mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-24 05:09:34 +00:00
cf57d81b6e
The plan here is to push the API changes out from the common components (like Constant::getGetElementPtr and IRBuilder::CreateGEP related functions) and just update callers to either pass the type if it's obvious, or pass null. Do this with LoadInst as well and anything else that comes up, then to start porting specific uses to not pass null anymore - this may require some refactoring in each case. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234042 91177308-0d34-0410-b5e6-96231b3b80d8
733 lines
26 KiB
C++
733 lines
26 KiB
C++
//===-- LowerBitSets.cpp - Bitset lowering pass ---------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass lowers bitset metadata and calls to the llvm.bitset.test intrinsic.
|
|
// See http://llvm.org/docs/LangRef.html#bitsets for more information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/LowerBitSets.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "lowerbitsets"
|
|
|
|
STATISTIC(ByteArraySizeBits, "Byte array size in bits");
|
|
STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
|
|
STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
|
|
STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered");
|
|
STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets");
|
|
|
|
static cl::opt<bool> AvoidReuse(
|
|
"lowerbitsets-avoid-reuse",
|
|
cl::desc("Try to avoid reuse of byte array addresses using aliases"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
|
|
if (Offset < ByteOffset)
|
|
return false;
|
|
|
|
if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
|
|
return false;
|
|
|
|
uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
|
|
if (BitOffset >= BitSize)
|
|
return false;
|
|
|
|
return Bits.count(BitOffset);
|
|
}
|
|
|
|
bool BitSetInfo::containsValue(
|
|
const DataLayout &DL,
|
|
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout, Value *V,
|
|
uint64_t COffset) const {
|
|
if (auto GV = dyn_cast<GlobalVariable>(V)) {
|
|
auto I = GlobalLayout.find(GV);
|
|
if (I == GlobalLayout.end())
|
|
return false;
|
|
return containsGlobalOffset(I->second + COffset);
|
|
}
|
|
|
|
if (auto GEP = dyn_cast<GEPOperator>(V)) {
|
|
APInt APOffset(DL.getPointerSizeInBits(0), 0);
|
|
bool Result = GEP->accumulateConstantOffset(DL, APOffset);
|
|
if (!Result)
|
|
return false;
|
|
COffset += APOffset.getZExtValue();
|
|
return containsValue(DL, GlobalLayout, GEP->getPointerOperand(),
|
|
COffset);
|
|
}
|
|
|
|
if (auto Op = dyn_cast<Operator>(V)) {
|
|
if (Op->getOpcode() == Instruction::BitCast)
|
|
return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset);
|
|
|
|
if (Op->getOpcode() == Instruction::Select)
|
|
return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) &&
|
|
containsValue(DL, GlobalLayout, Op->getOperand(2), COffset);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
BitSetInfo BitSetBuilder::build() {
|
|
if (Min > Max)
|
|
Min = 0;
|
|
|
|
// Normalize each offset against the minimum observed offset, and compute
|
|
// the bitwise OR of each of the offsets. The number of trailing zeros
|
|
// in the mask gives us the log2 of the alignment of all offsets, which
|
|
// allows us to compress the bitset by only storing one bit per aligned
|
|
// address.
|
|
uint64_t Mask = 0;
|
|
for (uint64_t &Offset : Offsets) {
|
|
Offset -= Min;
|
|
Mask |= Offset;
|
|
}
|
|
|
|
BitSetInfo BSI;
|
|
BSI.ByteOffset = Min;
|
|
|
|
BSI.AlignLog2 = 0;
|
|
if (Mask != 0)
|
|
BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
|
|
|
|
// Build the compressed bitset while normalizing the offsets against the
|
|
// computed alignment.
|
|
BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
|
|
for (uint64_t Offset : Offsets) {
|
|
Offset >>= BSI.AlignLog2;
|
|
BSI.Bits.insert(Offset);
|
|
}
|
|
|
|
return BSI;
|
|
}
|
|
|
|
void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
|
|
// Create a new fragment to hold the layout for F.
