}
bool Attributes::hasUWTableAttr() const {
return Attrs.hasAttribute(Attribute::UWTable_i);
}
bool Attributes::hasZExtAttr() const {
return Attrs.hasAttribute(Attribute::ZExt_i);
}
/// This returns the alignment field of an attribute as a byte alignment value.
unsigned Attributes::getAlignment() const {
if (!hasAlignmentAttr())
return 0;
return 1U << ((Attrs.getAlignment() >> 16) - 1);
}
/// This returns the stack alignment field of an attribute as a byte alignment
/// value.
unsigned Attributes::getStackAlignment() const {
if (!hasStackAlignmentAttr())
return 0;
return 1U << ((Attrs.getStackAlignment() >> 26) - 1);
}
bool Attributes::isEmptyOrSingleton() const {
return Attrs.isEmptyOrSingleton();
}
Attributes Attributes::operator | (const Attributes &A) const {
return Attributes(Raw() | A.Raw());
}
Attributes Attributes::operator & (const Attributes &A) const {
return Attributes(Raw() & A.Raw());
}
Attributes Attributes::operator ^ (const Attributes &A) const {
return Attributes(Raw() ^ A.Raw());
}
Attributes &Attributes::operator |= (const Attributes &A) {
Attrs.Bits |= A.Raw();
return *this;
}
Attributes &Attributes::operator &= (const Attributes &A) {
Attrs.Bits &= A.Raw();
return *this;
}
Attributes Attributes::operator ~ () const {
return Attributes(~Raw());
}
uint64_t Attributes::Raw() const {
return Attrs.Bits;
}
Attributes Attributes::typeIncompatible(Type *Ty) {
Attributes::Builder Incompatible;
if (!Ty->isIntegerTy()) {
// Attributes that only apply to integers.
Incompatible.addSExtAttr();
Incompatible.addZExtAttr();
}
if (!Ty->isPointerTy()) {
// Attributes that only apply to pointers.
Incompatible.addByValAttr();
Incompatible.addNestAttr();
Incompatible.addNoAliasAttr();
Incompatible.addNoCaptureAttr();
Incompatible.addStructRetAttr();
}
return Attributes(Incompatible.Bits); // FIXME: Use Attributes::get().
}
std::string Attributes::getAsString() const {
std::string Result;
if (hasZExtAttr())
Result += "zeroext ";
if (hasSExtAttr())
Result += "signext ";
if (hasNoReturnAttr())
Result += "noreturn ";
if (hasNoUnwindAttr())
Result += "nounwind ";
if (hasUWTableAttr())
Result += "uwtable ";
if (hasReturnsTwiceAttr())
Result += "returns_twice ";
if (hasInRegAttr())
Result += "inreg ";
if (hasNoAliasAttr())
Result += "noalias ";
if (hasNoCaptureAttr())
Result += "nocapture ";
if (hasStructRetAttr())
Result += "sret ";
if (hasByValAttr())
Result += "byval ";
if (hasNestAttr())
Result += "nest ";
if (hasReadNoneAttr())
Result += "readnone ";
if (hasReadOnlyAttr())
Result += "readonly ";
if (hasOptimizeForSizeAttr())
Result += "optsize ";
if (hasNoInlineAttr())
Result += "noinline ";
if (hasInlineHintAttr())
Result += "inlinehint ";
if (hasAlwaysInlineAttr())
Result += "alwaysinline ";
if (hasStackProtectAttr())
Result += "ssp ";
if (hasStackProtectReqAttr())
Result += "sspreq ";
if (hasNoRedZoneAttr())
Result += "noredzone ";
if (hasNoImplicitFloatAttr())
Result += "noimplicitfloat ";
if (hasNakedAttr())
Result += "naked ";
if (hasNonLazyBindAttr())
Result += "nonlazybind ";
if (hasAddressSafetyAttr())
Result += "address_safety ";
if (hasStackAlignmentAttr()) {
Result += "alignstack(";
Result += utostr(getStackAlignment());
Result += ") ";
}
if (hasAlignmentAttr()) {
Result += "align ";
Result += utostr(getAlignment());
Result += " ";
}
// Trim the trailing space.
