llvm/lib/Target/MSP430/MSP430InstrInfo.td
2009-08-05 14:42:00 +00:00

849 lines
36 KiB
TableGen

//===- MSP430InstrInfo.td - MSP430 Instruction defs -----------*- tblgen-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the MSP430 instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "MSP430InstrFormats.td"
//===----------------------------------------------------------------------===//
// Type Constraints.
//===----------------------------------------------------------------------===//
class SDTCisI8<int OpNum> : SDTCisVT<OpNum, i8>;
class SDTCisI16<int OpNum> : SDTCisVT<OpNum, i16>;
//===----------------------------------------------------------------------===//
// Type Profiles.
//===----------------------------------------------------------------------===//
def SDT_MSP430Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_MSP430CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i16>]>;
def SDT_MSP430CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
def SDT_MSP430Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def SDT_MSP430Cmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_MSP430BrCC : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>,
SDTCisVT<1, i8>]>;
def SDT_MSP430SelectCC : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
SDTCisVT<3, i8>]>;
//===----------------------------------------------------------------------===//
// MSP430 Specific Node Definitions.
//===----------------------------------------------------------------------===//
def MSP430retflag : SDNode<"MSP430ISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInFlag]>;
def MSP430rra : SDNode<"MSP430ISD::RRA", SDTIntUnaryOp, []>;
def MSP430rla : SDNode<"MSP430ISD::RLA", SDTIntUnaryOp, []>;
def MSP430rrc : SDNode<"MSP430ISD::RRC", SDTIntUnaryOp, []>;
def MSP430call : SDNode<"MSP430ISD::CALL", SDT_MSP430Call,
[SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
def MSP430callseq_start :
SDNode<"ISD::CALLSEQ_START", SDT_MSP430CallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def MSP430callseq_end :
SDNode<"ISD::CALLSEQ_END", SDT_MSP430CallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def MSP430Wrapper : SDNode<"MSP430ISD::Wrapper", SDT_MSP430Wrapper>;
def MSP430cmp : SDNode<"MSP430ISD::CMP", SDT_MSP430Cmp, [SDNPOutFlag]>;
def MSP430brcc : SDNode<"MSP430ISD::BR_CC", SDT_MSP430BrCC, [SDNPHasChain, SDNPInFlag]>;
def MSP430selectcc: SDNode<"MSP430ISD::SELECT_CC", SDT_MSP430SelectCC, [SDNPInFlag]>;
//===----------------------------------------------------------------------===//
// MSP430 Operand Definitions.
//===----------------------------------------------------------------------===//
// Address operands
def memsrc : Operand<i16> {
let PrintMethod = "printSrcMemOperand";
let MIOperandInfo = (ops GR16, i16imm);
}
def memdst : Operand<i16> {
let PrintMethod = "printSrcMemOperand";
let MIOperandInfo = (ops GR16, i16imm);
}
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
// Operand for printing out a condition code.
def cc : Operand<i8> {
let PrintMethod = "printCCOperand";
}
//===----------------------------------------------------------------------===//
// MSP430 Complex Pattern Definitions.
//===----------------------------------------------------------------------===//
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [], []>;
//===----------------------------------------------------------------------===//
// Pattern Fragments
def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>;
def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 ( extloadi8 node:$ptr))>;
//===----------------------------------------------------------------------===//
// Instruction list..
// ADJCALLSTACKDOWN/UP implicitly use/def SP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber SRW.
let Defs = [SPW, SRW], Uses = [SPW] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i16imm:$amt),
"#ADJCALLSTACKDOWN",
[(MSP430callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i16imm:$amt1, i16imm:$amt2),
"#ADJCALLSTACKUP",
[(MSP430callseq_end timm:$amt1, timm:$amt2)]>;
}
let usesCustomDAGSchedInserter = 1 in {
def Select8 : Pseudo<(outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cc),
"# Select8 PSEUDO",
[(set GR8:$dst,
(MSP430selectcc GR8:$src1, GR8:$src2, imm:$cc))]>;
def Select16 : Pseudo<(outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cc),
"# Select16 PSEUDO",
[(set GR16:$dst,
(MSP430selectcc GR16:$src1, GR16:$src2, imm:$cc))]>;
}
let neverHasSideEffects = 1 in
def NOP : Pseudo<(outs), (ins), "nop", []>;
//===----------------------------------------------------------------------===//
// Control Flow Instructions...