|
|
Fragments.emplace_back();
|
|
std::vector<uint64_t> &Fragment = Fragments.back();
|
|
uint64_t FragmentIndex = Fragments.size() - 1;
|
|
|
|
for (auto ObjIndex : F) {
|
|
uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
|
|
if (OldFragmentIndex == 0) {
|
|
// We haven't seen this object index before, so just add it to the current
|
|
// fragment.
|
|
Fragment.push_back(ObjIndex);
|
|
} else {
|
|
// This index belongs to an existing fragment. Copy the elements of the
|
|
// old fragment into this one and clear the old fragment. We don't update
|
|
// the fragment map just yet, this ensures that any further references to
|
|
// indices from the old fragment in this fragment do not insert any more
|
|
// indices.
|
|
std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
|
|
Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
|
|
OldFragment.clear();
|
|
}
|
|
}
|
|
|
|
// Update the fragment map to point our object indices to this fragment.
|
|
for (uint64_t ObjIndex : Fragment)
|
|
FragmentMap[ObjIndex] = FragmentIndex;
|
|
}
|
|
|
|
void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
|
|
uint64_t BitSize, uint64_t &AllocByteOffset,
|
|
uint8_t &AllocMask) {
|
|
// Find the smallest current allocation.
|
|
unsigned Bit = 0;
|
|
for (unsigned I = 1; I != BitsPerByte; ++I)
|
|
if (BitAllocs[I] < BitAllocs[Bit])
|
|
Bit = I;
|
|
|
|
AllocByteOffset = BitAllocs[Bit];
|
|
|
|
// Add our size to it.
|
|
unsigned ReqSize = AllocByteOffset + BitSize;
|
|
BitAllocs[Bit] = ReqSize;
|
|
if (Bytes.size() < ReqSize)
|
|
Bytes.resize(ReqSize);
|
|
|
|
// Set our bits.
|
|
AllocMask = 1 << Bit;
|
|
for (uint64_t B : Bits)
|
|
Bytes[AllocByteOffset + B] |= AllocMask;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct ByteArrayInfo {
|
|
std::set<uint64_t> Bits;
|
|
uint64_t BitSize;
|
|
GlobalVariable *ByteArray;
|
|
Constant *Mask;
|
|
};
|
|
|
|
struct LowerBitSets : public ModulePass {
|
|
static char ID;
|
|
LowerBitSets() : ModulePass(ID) {
|
|
initializeLowerBitSetsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
Module *M;
|
|
|
|
bool LinkerSubsectionsViaSymbols;
|
|
IntegerType *Int1Ty;
|
|
IntegerType *Int8Ty;
|
|
IntegerType *Int32Ty;
|
|
Type *Int32PtrTy;
|
|
IntegerType *Int64Ty;
|
|
Type *IntPtrTy;
|
|
|
|
// The llvm.bitsets named metadata.
|
|
NamedMDNode *BitSetNM;
|
|
|
|
// Mapping from bitset mdstrings to the call sites that test them.