assert(!Result.empty() && "Unknown attribute!");
Result.erase(Result.end()-1);
return Result;
}
//===----------------------------------------------------------------------===//
// Attributes::Builder Implementation
//===----------------------------------------------------------------------===//
void Attributes::Builder::addAddressSafetyAttr() {
Bits |= Attribute::AddressSafety_i;
}
void Attributes::Builder::addAlwaysInlineAttr() {
Bits |= Attribute::AlwaysInline_i;
}
void Attributes::Builder::addByValAttr() {
Bits |= Attribute::ByVal_i;
}
void Attributes::Builder::addInlineHintAttr() {
Bits |= Attribute::InlineHint_i;
}
void Attributes::Builder::addInRegAttr() {
Bits |= Attribute::InReg_i;
}
void Attributes::Builder::addNakedAttr() {
Bits |= Attribute::Naked_i;
}
void Attributes::Builder::addNestAttr() {
Bits |= Attribute::Nest_i;
}
void Attributes::Builder::addNoAliasAttr() {
Bits |= Attribute::NoAlias_i;
}
void Attributes::Builder::addNoCaptureAttr() {
Bits |= Attribute::NoCapture_i;
}
void Attributes::Builder::addNoImplicitFloatAttr() {
Bits |= Attribute::NoImplicitFloat_i;
}
void Attributes::Builder::addNoInlineAttr() {
Bits |= Attribute::NoInline_i;
}
void Attributes::Builder::addNonLazyBindAttr() {
Bits |= Attribute::NonLazyBind_i;
}
void Attributes::Builder::addNoRedZoneAttr() {
Bits |= Attribute::NoRedZone_i;
}
void Attributes::Builder::addNoReturnAttr() {
Bits |= Attribute::NoReturn_i;
}
void Attributes::Builder::addNoUnwindAttr() {
Bits |= Attribute::NoUnwind_i;
}
void Attributes::Builder::addOptimizeForSizeAttr() {
Bits |= Attribute::OptimizeForSize_i;
}
void Attributes::Builder::addReadNoneAttr() {
Bits |= Attribute::ReadNone_i;
}
void Attributes::Builder::addReadOnlyAttr() {
Bits |= Attribute::ReadOnly_i;
}
void Attributes::Builder::addReturnsTwiceAttr() {
Bits |= Attribute::ReturnsTwice_i;
}
void Attributes::Builder::addSExtAttr() {
Bits |= Attribute::SExt_i;
}
void Attributes::Builder::addStackProtectAttr() {
Bits |= Attribute::StackProtect_i;
}
void Attributes::Builder::addStackProtectReqAttr() {
Bits |= Attribute::StackProtectReq_i;
}
void Attributes::Builder::addStructRetAttr() {
Bits |= Attribute::StructRet_i;
}
void Attributes::Builder::addUWTableAttr() {
Bits |= Attribute::UWTable_i;
}
void Attributes::Builder::addZExtAttr() {
Bits |= Attribute::ZExt_i;
}
void Attributes::Builder::addAlignmentAttr(unsigned Align) {
if (Align == 0) return;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x40000000 && "Alignment too large.");
Bits |= (Log2_32(Align) + 1) << 16;
}
void Attributes::Builder::addStackAlignmentAttr(unsigned Align) {
// Default alignment, allow the target to define how to align it.