//
// FIXME: Provide proper encoding!
let isReturn = 1, isTerminator = 1 in {
def RET : Pseudo<(outs), (ins), "ret", [(MSP430retflag)]>;
}
let isBranch = 1, isTerminator = 1 in {
// Direct branch
let isBarrier = 1 in
def JMP : Pseudo<(outs), (ins brtarget:$dst),
"jmp\t$dst",
[(br bb:$dst)]>;
// Conditional branches
let Uses = [SRW] in
def JCC : Pseudo<(outs), (ins brtarget:$dst, cc:$cc),
"j$cc $dst",
[(MSP430brcc bb:$dst, imm:$cc)]>;
} // isBranch, isTerminator
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers. SPW is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let Defs = [R12W, R13W, R14W, R15W, SRW],
Uses = [SPW] in {
def CALLi : Pseudo<(outs), (ins i16imm:$dst, variable_ops),
"call\t${dst:call}", [(MSP430call imm:$dst)]>;
def CALLr : Pseudo<(outs), (ins GR16:$dst, variable_ops),
"call\t$dst", [(MSP430call GR16:$dst)]>;
def CALLm : Pseudo<(outs), (ins memsrc:$dst, variable_ops),
"call\t${dst:mem}", [(MSP430call (load addr:$dst))]>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
let Defs = [SPW], Uses = [SPW], neverHasSideEffects=1 in {
let mayLoad = 1 in
def POP16r : Pseudo<(outs GR16:$reg), (ins), "pop.w\t$reg", []>;
let mayStore = 1 in
def PUSH16r : Pseudo<(outs), (ins GR16:$reg), "push.w\t$reg",[]>;
}
//===----------------------------------------------------------------------===//
// Move Instructions
// FIXME: Provide proper encoding!
let neverHasSideEffects = 1 in {
def MOV8rr : Pseudo<(outs GR8:$dst), (ins GR8:$src),
"mov.b\t{$src, $dst}",
[]>;
def MOV16rr : Pseudo<(outs GR16:$dst), (ins GR16:$src),
"mov.w\t{$src, $dst}",
[]>;
}
// FIXME: Provide proper encoding!
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MOV8ri : Pseudo<(outs GR8:$dst), (ins i8imm:$src),
"mov.b\t{$src, $dst}",
[(set GR8:$dst, imm:$src)]>;
def MOV16ri : Pseudo<(outs GR16:$dst), (ins i16imm:$src),
"mov.w\t{$src, $dst}",
[(set GR16:$dst, imm:$src)]>;
}
let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in {
def MOV8rm : Pseudo<(outs GR8:$dst), (ins memsrc:$src),
"mov.b\t{$src, $dst}",
[(set GR8:$dst, (load addr:$src))]>;
def MOV16rm : Pseudo<(outs GR16:$dst), (ins memsrc:$src),
"mov.w\t{$src, $dst}",
[(set GR16:$dst, (load addr:$src))]>;
}
def MOVZX16rr8 : Pseudo<(outs GR16:$dst), (ins GR8:$src),
"mov.b\t{$src, $dst}",
[(set GR16:$dst, (zext GR8:$src))]>;
def MOVZX16rm8 : Pseudo<(outs GR16:$dst), (ins memsrc:$src),
"mov.b\t{$src, $dst}",
[(set GR16:$dst, (zextloadi16i8 addr:$src))]>;
// Any instruction that defines a 8-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG, and CopyFromReg may
// be copying from a truncate, but any other 8-bit operation will zero-extend
// up to 16 bits.
def def8 : PatLeaf<(i8 GR8:$src), [{
return N->getOpcode() != ISD::TRUNCATE &&
N->getOpcode() != TargetInstrInfo::EXTRACT_SUBREG &&
N->getOpcode() != ISD::CopyFromReg;
}]>;
// In the case of a 8-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i16 (zext def8:$src)),
(SUBREG_TO_REG (i16 0), GR8:$src, subreg_8bit)>;
def MOV8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"mov.b\t{$src, $dst}",
[(store (i8 imm:$src), addr:$dst)]>;
def MOV16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"mov.w\t{$src, $dst}",
[(store (i16 imm:$src), addr:$dst)]>;
def MOV8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"mov.b\t{$src, $dst}",
[(store GR8:$src, addr:$dst)]>;
def MOV16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"mov.w\t{$src, $dst}",
[(store GR16:$src, addr:$dst)]>;
//===----------------------------------------------------------------------===//
// Arithmetic Instructions
let isTwoAddress = 1 in {
let Defs = [SRW] in {
let isCommutable = 1 in { // X = ADD Y, Z == X = ADD Z, Y
// FIXME: Provide proper encoding!