|
|
DenseMap<MDString *, std::vector<CallInst *>> BitSetTestCallSites;
|
|
|
|
std::vector<ByteArrayInfo> ByteArrayInfos;
|
|
|
|
BitSetInfo
|
|
buildBitSet(MDString *BitSet,
|
|
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout);
|
|
ByteArrayInfo *createByteArray(BitSetInfo &BSI);
|
|
void allocateByteArrays();
|
|
Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
|
Value *BitOffset);
|
|
Value *
|
|
lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
|
GlobalVariable *CombinedGlobal,
|
|
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout);
|
|
void buildBitSetsFromGlobals(const std::vector<MDString *> &BitSets,
|
|
const std::vector<GlobalVariable *> &Globals);
|
|
bool buildBitSets();
|
|
bool eraseBitSetMetadata();
|
|
|
|
bool doInitialization(Module &M) override;
|
|
bool runOnModule(Module &M) override;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(LowerBitSets, "lowerbitsets",
|
|
"Lower bitset metadata", false, false)
|
|
INITIALIZE_PASS_END(LowerBitSets, "lowerbitsets",
|
|
"Lower bitset metadata", false, false)
|
|
char LowerBitSets::ID = 0;
|
|
|
|
ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }
|
|
|
|
bool LowerBitSets::doInitialization(Module &Mod) {
|
|
M = &Mod;
|
|
const DataLayout &DL = Mod.getDataLayout();
|
|
|
|
Triple TargetTriple(M->getTargetTriple());
|
|
LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
|
|
|
|
Int1Ty = Type::getInt1Ty(M->getContext());
|
|
Int8Ty = Type::getInt8Ty(M->getContext());
|
|
Int32Ty = Type::getInt32Ty(M->getContext());
|
|
Int32PtrTy = PointerType::getUnqual(Int32Ty);
|
|
Int64Ty = Type::getInt64Ty(M->getContext());
|
|
IntPtrTy = DL.getIntPtrType(M->getContext(), 0);
|
|
|
|
BitSetNM = M->getNamedMetadata("llvm.bitsets");
|
|
|
|
BitSetTestCallSites.clear();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Build a bit set for BitSet using the object layouts in
|
|
/// GlobalLayout.
|
|
BitSetInfo LowerBitSets::buildBitSet(
|
|
MDString *BitSet,
|
|
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout) {
|
|
BitSetBuilder BSB;
|
|
|
|
// Compute the byte offset of each element of this bitset.
|
|
if (BitSetNM) {
|
|
for (MDNode *Op : BitSetNM->operands()) {
|
|
if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
|
|
continue;
|
|
auto OpGlobal = cast<GlobalVariable>(
|
|
cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
|
|
uint64_t Offset =
|
|
cast<ConstantInt>(cast<ConstantAsMetadata>(Op->getOperand(2))
|
|
->getValue())->getZExtValue();
|
|
|
|
Offset += GlobalLayout.find(OpGlobal)->second;
|
|
|
|
BSB.addOffset(Offset);
|
|
}
|
|
}
|
|
|
|
return BSB.build();
|
|
}
|
|
|
|
/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
|
|
/// Bits. This pattern matches to the bt instruction on x86.
|
|
static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
|
|
Value *BitOffset) {
|
|
auto BitsType = cast<IntegerType>(Bits->getType());
|
|
unsigned BitWidth = BitsType->getBitWidth();
|
|
|
|
BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
|
|
Value *BitIndex =
|
|
B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
|
|
Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
|
|
Value *MaskedBits = B.CreateAnd(Bits, BitMask);
|
|
return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
|
|
}
|
|
|
|
ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) {
|
|
// Create globals to stand in for byte arrays and masks. These never actually
|
|
// get initialized, we RAUW and erase them later in allocateByteArrays() once
|
|
// we know the offset and mask to use.
|
|
auto ByteArrayGlobal = new GlobalVariable(
|
|
*M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
|
|
auto MaskGlobal = new GlobalVariable(
|
|
*M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
|
|
|
|
ByteArrayInfos.emplace_back();
|
|
ByteArrayInfo *BAI = &ByteArrayInfos.back();
|
|
|
|
BAI->Bits = BSI.Bits;
|
|
BAI->BitSize = BSI.BitSize;
|
|
BAI->ByteArray = ByteArrayGlobal;
|
|
BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
|
|
return BAI;
|
|
}
|
|
|
|
void LowerBitSets::allocateByteArrays() {
|
|
std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
|
|
[](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
|
|
return BAI1.BitSize > BAI2.BitSize;
|
|
});
|
|
|
|
std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
|
|
|
|
ByteArrayBuilder BAB;
|
|
for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
|
|
ByteArrayInfo *BAI = &ByteArrayInfos[I];
|
|
|
|
uint8_t Mask;
|
|
BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
|
|
|
|
BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
|
|
cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
|
|
}
|
|
|
|
Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
|
|
auto ByteArray =
|
|
new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
|
|
GlobalValue::PrivateLinkage, ByteArrayConst);
|
|
|
|
for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
|
|
ByteArrayInfo *BAI = &ByteArrayInfos[I];
|
|
|
|
Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
|
|
ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
|
|
Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
|
|
ByteArrayConst->getType(), ByteArray, Idxs);
|
|
|
|
// Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
|
|
// that the pc-relative displacement is folded into the lea instead of the
|
|
// test instruction getting another displacement.