if (Align == 0) return;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x100 && "Alignment too large.");
Bits |= (Log2_32(Align) + 1) << 26;
}
void Attributes::Builder::removeAttributes(const Attributes &A) {
Bits &= ~A.Raw();
}
void Attributes::Builder::removeAddressSafetyAttr() {
Bits &= ~Attribute::AddressSafety_i;
}
void Attributes::Builder::removeAlwaysInlineAttr() {
Bits &= ~Attribute::AlwaysInline_i;
}
void Attributes::Builder::removeByValAttr() {
Bits &= ~Attribute::ByVal_i;
}
void Attributes::Builder::removeInlineHintAttr() {
Bits &= ~Attribute::InlineHint_i;
}
void Attributes::Builder::removeInRegAttr() {
Bits &= ~Attribute::InReg_i;
}
void Attributes::Builder::removeNakedAttr() {
Bits &= ~Attribute::Naked_i;
}
void Attributes::Builder::removeNestAttr() {
Bits &= ~Attribute::Nest_i;
}
void Attributes::Builder::removeNoAliasAttr() {
Bits &= ~Attribute::NoAlias_i;
}
void Attributes::Builder::removeNoCaptureAttr() {
Bits &= ~Attribute::NoCapture_i;
}
void Attributes::Builder::removeNoImplicitFloatAttr() {
Bits &= ~Attribute::NoImplicitFloat_i;
}
void Attributes::Builder::removeNoInlineAttr() {
Bits &= ~Attribute::NoInline_i;
}
void Attributes::Builder::removeNonLazyBindAttr() {
Bits &= ~Attribute::NonLazyBind_i;
}
void Attributes::Builder::removeNoRedZoneAttr() {
Bits &= ~Attribute::NoRedZone_i;
}
void Attributes::Builder::removeNoReturnAttr() {
Bits &= ~Attribute::NoReturn_i;
}
void Attributes::Builder::removeNoUnwindAttr() {
Bits &= ~Attribute::NoUnwind_i;
}
void Attributes::Builder::removeOptimizeForSizeAttr() {
Bits &= ~Attribute::OptimizeForSize_i;
}
void Attributes::Builder::removeReadNoneAttr() {
Bits &= ~Attribute::ReadNone_i;
}
void Attributes::Builder::removeReadOnlyAttr() {
Bits &= ~Attribute::ReadOnly_i;
}
void Attributes::Builder::removeReturnsTwiceAttr() {
Bits &= ~Attribute::ReturnsTwice_i;
}
void Attributes::Builder::removeSExtAttr() {
Bits &= ~Attribute::SExt_i;
}
void Attributes::Builder::removeStackProtectAttr() {
Bits &= ~Attribute::StackProtect_i;
}
void Attributes::Builder::removeStackProtectReqAttr() {
Bits &= ~Attribute::StackProtectReq_i;
}
void Attributes::Builder::removeStructRetAttr() {
Bits &= ~Attribute::StructRet_i;
}
void Attributes::Builder::removeUWTableAttr() {
Bits &= ~Attribute::UWTable_i;
}
void Attributes::Builder::removeZExtAttr() {
Bits &= ~Attribute::ZExt_i;
}
void Attributes::Builder::removeAlignmentAttr() {
Bits &= ~Attribute::Alignment_i;
}
void Attributes::Builder::removeStackAlignmentAttr() {
Bits &= ~Attribute::StackAlignment_i;
}
bool Attributes::Builder::hasAttributes() const {
return Bits != 0;
}
bool Attributes::Builder::hasAttributes(const Attributes &A) const {
return Bits & A.Raw();
}
bool Attributes::Builder::hasAlignmentAttr() const {
return Bits & Attribute::Alignment_i;
}
uint64_t Attributes::Builder::getAlignment() const {
if (!hasAlignmentAttr())
return 0;
return 1U << (((Bits & Attribute::Alignment_i) >> 16) - 1);
}
//===----------------------------------------------------------------------===//
// AttributeImpl Definition
//===----------------------------------------------------------------------===//
bool AttributesImpl::hasAttribute(uint64_t A) const {
return (Bits & A) != 0;
}
bool AttributesImpl::hasAttributes() const {
return Bits != 0;
}
bool AttributesImpl::hasAttributes(const Attributes &A) const {
return Bits & A.Raw(); // FIXME: Raw() won't work here in the future.
}
uint64_t AttributesImpl::getAlignment() const {
return Bits & Attribute::Alignment_i;
}
uint64_t AttributesImpl::getStackAlignment() const {
return Bits & Attribute::StackAlignment_i;
}
bool AttributesImpl::isEmptyOrSingleton() const {
return (Bits & (Bits - 1)) == 0;
}
//===----------------------------------------------------------------------===//
// AttributeListImpl Definition
//===----------------------------------------------------------------------===//
namespace llvm {
class AttributeListImpl;
}
static ManagedStatic<FoldingSet<AttributeListImpl> > AttributesLists;
namespace llvm {
static ManagedStatic<sys::SmartMutex<true> > ALMutex;
class AttributeListImpl : public FoldingSetNode {
sys::cas_flag RefCount;
// AttributesList is uniqued, these should not be publicly available.