def ADD8rr : Pseudo<(outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"add.b\t{$src2, $dst}",
[(set GR8:$dst, (add GR8:$src1, GR8:$src2)),
(implicit SRW)]>;
def ADD16rr : Pseudo<(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"add.w\t{$src2, $dst}",
[(set GR16:$dst, (add GR16:$src1, GR16:$src2)),
(implicit SRW)]>;
}
def ADD8rm : Pseudo<(outs GR8:$dst), (ins GR8:$src1, memsrc:$src2),
"add.b\t{$src2, $dst}",
[(set GR8:$dst, (add GR8:$src1, (load addr:$src2))),
(implicit SRW)]>;
def ADD16rm : Pseudo<(outs GR16:$dst), (ins GR16:$src1, memsrc:$src2),
"add.w\t{$src2, $dst}",
[(set GR16:$dst, (add GR16:$src1, (load addr:$src2))),
(implicit SRW)]>;
def ADD8ri : Pseudo<(outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"add.b\t{$src2, $dst}",
[(set GR8:$dst, (add GR8:$src1, imm:$src2)),
(implicit SRW)]>;
def ADD16ri : Pseudo<(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"add.w\t{$src2, $dst}",
[(set GR16:$dst, (add GR16:$src1, imm:$src2)),
(implicit SRW)]>;
let isTwoAddress = 0 in {
def ADD8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"add.b\t{$src, $dst}",
[(store (add (load addr:$dst), GR8:$src), addr:$dst),
(implicit SRW)]>;
def ADD16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"add.w\t{$src, $dst}",
[(store (add (load addr:$dst), GR16:$src), addr:$dst),
(implicit SRW)]>;
def ADD8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"add.b\t{$src, $dst}",
[(store (add (load addr:$dst), (i8 imm:$src)), addr:$dst),
(implicit SRW)]>;
def ADD16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"add.w\t{$src, $dst}",
[(store (add (load addr:$dst), (i16 imm:$src)), addr:$dst),
(implicit SRW)]>;
def ADD8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"add.b\t{$src, $dst}",
[(store (add (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
def ADD16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"add.w\t{$src, $dst}",
[(store (add (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
}
let Uses = [SRW] in {
let isCommutable = 1 in { // X = ADDC Y, Z == X = ADDC Z, Y
def ADC8rr : Pseudo<(outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"addc.b\t{$src2, $dst}",
[(set GR8:$dst, (adde GR8:$src1, GR8:$src2)),
(implicit SRW)]>;
def ADC16rr : Pseudo<(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"addc.w\t{$src2, $dst}",
[(set GR16:$dst, (adde GR16:$src1, GR16:$src2)),
(implicit SRW)]>;
} // isCommutable
def ADC8ri : Pseudo<(outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"addc.b\t{$src2, $dst}",
[(set GR8:$dst, (adde GR8:$src1, imm:$src2)),
(implicit SRW)]>;
def ADC16ri : Pseudo<(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"addc.w\t{$src2, $dst}",
[(set GR16:$dst, (adde GR16:$src1, imm:$src2)),
(implicit SRW)]>;
def ADC8rm : Pseudo<(outs GR8:$dst), (ins GR8:$src1, memsrc:$src2),
"addc.b\t{$src2, $dst}",
[(set GR8:$dst, (adde GR8:$src1, (load addr:$src2))),
(implicit SRW)]>;
def ADC16rm : Pseudo<(outs GR16:$dst), (ins GR16:$src1, memsrc:$src2),
"addc.w\t{$src2, $dst}",
[(set GR16:$dst, (adde GR16:$src1, (load addr:$src2))),
(implicit SRW)]>;
let isTwoAddress = 0 in {
def ADC8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"addc.b\t{$src, $dst}",
[(store (adde (load addr:$dst), GR8:$src), addr:$dst),
(implicit SRW)]>;
def ADC16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"addc.w\t{$src, $dst}",
[(store (adde (load addr:$dst), GR16:$src), addr:$dst),
(implicit SRW)]>;
def ADC8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"addc.b\t{$src, $dst}",
[(store (adde (load addr:$dst), (i8 imm:$src)), addr:$dst),
(implicit SRW)]>;
def ADC16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"addc.w\t{$src, $dst}",
[(store (adde (load addr:$dst), (i16 imm:$src)), addr:$dst),
(implicit SRW)]>;
def ADC8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"addc.b\t{$src, $dst}",
[(store (adde (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
def ADC16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"addc.w\t{$src, $dst}",
[(store (adde (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