|
|
if (LinkerSubsectionsViaSymbols) {
|
|
BAI->ByteArray->replaceAllUsesWith(GEP);
|
|
} else {
|
|
GlobalAlias *Alias = GlobalAlias::create(
|
|
Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M);
|
|
BAI->ByteArray->replaceAllUsesWith(Alias);
|
|
}
|
|
BAI->ByteArray->eraseFromParent();
|
|
}
|
|
|
|
ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
|
|
BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
|
|
BAB.BitAllocs[6] + BAB.BitAllocs[7];
|
|
ByteArraySizeBytes = BAB.Bytes.size();
|
|
}
|
|
|
|
/// Build a test that bit BitOffset is set in BSI, where
|
|
/// BitSetGlobal is a global containing the bits in BSI.
|
|
Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
|
|
ByteArrayInfo *&BAI, Value *BitOffset) {
|
|
if (BSI.BitSize <= 64) {
|
|
// If the bit set is sufficiently small, we can avoid a load by bit testing
|
|
// a constant.
|
|
IntegerType *BitsTy;
|
|
if (BSI.BitSize <= 32)
|
|
BitsTy = Int32Ty;
|
|
else
|
|
BitsTy = Int64Ty;
|
|
|
|
uint64_t Bits = 0;
|
|
for (auto Bit : BSI.Bits)
|
|
Bits |= uint64_t(1) << Bit;
|
|
Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
|
|
return createMaskedBitTest(B, BitsConst, BitOffset);
|
|
} else {
|
|
if (!BAI) {
|
|
++NumByteArraysCreated;
|
|
BAI = createByteArray(BSI);
|
|
}
|
|
|
|
Constant *ByteArray = BAI->ByteArray;
|
|
Type *Ty = BAI->ByteArray->getValueType();
|
|
if (!LinkerSubsectionsViaSymbols && AvoidReuse) {
|
|
// Each use of the byte array uses a different alias. This makes the
|
|
// backend less likely to reuse previously computed byte array addresses,
|
|
// improving the security of the CFI mechanism based on this pass.
|
|
ByteArray = GlobalAlias::create(BAI->ByteArray->getValueType(), 0,
|
|
GlobalValue::PrivateLinkage, "bits_use",
|
|
ByteArray, M);
|
|
}
|
|
|
|
Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset);
|
|
Value *Byte = B.CreateLoad(ByteAddr);
|
|
|
|
Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
|
|
return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
|
|
}
|
|
}
|
|
|
|
/// Lower a llvm.bitset.test call to its implementation. Returns the value to
|
|
/// replace the call with.
|
|
Value *LowerBitSets::lowerBitSetCall(
|
|
CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
|
GlobalVariable *CombinedGlobal,
|
|
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout) {
|
|
Value *Ptr = CI->getArgOperand(0);
|
|
const DataLayout &DL = M->getDataLayout();
|
|
|
|
if (BSI.containsValue(DL, GlobalLayout, Ptr))
|
|
return ConstantInt::getTrue(CombinedGlobal->getParent()->getContext());
|
|
|
|
Constant *GlobalAsInt = ConstantExpr::getPtrToInt(CombinedGlobal, IntPtrTy);
|
|
Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
|
|
GlobalAsInt, ConstantInt::get(IntPtrTy, BSI.ByteOffset));
|
|
|
|
BasicBlock *InitialBB = CI->getParent();
|
|
|
|
IRBuilder<> B(CI);
|
|
|
|
Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
|
|
|
|
if (BSI.isSingleOffset())
|
|
return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
|
|
|
|
Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
|
|
|
|
Value *BitOffset;
|
|
if (BSI.AlignLog2 == 0) {
|
|
BitOffset = PtrOffset;
|
|
} else {
|
|
// We need to check that the offset both falls within our range and is
|
|
// suitably aligned. We can check both properties at the same time by
|
|
// performing a right rotate by log2(alignment) followed by an integer
|
|
// comparison against the bitset size. The rotate will move the lower
|
|
// order bits that need to be zero into the higher order bits of the
|
|
// result, causing the comparison to fail if they are nonzero. The rotate
|
|
// also conveniently gives us a bit offset to use during the load from
|
|
// the bitset.