void operator=(const AttributeListImpl &) LLVM_DELETED_FUNCTION;
AttributeListImpl(const AttributeListImpl &) LLVM_DELETED_FUNCTION;
~AttributeListImpl(); // Private implementation
public:
SmallVector<AttributeWithIndex, 4> Attrs;
AttributeListImpl(ArrayRef<AttributeWithIndex> attrs)
: Attrs(attrs.begin(), attrs.end()) {
RefCount = 0;
}
void AddRef() {
sys::SmartScopedLock<true> Lock(*ALMutex);
++RefCount;
}
void DropRef() {
sys::SmartScopedLock<true> Lock(*ALMutex);
if (!AttributesLists.isConstructed())
return;
sys::cas_flag new_val = --RefCount;
if (new_val == 0)
delete this;
}
void Profile(FoldingSetNodeID &ID) const {
Profile(ID, Attrs);
}
static void Profile(FoldingSetNodeID &ID, ArrayRef<AttributeWithIndex> Attrs){
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
ID.AddInteger(Attrs[i].Attrs.Raw());
ID.AddInteger(Attrs[i].Index);
}
}
};
}
AttributeListImpl::~AttributeListImpl() {
// NOTE: Lock must be acquired by caller.
AttributesLists->RemoveNode(this);
}
AttrListPtr AttrListPtr::get(ArrayRef<AttributeWithIndex> Attrs) {
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return AttrListPtr();
#ifndef NDEBUG
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
assert(Attrs[i].Attrs.hasAttributes() &&
"Pointless attribute!");
assert((!i || Attrs[i-1].Index < Attrs[i].Index) &&
"Misordered AttributesList!");
}
#endif
// Otherwise, build a key to look up the existing attributes.
FoldingSetNodeID ID;
AttributeListImpl::Profile(ID, Attrs);
void *InsertPos;
sys::SmartScopedLock<true> Lock(*ALMutex);
AttributeListImpl *PAL =
AttributesLists->FindNodeOrInsertPos(ID, InsertPos);
// If we didn't find any existing attributes of the same shape then
// create a new one and insert it.
if (!PAL) {
PAL = new AttributeListImpl(Attrs);
AttributesLists->InsertNode(PAL, InsertPos);
}
// Return the AttributesList that we found or created.
return AttrListPtr(PAL);
}
//===----------------------------------------------------------------------===//
// AttrListPtr Method Implementations
//===----------------------------------------------------------------------===//
AttrListPtr::AttrListPtr(AttributeListImpl *LI) : AttrList(LI) {
if (LI) LI->AddRef();
}
AttrListPtr::AttrListPtr(const AttrListPtr &P) : AttrList(P.AttrList) {
if (AttrList) AttrList->AddRef();
}
const AttrListPtr &AttrListPtr::operator=(const AttrListPtr &RHS) {
sys::SmartScopedLock<true> Lock(*ALMutex);
if (AttrList == RHS.AttrList) return *this;
if (AttrList) AttrList->DropRef();
AttrList = RHS.AttrList;
if (AttrList) AttrList->AddRef();
return *this;
}
AttrListPtr::~AttrListPtr() {
if (AttrList) AttrList->DropRef();
}
/// getNumSlots - Return the number of slots used in this attribute list.
/// This is the number of arguments that have an attribute set on them
/// (including the function itself).
unsigned AttrListPtr::getNumSlots() const {
return AttrList ? AttrList->Attrs.size() : 0;
}
/// getSlot - Return the AttributeWithIndex at the specified slot. This
/// holds a number plus a set of attributes.
const AttributeWithIndex &AttrListPtr::getSlot(unsigned Slot) const {
assert(AttrList && Slot < AttrList->Attrs.size() && "Slot # out of range!");
return AttrList->Attrs[Slot];
}
/// getAttributes - The attributes for the specified index are
/// returned. Attributes for the result are denoted with Idx = 0.
/// Function notes are denoted with idx = ~0.