}
} // Uses = [SRW]
let isCommutable = 1 in { // X = AND Y, Z == X = AND Z, Y
def AND8rr : Pseudo<(outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"and.b\t{$src2, $dst}",
[(set GR8:$dst, (and GR8:$src1, GR8:$src2)),
(implicit SRW)]>;
def AND16rr : Pseudo<(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"and.w\t{$src2, $dst}",
[(set GR16:$dst, (and GR16:$src1, GR16:$src2)),
(implicit SRW)]>;
}
def AND8ri : Pseudo<(outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"and.b\t{$src2, $dst}",
[(set GR8:$dst, (and GR8:$src1, imm:$src2)),
(implicit SRW)]>;
def AND16ri : Pseudo<(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"and.w\t{$src2, $dst}",
[(set GR16:$dst, (and GR16:$src1, imm:$src2)),
(implicit SRW)]>;
def AND8rm : Pseudo<(outs GR8:$dst), (ins GR8:$src1, memsrc:$src2),
"and.b\t{$src2, $dst}",
[(set GR8:$dst, (and GR8:$src1, (load addr:$src2))),
(implicit SRW)]>;
def AND16rm : Pseudo<(outs GR16:$dst), (ins GR16:$src1, memsrc:$src2),
"and.w\t{$src2, $dst}",
[(set GR16:$dst, (and GR16:$src1, (load addr:$src2))),
(implicit SRW)]>;
let isTwoAddress = 0 in {
def AND8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"and.b\t{$src, $dst}",
[(store (and (load addr:$dst), GR8:$src), addr:$dst),
(implicit SRW)]>;
def AND16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"and.w\t{$src, $dst}",
[(store (and (load addr:$dst), GR16:$src), addr:$dst),
(implicit SRW)]>;
def AND8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"and.b\t{$src, $dst}",
[(store (and (load addr:$dst), (i8 imm:$src)), addr:$dst),
(implicit SRW)]>;
def AND16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"and.w\t{$src, $dst}",
[(store (and (load addr:$dst), (i16 imm:$src)), addr:$dst),
(implicit SRW)]>;
def AND8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"and.b\t{$src, $dst}",
[(store (and (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
def AND16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"and.w\t{$src, $dst}",
[(store (and (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
}
let isCommutable = 1 in { // X = XOR Y, Z == X = XOR Z, Y
def XOR8rr : Pseudo<(outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"xor.b\t{$src2, $dst}",
[(set GR8:$dst, (xor GR8:$src1, GR8:$src2)),
(implicit SRW)]>;
def XOR16rr : Pseudo<(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"xor.w\t{$src2, $dst}",
[(set GR16:$dst, (xor GR16:$src1, GR16:$src2)),
(implicit SRW)]>;
}
def XOR8ri : Pseudo<(outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"xor.b\t{$src2, $dst}",
[(set GR8:$dst, (xor GR8:$src1, imm:$src2)),
(implicit SRW)]>;
def XOR16ri : Pseudo<(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"xor.w\t{$src2, $dst}",
[(set GR16:$dst, (xor GR16:$src1, imm:$src2)),
(implicit SRW)]>;
def XOR8rm : Pseudo<(outs GR8:$dst), (ins GR8:$src1, memsrc:$src2),
"xor.b\t{$src2, $dst}",
[(set GR8:$dst, (xor GR8:$src1, (load addr:$src2))),
(implicit SRW)]>;
def XOR16rm : Pseudo<(outs GR16:$dst), (ins GR16:$src1, memsrc:$src2),
"xor.w\t{$src2, $dst}",
[(set GR16:$dst, (xor GR16:$src1, (load addr:$src2))),
(implicit SRW)]>;
let isTwoAddress = 0 in {
def XOR8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"xor.b\t{$src, $dst}",
[(store (xor (load addr:$dst), GR8:$src), addr:$dst),
(implicit SRW)]>;
def XOR16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"xor.w\t{$src, $dst}",
[(store (xor (load addr:$dst), GR16:$src), addr:$dst),
(implicit SRW)]>;
def XOR8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"xor.b\t{$src, $dst}",
[(store (xor (load addr:$dst), (i8 imm:$src)), addr:$dst),
(implicit SRW)]>;
def XOR16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"xor.w\t{$src, $dst}",
[(store (xor (load addr:$dst), (i16 imm:$src)), addr:$dst),
(implicit SRW)]>;
def XOR8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"xor.b\t{$src, $dst}",
[(store (xor (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
def XOR16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"xor.w\t{$src, $dst}",
[(store (xor (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