|
|
Value *OffsetSHR =
|
|
B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
|
|
Value *OffsetSHL = B.CreateShl(
|
|
PtrOffset,
|
|
ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
|
|
BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
|
|
}
|
|
|
|
Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize);
|
|
Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst);
|
|
|
|
// If the bit set is all ones, testing against it is unnecessary.
|
|
if (BSI.isAllOnes())
|
|
return OffsetInRange;
|
|
|
|
TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false);
|
|
IRBuilder<> ThenB(Term);
|
|
|
|
// Now that we know that the offset is in range and aligned, load the
|
|
// appropriate bit from the bitset.
|
|
Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);
|
|
|
|
// The value we want is 0 if we came directly from the initial block
|
|
// (having failed the range or alignment checks), or the loaded bit if
|
|
// we came from the block in which we loaded it.
|
|
B.SetInsertPoint(CI);
|
|
PHINode *P = B.CreatePHI(Int1Ty, 2);
|
|
P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
|
|
P->addIncoming(Bit, ThenB.GetInsertBlock());
|
|
return P;
|
|
}
|
|
|
|
/// Given a disjoint set of bitsets and globals, layout the globals, build the
|
|
/// bit sets and lower the llvm.bitset.test calls.
|
|
void LowerBitSets::buildBitSetsFromGlobals(
|
|
const std::vector<MDString *> &BitSets,
|
|
const std::vector<GlobalVariable *> &Globals) {
|
|
// Build a new global with the combined contents of the referenced globals.
|
|
std::vector<Constant *> GlobalInits;
|
|
const DataLayout &DL = M->getDataLayout();
|
|
for (GlobalVariable *G : Globals) {
|
|
GlobalInits.push_back(G->getInitializer());
|
|
uint64_t InitSize = DL.getTypeAllocSize(G->getInitializer()->getType());
|
|
|
|
// Compute the amount of padding required to align the next element to the
|
|
// next power of 2.
|
|
uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
|
|
|
|
// Cap at 128 was found experimentally to have a good data/instruction
|
|
// overhead tradeoff.
|
|
if (Padding > 128)
|
|
Padding = RoundUpToAlignment(InitSize, 128) - InitSize;
|
|
|
|
GlobalInits.push_back(
|
|
ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
|
|
}
|
|
if (!GlobalInits.empty())
|
|
GlobalInits.pop_back();
|
|
Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
|
|
auto CombinedGlobal =
|
|
new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
|
|
GlobalValue::PrivateLinkage, NewInit);
|
|
|
|
const StructLayout *CombinedGlobalLayout =
|
|
DL.getStructLayout(cast<StructType>(NewInit->getType()));
|
|
|
|
// Compute the offsets of the original globals within the new global.
|
|
DenseMap<GlobalVariable *, uint64_t> GlobalLayout;
|
|
for (unsigned I = 0; I != Globals.size(); ++I)
|
|
// Multiply by 2 to account for padding elements.
|
|
GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
|
|
|
|
// For each bitset in this disjoint set...
|
|
for (MDString *BS : BitSets) {
|
|
// Build the bitset.
|
|
BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
|
|
|
|
ByteArrayInfo *BAI = 0;
|
|
|
|
// Lower each call to llvm.bitset.test for this bitset.
|
|
for (CallInst *CI : BitSetTestCallSites[BS]) {
|
|
++NumBitSetCallsLowered;
|
|
Value *Lowered = lowerBitSetCall(CI, BSI, BAI, CombinedGlobal, GlobalLayout);
|
|
CI->replaceAllUsesWith(Lowered);
|
|
CI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Build aliases pointing to offsets into the combined global for each
|
|
// global from which we built the combined global, and replace references
|
|
// to the original globals with references to the aliases.