Attributes AttrListPtr::getAttributes(unsigned Idx) const {
if (AttrList == 0) return Attributes();
const SmallVector<AttributeWithIndex, 4> &Attrs = AttrList->Attrs;
for (unsigned i = 0, e = Attrs.size(); i != e && Attrs[i].Index <= Idx; ++i)
if (Attrs[i].Index == Idx)
return Attrs[i].Attrs;
return Attributes();
}
/// hasAttrSomewhere - Return true if the specified attribute is set for at
/// least one parameter or for the return value.
bool AttrListPtr::hasAttrSomewhere(Attributes Attr) const {
if (AttrList == 0) return false;
const SmallVector<AttributeWithIndex, 4> &Attrs = AttrList->Attrs;
for (unsigned i = 0, e = Attrs.size(); i != e; ++i)
if (Attrs[i].Attrs.hasAttributes(Attr))
return true;
return false;
}
unsigned AttrListPtr::getNumAttrs() const {
return AttrList ? AttrList->Attrs.size() : 0;
}
Attributes &AttrListPtr::getAttributesAtIndex(unsigned i) const {
assert(AttrList && "Trying to get an attribute from an empty list!");
assert(i < AttrList->Attrs.size() && "Index out of range!");
return AttrList->Attrs[i].Attrs;
}
AttrListPtr AttrListPtr::addAttr(unsigned Idx, Attributes Attrs) const {
Attributes OldAttrs = getAttributes(Idx);
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment.
// For now, say we can't change a known alignment.
unsigned OldAlign = OldAttrs.getAlignment();
unsigned NewAlign = Attrs.getAlignment();
assert((!OldAlign || !NewAlign || OldAlign == NewAlign) &&
"Attempt to change alignment!");
#endif
Attributes NewAttrs = OldAttrs | Attrs;
if (NewAttrs == OldAttrs)
return *this;
SmallVector<AttributeWithIndex, 8> NewAttrList;
if (AttrList == 0)
NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs));
else {
const SmallVector<AttributeWithIndex, 4> &OldAttrList = AttrList->Attrs;
unsigned i = 0, e = OldAttrList.size();
// Copy attributes for arguments before this one.
for (; i != e && OldAttrList[i].Index < Idx; ++i)
NewAttrList.push_back(OldAttrList[i]);
// If there are attributes already at this index, merge them in.
if (i != e && OldAttrList[i].Index == Idx) {
Attrs |= OldAttrList[i].Attrs;
++i;
}
NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs));
// Copy attributes for arguments after this one.
NewAttrList.insert(NewAttrList.end(),
OldAttrList.begin()+i, OldAttrList.end());
}
return get(NewAttrList);
}
AttrListPtr AttrListPtr::removeAttr(unsigned Idx, Attributes Attrs) const {
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment.
// For now, say we can't pass in alignment, which no current use does.
assert(!Attrs.hasAlignmentAttr() && "Attempt to exclude alignment!");
#endif
if (AttrList == 0) return AttrListPtr();
Attributes OldAttrs = getAttributes(Idx);
Attributes NewAttrs = OldAttrs & ~Attrs;
if (NewAttrs == OldAttrs)
return *this;
SmallVector<AttributeWithIndex, 8> NewAttrList;
const SmallVector<AttributeWithIndex, 4> &OldAttrList = AttrList->Attrs;
unsigned i = 0, e = OldAttrList.size();
// Copy attributes for arguments before this one.
for (; i != e && OldAttrList[i].Index < Idx; ++i)
NewAttrList.push_back(OldAttrList[i]);
// If there are attributes already at this index, merge them in.
assert(OldAttrList[i].Index == Idx && "Attribute isn't set?");
Attrs = OldAttrList[i].Attrs & ~Attrs;
++i;
if (Attrs) // If any attributes left for this parameter, add them.
NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs));
// Copy attributes for arguments after this one.
NewAttrList.insert(NewAttrList.end(),
OldAttrList.begin()+i, OldAttrList.end());
return get(NewAttrList);
}
void AttrListPtr::dump() const {
dbgs() << "PAL[ ";
for (unsigned i = 0; i < getNumSlots(); ++i) {
const AttributeWithIndex &PAWI = getSlot(i);
dbgs() << "{" << PAWI.Index << "," << PAWI.Attrs << "} ";
}
dbgs() << "]\n";
}