}
def SUB8rr : Pseudo<(outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"sub.b\t{$src2, $dst}",
[(set GR8:$dst, (sub GR8:$src1, GR8:$src2)),
(implicit SRW)]>;
def SUB16rr : Pseudo<(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"sub.w\t{$src2, $dst}",
[(set GR16:$dst, (sub GR16:$src1, GR16:$src2)),
(implicit SRW)]>;
def SUB8ri : Pseudo<(outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"sub.b\t{$src2, $dst}",
[(set GR8:$dst, (sub GR8:$src1, imm:$src2)),
(implicit SRW)]>;
def SUB16ri : Pseudo<(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"sub.w\t{$src2, $dst}",
[(set GR16:$dst, (sub GR16:$src1, imm:$src2)),
(implicit SRW)]>;
def SUB8rm : Pseudo<(outs GR8:$dst), (ins GR8:$src1, memsrc:$src2),
"sub.b\t{$src2, $dst}",
[(set GR8:$dst, (sub GR8:$src1, (load addr:$src2))),
(implicit SRW)]>;
def SUB16rm : Pseudo<(outs GR16:$dst), (ins GR16:$src1, memsrc:$src2),
"sub.w\t{$src2, $dst}",
[(set GR16:$dst, (sub GR16:$src1, (load addr:$src2))),
(implicit SRW)]>;
let isTwoAddress = 0 in {
def SUB8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"sub.b\t{$src, $dst}",
[(store (sub (load addr:$dst), GR8:$src), addr:$dst),
(implicit SRW)]>;
def SUB16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"sub.w\t{$src, $dst}",
[(store (sub (load addr:$dst), GR16:$src), addr:$dst),
(implicit SRW)]>;
def SUB8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"sub.b\t{$src, $dst}",
[(store (sub (load addr:$dst), (i8 imm:$src)), addr:$dst),
(implicit SRW)]>;
def SUB16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"sub.w\t{$src, $dst}",
[(store (sub (load addr:$dst), (i16 imm:$src)), addr:$dst),
(implicit SRW)]>;
def SUB8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"sub.b\t{$src, $dst}",
[(store (sub (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
def SUB16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"sub.w\t{$src, $dst}",
[(store (sub (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
}
let Uses = [SRW] in {
def SBC8rr : Pseudo<(outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"subc.b\t{$src2, $dst}",
[(set GR8:$dst, (sube GR8:$src1, GR8:$src2)),
(implicit SRW)]>;
def SBC16rr : Pseudo<(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"subc.w\t{$src2, $dst}",
[(set GR16:$dst, (sube GR16:$src1, GR16:$src2)),
(implicit SRW)]>;
def SBC8ri : Pseudo<(outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"subc.b\t{$src2, $dst}",
[(set GR8:$dst, (sube GR8:$src1, imm:$src2)),
(implicit SRW)]>;
def SBC16ri : Pseudo<(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"subc.w\t{$src2, $dst}",
[(set GR16:$dst, (sube GR16:$src1, imm:$src2)),
(implicit SRW)]>;
def SBC8rm : Pseudo<(outs GR8:$dst), (ins GR8:$src1, memsrc:$src2),
"subc.b\t{$src2, $dst}",
[(set GR8:$dst, (sube GR8:$src1, (load addr:$src2))),
(implicit SRW)]>;
def SBC16rm : Pseudo<(outs GR16:$dst), (ins GR16:$src1, memsrc:$src2),
"subc.w\t{$src2, $dst}",
[(set GR16:$dst, (sube GR16:$src1, (load addr:$src2))),
(implicit SRW)]>;
let isTwoAddress = 0 in {
def SBC8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"subc.b\t{$src, $dst}",
[(store (sube (load addr:$dst), GR8:$src), addr:$dst),
(implicit SRW)]>;
def SBC16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"subc.w\t{$src, $dst}",
[(store (sube (load addr:$dst), GR16:$src), addr:$dst),
(implicit SRW)]>;
def SBC8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"subc.b\t{$src, $dst}",
[(store (sube (load addr:$dst), (i8 imm:$src)), addr:$dst),
(implicit SRW)]>;
def SBC16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"subc.w\t{$src, $dst}",
[(store (sube (load addr:$dst), (i16 imm:$src)), addr:$dst),
(implicit SRW)]>;
def SBC8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"subc.b\t{$src, $dst}",
[(store (sube (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
def SBC16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"subc.w\t{$src, $dst}",
[(store (sube (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
}
} // Uses = [SRW]
// FIXME: Provide proper encoding!