|
|
for (unsigned I = 0; I != Globals.size(); ++I) {
|
|
// Multiply by 2 to account for padding elements.
|
|
Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
|
|
ConstantInt::get(Int32Ty, I * 2)};
|
|
Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
|
|
NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
|
|
if (LinkerSubsectionsViaSymbols) {
|
|
Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
|
|
} else {
|
|
GlobalAlias *GAlias = GlobalAlias::create(
|
|
Globals[I]->getType()->getElementType(),
|
|
Globals[I]->getType()->getAddressSpace(), Globals[I]->getLinkage(),
|
|
"", CombinedGlobalElemPtr, M);
|
|
GAlias->takeName(Globals[I]);
|
|
Globals[I]->replaceAllUsesWith(GAlias);
|
|
}
|
|
Globals[I]->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// Lower all bit sets in this module.
|
|
bool LowerBitSets::buildBitSets() {
|
|
Function *BitSetTestFunc =
|
|
M->getFunction(Intrinsic::getName(Intrinsic::bitset_test));
|
|
if (!BitSetTestFunc)
|
|
return false;
|
|
|
|
// Equivalence class set containing bitsets and the globals they reference.
|
|
// This is used to partition the set of bitsets in the module into disjoint
|
|
// sets.
|
|
typedef EquivalenceClasses<PointerUnion<GlobalVariable *, MDString *>>
|
|
GlobalClassesTy;
|
|
GlobalClassesTy GlobalClasses;
|
|
|
|
for (const Use &U : BitSetTestFunc->uses()) {
|
|
auto CI = cast<CallInst>(U.getUser());
|
|
|
|
auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
|
|
if (!BitSetMDVal || !isa<MDString>(BitSetMDVal->getMetadata()))
|
|
report_fatal_error(
|
|
"Second argument of llvm.bitset.test must be metadata string");
|
|
auto BitSet = cast<MDString>(BitSetMDVal->getMetadata());
|
|
|
|
// Add the call site to the list of call sites for this bit set. We also use
|
|
// BitSetTestCallSites to keep track of whether we have seen this bit set
|
|
// before. If we have, we don't need to re-add the referenced globals to the
|
|
// equivalence class.
|
|
std::pair<DenseMap<MDString *, std::vector<CallInst *>>::iterator,
|
|
bool> Ins =
|
|
BitSetTestCallSites.insert(
|
|
std::make_pair(BitSet, std::vector<CallInst *>()));
|
|
Ins.first->second.push_back(CI);
|
|
if (!Ins.second)
|
|
continue;
|
|
|
|
// Add the bitset to the equivalence class.
|
|
GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet);
|
|
GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
|
|
|
|
if (!BitSetNM)
|
|
continue;
|
|
|
|
// Verify the bitset metadata and add the referenced globals to the bitset's
|
|
// equivalence class.
|
|
for (MDNode *Op : BitSetNM->operands()) {
|
|
if (Op->getNumOperands() != 3)
|
|
report_fatal_error(
|
|
"All operands of llvm.bitsets metadata must have 3 elements");
|
|
|
|
if (Op->getOperand(0) != BitSet || !Op->getOperand(1))
|
|
continue;
|
|
|
|
auto OpConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(1));
|
|
if (!OpConstMD)
|
|
report_fatal_error("Bit set element must be a constant");
|
|
auto OpGlobal = dyn_cast<GlobalVariable>(OpConstMD->getValue());
|
|
if (!OpGlobal)
|
|
report_fatal_error("Bit set element must refer to global");
|
|
|
|
auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Op->getOperand(2));
|
|
if (!OffsetConstMD)
|
|
report_fatal_error("Bit set element offset must be a constant");
|
|
auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
|
|
if (!OffsetInt)
|
|
report_fatal_error(
|
|
"Bit set element offset must be an integer constant");
|
|
|
|
CurSet = GlobalClasses.unionSets(
|
|
CurSet, GlobalClasses.findLeader(GlobalClasses.insert(OpGlobal)));
|
|
}
|
|
}
|
|
|
|
if (GlobalClasses.empty())
|
|
return false;
|
|
|
|
// For each disjoint set we found...
