llvm/lib/Target/SchedInfo.cpp
2001-09-14 15:43:58 +00:00

176 lines
6.3 KiB
C++

//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==//
//
// This file implements the generic part of a Scheduler description for a
// target. This functionality is defined in the llvm/Target/SchedInfo.h file.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/SchedInfo.h"
// External object describing the machine instructions
// Initialized only when the TargetMachine class is created
// and reset when that class is destroyed.
//
const MachineInstrDescriptor* TargetInstrDescriptors = 0;
resourceId_t MachineResource::nextId = 0;
// Check if fromRVec and toRVec have *any* common entries.
// Assume the vectors are sorted in increasing order.
// Algorithm copied from function set_intersection() for sorted ranges
// (stl_algo.h).
//
inline static bool RUConflict(const vector<resourceId_t>& fromRVec,
const vector<resourceId_t>& toRVec) {
unsigned fN = fromRVec.size(), tN = toRVec.size();
unsigned fi = 0, ti = 0;
while (fi < fN && ti < tN) {
if (fromRVec[fi] < toRVec[ti])
++fi;
else if (toRVec[ti] < fromRVec[fi])
++ti;
else
return true;
}
return false;
}
static cycles_t ComputeMinGap(const InstrRUsage &fromRU,
const InstrRUsage &toRU) {
cycles_t minGap = 0;
if (fromRU.numBubbles > 0)
minGap = fromRU.numBubbles;
if (minGap < fromRU.numCycles) {
// only need to check from cycle `minGap' onwards
for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) {
// check if instr. #2 can start executing `gap' cycles after #1
// by checking for resource conflicts in each overlapping cycle
cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles);
for (cycles_t c = 0; c <= numOverlap-1; c++)
if (RUConflict(fromRU.resourcesByCycle[gap + c],
toRU.resourcesByCycle[c])) {
// conflict found so minGap must be more than `gap'
minGap = gap+1;
break;
}
}
}
return minGap;
}
//---------------------------------------------------------------------------
// class MachineSchedInfo
// Interface to machine description for instruction scheduling
//---------------------------------------------------------------------------
MachineSchedInfo::MachineSchedInfo(int NumSchedClasses,
const MachineInstrInfo* Mii,
const InstrClassRUsage* ClassRUsages,
const InstrRUsageDelta* UsageDeltas,
const InstrIssueDelta* IssueDeltas,
unsigned int NumUsageDeltas,
unsigned int NumIssueDeltas)
: numSchedClasses(NumSchedClasses), mii(Mii),
classRUsages(ClassRUsages), usageDeltas(UsageDeltas),
issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas),
numIssueDeltas(NumIssueDeltas) {
}
void MachineSchedInfo::initializeResources() {
assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal()
&& "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
// First, compute common resource usage info for each class because
// most instructions will probably behave the same as their class.
// Cannot allocate a vector of InstrRUsage so new each one.
//
vector<InstrRUsage> instrRUForClasses;
instrRUForClasses.resize(numSchedClasses);
for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) {
// instrRUForClasses.push_back(new InstrRUsage);
instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
instrRUForClasses[sc] = classRUsages[sc];
}
computeInstrResources(instrRUForClasses);
computeIssueGaps(instrRUForClasses);
}
void MachineSchedInfo::computeInstrResources(
const vector<InstrRUsage> &instrRUForClasses) {
int numOpCodes = mii->getNumRealOpCodes();
instrRUsages.resize(numOpCodes);
// First get the resource usage information from the class resource usages.
for (MachineOpCode op = 0; op < numOpCodes; ++op) {
InstrSchedClass sc = getSchedClass(op);
assert(sc >= 0 && sc < numSchedClasses);
instrRUsages[op] = instrRUForClasses[sc];
}
// Now, modify the resource usages as specified in the deltas.
for (unsigned i = 0; i < numUsageDeltas; ++i) {
MachineOpCode op = usageDeltas[i].opCode;
assert(op < numOpCodes);
instrRUsages[op].addUsageDelta(usageDeltas[i]);
}
// Then modify the issue restrictions as specified in the deltas.
for (unsigned i = 0; i < numIssueDeltas; ++i) {
MachineOpCode op = issueDeltas[i].opCode;
assert(op < numOpCodes);
instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
}
}
void MachineSchedInfo::computeIssueGaps(
const vector<InstrRUsage> &instrRUForClasses) {
int numOpCodes = mii->getNumRealOpCodes();
instrRUsages.resize(numOpCodes);
assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
&& "numOpCodes invalid for implementation of class OpCodePair!");
// First, compute issue gaps between pairs of classes based on common
// resources usages for each class, because most instruction pairs will
// usually behave the same as their class.
//
int classPairGaps[numSchedClasses][numSchedClasses];
for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) {
int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
instrRUForClasses[toSC]);
classPairGaps[fromSC][toSC] = classPairGap;
}
// Now, for each pair of instructions, use the class pair gap if both
// instructions have identical resource usage as their respective classes.
// If not, recompute the gap for the pair from scratch.
longestIssueConflict = 0;
for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) {
int instrPairGap =
(instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
: ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
if (instrPairGap > 0) {
issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap;
conflictLists[fromOp].push_back(toOp);
longestIssueConflict = max(longestIssueConflict, instrPairGap);
}
}
}