def SAR8r1 : Pseudo<(outs GR8:$dst), (ins GR8:$src),
"rra.b\t$dst",
[(set GR8:$dst, (MSP430rra GR8:$src)),
(implicit SRW)]>;
def SAR16r1 : Pseudo<(outs GR16:$dst), (ins GR16:$src),
"rra.w\t$dst",
[(set GR16:$dst, (MSP430rra GR16:$src)),
(implicit SRW)]>;
def SHL8r1 : Pseudo<(outs GR8:$dst), (ins GR8:$src),
"rla.b\t$dst",
[(set GR8:$dst, (MSP430rla GR8:$src)),
(implicit SRW)]>;
def SHL16r1 : Pseudo<(outs GR16:$dst), (ins GR16:$src),
"rla.w\t$dst",
[(set GR16:$dst, (MSP430rla GR16:$src)),
(implicit SRW)]>;
def SAR8r1c : Pseudo<(outs GR8:$dst), (ins GR8:$src),
"clrc\n\t"
"rrc.b\t$dst",
[(set GR8:$dst, (MSP430rrc GR8:$src)),
(implicit SRW)]>;
def SAR16r1c : Pseudo<(outs GR16:$dst), (ins GR16:$src),
"clrc\n\t"
"rrc.w\t$dst",
[(set GR16:$dst, (MSP430rrc GR16:$src)),
(implicit SRW)]>;
def SEXT16r : Pseudo<(outs GR16:$dst), (ins GR16:$src),
"sxt\t$dst",
[(set GR16:$dst, (sext_inreg GR16:$src, i8)),
(implicit SRW)]>;
} // Defs = [SRW]
def SWPB16r : Pseudo<(outs GR16:$dst), (ins GR16:$src),
"swpb\t$dst",
[(set GR16:$dst, (bswap GR16:$src))]>;
let isCommutable = 1 in { // X = OR Y, Z == X = OR Z, Y
def OR8rr : Pseudo<(outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
"bis.b\t{$src2, $dst}",
[(set GR8:$dst, (or GR8:$src1, GR8:$src2))]>;
def OR16rr : Pseudo<(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"bis.w\t{$src2, $dst}",
[(set GR16:$dst, (or GR16:$src1, GR16:$src2))]>;
}
def OR8ri : Pseudo<(outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
"bis.b\t{$src2, $dst}",
[(set GR8:$dst, (or GR8:$src1, imm:$src2))]>;
def OR16ri : Pseudo<(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"bis.w\t{$src2, $dst}",
[(set GR16:$dst, (or GR16:$src1, imm:$src2))]>;
def OR8rm : Pseudo<(outs GR8:$dst), (ins GR8:$src1, memsrc:$src2),
"bis.b\t{$src2, $dst}",
[(set GR8:$dst, (or GR8:$src1, (load addr:$src2)))]>;
def OR16rm : Pseudo<(outs GR16:$dst), (ins GR16:$src1, memsrc:$src2),
"bis.w\t{$src2, $dst}",
[(set GR16:$dst, (or GR16:$src1, (load addr:$src2)))]>;
let isTwoAddress = 0 in {
def OR8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"bis.b\t{$src, $dst}",
[(store (or (load addr:$dst), GR8:$src), addr:$dst),
(implicit SRW)]>;
def OR16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"bis.w\t{$src, $dst}",
[(store (or (load addr:$dst), GR16:$src), addr:$dst),
(implicit SRW)]>;
def OR8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"bis.b\t{$src, $dst}",
[(store (or (load addr:$dst), (i8 imm:$src)), addr:$dst),
(implicit SRW)]>;
def OR16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"bis.w\t{$src, $dst}",
[(store (or (load addr:$dst), (i16 imm:$src)), addr:$dst),
(implicit SRW)]>;
def OR8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"bis.b\t{$src, $dst}",
[(store (or (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
def OR16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"bis.w\t{$src, $dst}",