|
|
for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
|
|
E = GlobalClasses.end();
|
|
I != E; ++I) {
|
|
if (!I->isLeader()) continue;
|
|
|
|
++NumBitSetDisjointSets;
|
|
|
|
// Build the list of bitsets and referenced globals in this disjoint set.
|
|
std::vector<MDString *> BitSets;
|
|
std::vector<GlobalVariable *> Globals;
|
|
llvm::DenseMap<MDString *, uint64_t> BitSetIndices;
|
|
llvm::DenseMap<GlobalVariable *, uint64_t> GlobalIndices;
|
|
for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
|
|
MI != GlobalClasses.member_end(); ++MI) {
|
|
if ((*MI).is<MDString *>()) {
|
|
BitSetIndices[MI->get<MDString *>()] = BitSets.size();
|
|
BitSets.push_back(MI->get<MDString *>());
|
|
} else {
|
|
GlobalIndices[MI->get<GlobalVariable *>()] = Globals.size();
|
|
Globals.push_back(MI->get<GlobalVariable *>());
|
|
}
|
|
}
|
|
|
|
// For each bitset, build a set of indices that refer to globals referenced
|
|
// by the bitset.
|
|
std::vector<std::set<uint64_t>> BitSetMembers(BitSets.size());
|
|
if (BitSetNM) {
|
|
for (MDNode *Op : BitSetNM->operands()) {
|
|
// Op = { bitset name, global, offset }
|
|
if (!Op->getOperand(1))
|
|
continue;
|
|
auto I = BitSetIndices.find(cast<MDString>(Op->getOperand(0)));
|
|
if (I == BitSetIndices.end())
|
|
continue;
|
|
|
|
auto OpGlobal = cast<GlobalVariable>(
|
|
cast<ConstantAsMetadata>(Op->getOperand(1))->getValue());
|
|
BitSetMembers[I->second].insert(GlobalIndices[OpGlobal]);
|
|
}
|
|
}
|
|
|
|
// Order the sets of indices by size. The GlobalLayoutBuilder works best
|
|
// when given small index sets first.
|
|
std::stable_sort(
|
|
BitSetMembers.begin(), BitSetMembers.end(),
|
|
[](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
|
|
return O1.size() < O2.size();
|
|
});
|
|
|
|
// Create a GlobalLayoutBuilder and provide it with index sets as layout
|
|
// fragments. The GlobalLayoutBuilder tries to lay out members of fragments
|
|
// as close together as possible.
|
|
GlobalLayoutBuilder GLB(Globals.size());
|
|
for (auto &&MemSet : BitSetMembers)
|
|
GLB.addFragment(MemSet);
|
|
|
|
// Build a vector of globals with the computed layout.
|
|
std::vector<GlobalVariable *> OrderedGlobals(Globals.size());
|
|
auto OGI = OrderedGlobals.begin();
|
|
for (auto &&F : GLB.Fragments)
|
|
for (auto &&Offset : F)
|
|
*OGI++ = Globals[Offset];
|
|
|
|
// Order bitsets by name for determinism.
|
|
std::sort(BitSets.begin(), BitSets.end(), [](MDString *S1, MDString *S2) {
|
|
return S1->getString() < S2->getString();
|
|
});
|
|
|
|
// Build the bitsets from this disjoint set.
|
|
buildBitSetsFromGlobals(BitSets, OrderedGlobals);
|
|
}
|
|
|
|
allocateByteArrays();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LowerBitSets::eraseBitSetMetadata() {
|
|
if (!BitSetNM)
|
|
return false;
|
|
|
|
M->eraseNamedMetadata(BitSetNM);
|
|
return true;
|
|
}
|
|
|
|
bool LowerBitSets::runOnModule(Module &M) {
|
|
bool Changed = buildBitSets();
|
|
Changed |= eraseBitSetMetadata();
|
|
return Changed;
|
|
}
|