[(store (or (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(implicit SRW)]>;
}
} // isTwoAddress = 1
// Integer comparisons
let Defs = [SRW] in {
def CMP8rr : Pseudo<(outs), (ins GR8:$src1, GR8:$src2),
"cmp.b\t{$src1, $src2}",
[(MSP430cmp GR8:$src1, GR8:$src2), (implicit SRW)]>;
def CMP16rr : Pseudo<(outs), (ins GR16:$src1, GR16:$src2),
"cmp.w\t{$src1, $src2}",
[(MSP430cmp GR16:$src1, GR16:$src2), (implicit SRW)]>;
def CMP8ir : Pseudo<(outs), (ins i8imm:$src1, GR8:$src2),
"cmp.b\t{$src1, $src2}",
[(MSP430cmp imm:$src1, GR8:$src2), (implicit SRW)]>;
def CMP16ir : Pseudo<(outs), (ins i16imm:$src1, GR16:$src2),
"cmp.w\t{$src1, $src2}",
[(MSP430cmp imm:$src1, GR16:$src2), (implicit SRW)]>;
def CMP8im : Pseudo<(outs), (ins i8imm:$src1, memsrc:$src2),
"cmp.b\t{$src1, $src2}",
[(MSP430cmp (i8 imm:$src1), (load addr:$src2)), (implicit SRW)]>;
def CMP16im : Pseudo<(outs), (ins i16imm:$src1, memsrc:$src2),
"cmp.w\t{$src1, $src2}",
[(MSP430cmp (i16 imm:$src1), (load addr:$src2)), (implicit SRW)]>;
def CMP8rm : Pseudo<(outs), (ins GR8:$src1, memsrc:$src2),
"cmp.b\t{$src1, $src2}",
[(MSP430cmp GR8:$src1, (load addr:$src2)), (implicit SRW)]>;
def CMP16rm : Pseudo<(outs), (ins GR16:$src1, memsrc:$src2),
"cmp.w\t{$src1, $src2}",
[(MSP430cmp GR16:$src1, (load addr:$src2)), (implicit SRW)]>;
def CMP8mr : Pseudo<(outs), (ins memsrc:$src1, GR8:$src2),
"cmp.b\t{$src1, $src2}",
[(MSP430cmp (load addr:$src1), GR8:$src2), (implicit SRW)]>;
def CMP16mr : Pseudo<(outs), (ins memsrc:$src1, GR16:$src2),
"cmp.w\t{$src1, $src2}",
[(MSP430cmp (load addr:$src1), GR16:$src2), (implicit SRW)]>;
def CMP8mi0 : Pseudo<(outs), (ins memsrc:$src1),
"cmp.b\t{$src1, #0}",
[(MSP430cmp (load addr:$src1), (i8 0)), (implicit SRW)]>;
def CMP16mi0: Pseudo<(outs), (ins memsrc:$src1),
"cmp.w\t{$src1, #0}",
[(MSP430cmp (load addr:$src1), (i16 0)), (implicit SRW)]>;
def CMP8mi1 : Pseudo<(outs), (ins memsrc:$src1),
"cmp.b\t{$src1, #1}",
[(MSP430cmp (load addr:$src1), (i8 1)), (implicit SRW)]>;
def CMP16mi1: Pseudo<(outs), (ins memsrc:$src1),
"cmp.w\t{$src1, #1}",
[(MSP430cmp (load addr:$src1), (i16 1)), (implicit SRW)]>;
def CMP8mi2 : Pseudo<(outs), (ins memsrc:$src1),
"cmp.b\t{$src1, #2}",
[(MSP430cmp (load addr:$src1), (i8 2)), (implicit SRW)]>;
def CMP16mi2: Pseudo<(outs), (ins memsrc:$src1),
"cmp.w\t{$src1, #2}",
[(MSP430cmp (load addr:$src1), (i16 2)), (implicit SRW)]>;
def CMP8mi4 : Pseudo<(outs), (ins memsrc:$src1),
"cmp.b\t{$src1, #4}",
[(MSP430cmp (load addr:$src1), (i8 4)), (implicit SRW)]>;
def CMP16mi4: Pseudo<(outs), (ins memsrc:$src1),
"cmp.w\t{$src1, #4}",
[(MSP430cmp (load addr:$src1), (i16 4)), (implicit SRW)]>;
def CMP8mi8 : Pseudo<(outs), (ins memsrc:$src1),
"cmp.b\t{$src1, #8}",
[(MSP430cmp (load addr:$src1), (i8 8)), (implicit SRW)]>;
def CMP16mi8: Pseudo<(outs), (ins memsrc:$src1),
"cmp.w\t{$src1, #8}",
[(MSP430cmp (load addr:$src1), (i16 8)), (implicit SRW)]>;
} // Defs = [SRW]
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
// extload
def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
// anyext
def : Pat<(anyext addr:$src), (MOVZX16rr8 GR8:$src)>;
// truncs
def : Pat<(i8 (trunc GR16:$src)),
(EXTRACT_SUBREG GR16:$src, subreg_8bit)>;
// GlobalAddress, ExternalSymbol
def : Pat<(i16 (MSP430Wrapper tglobaladdr:$dst)), (MOV16ri tglobaladdr:$dst)>;
def : Pat<(i16 (MSP430Wrapper texternalsym:$dst)), (MOV16ri texternalsym:$dst)>;
def : Pat<(add GR16:$src1, (MSP430Wrapper tglobaladdr :$src2)),
(ADD16ri GR16:$src1, tglobaladdr:$src2)>;
def : Pat<(add GR16:$src1, (MSP430Wrapper texternalsym:$src2)),
(ADD16ri GR16:$src1, texternalsym:$src2)>;
def : Pat<(store (i16 (MSP430Wrapper tglobaladdr:$src)), addr:$dst),
(MOV16mi addr:$dst, tglobaladdr:$src)>;
def : Pat<(store (i16 (MSP430Wrapper texternalsym:$src)), addr:$dst),
(MOV16mi addr:$dst, texternalsym:$src)>;
// calls
def : Pat<(MSP430call (i16 tglobaladdr:$dst)),
(CALLi tglobaladdr:$dst)>;
def : Pat<(MSP430call (i16 texternalsym:$dst)),
(CALLi texternalsym:$dst)>;
// add and sub always produce carry
def : Pat<(addc GR16:$src1, GR16:$src2),
(ADD16rr GR16:$src1, GR16:$src2)>;
def : Pat<(addc GR16:$src1, (load addr:$src2)),
(ADD16rm GR16:$src1, addr:$src2)>;
def : Pat<(addc GR16:$src1, imm:$src2),
(ADD16ri GR16:$src1, imm:$src2)>;
def : Pat<(store (addc (load addr:$dst), GR16:$src), addr:$dst),
(ADD16mr addr:$dst, GR16:$src)>;
def : Pat<(store (addc (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(ADD16mm addr:$dst, addr:$src)>;
def : Pat<(addc GR8:$src1, GR8:$src2),
(ADD8rr GR8:$src1, GR8:$src2)>;
def : Pat<(addc GR8:$src1, (load addr:$src2)),
(ADD8rm GR8:$src1, addr:$src2)>;
def : Pat<(addc GR8:$src1, imm:$src2),
(ADD8ri GR8:$src1, imm:$src2)>;
def : Pat<(store (addc (load addr:$dst), GR8:$src), addr:$dst),
(ADD8mr addr:$dst, GR8:$src)>;
def : Pat<(store (addc (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(ADD8mm addr:$dst, addr:$src)>;
def : Pat<(subc GR16:$src1, GR16:$src2),
(SUB16rr GR16:$src1, GR16:$src2)>;
def : Pat<(subc GR16:$src1, (load addr:$src2)),
(SUB16rm GR16:$src1, addr:$src2)>;
def : Pat<(subc GR16:$src1, imm:$src2),
(SUB16ri GR16:$src1, imm:$src2)>;
def : Pat<(store (subc (load addr:$dst), GR16:$src), addr:$dst),
(SUB16mr addr:$dst, GR16:$src)>;
def : Pat<(store (subc (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
(SUB16mm addr:$dst, addr:$src)>;
def : Pat<(subc GR8:$src1, GR8:$src2),
(SUB8rr GR8:$src1, GR8:$src2)>;
def : Pat<(subc GR8:$src1, (load addr:$src2)),
(SUB8rm GR8:$src1, addr:$src2)>;
def : Pat<(subc GR8:$src1, imm:$src2),
(SUB8ri GR8:$src1, imm:$src2)>;
def : Pat<(store (subc (load addr:$dst), GR8:$src), addr:$dst),
(SUB8mr addr:$dst, GR8:$src)>;
def : Pat<(store (subc (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
(SUB8mm addr:$dst, addr:$src)>;