llvm/utils/TableGen/CodeGenDAGPatterns.cpp

3829 lines
138 KiB
C++

//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <cstdio>
#include <set>
using namespace llvm;
#define DEBUG_TYPE "dag-patterns"
//===----------------------------------------------------------------------===//
// EEVT::TypeSet Implementation
//===----------------------------------------------------------------------===//
static inline bool isInteger(MVT::SimpleValueType VT) {
return MVT(VT).isInteger();
}
static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
return MVT(VT).isFloatingPoint();
}
static inline bool isVector(MVT::SimpleValueType VT) {
return MVT(VT).isVector();
}
static inline bool isScalar(MVT::SimpleValueType VT) {
return !MVT(VT).isVector();
}
EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
if (VT == MVT::iAny)
EnforceInteger(TP);
else if (VT == MVT::fAny)
EnforceFloatingPoint(TP);
else if (VT == MVT::vAny)
EnforceVector(TP);
else {
assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!");
TypeVec.push_back(VT);
}
}
EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
assert(!VTList.empty() && "empty list?");
TypeVec.append(VTList.begin(), VTList.end());
if (!VTList.empty())
assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
VTList[0] != MVT::fAny);
// Verify no duplicates.
array_pod_sort(TypeVec.begin(), TypeVec.end());
assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
}
/// FillWithPossibleTypes - Set to all legal types and return true, only valid
/// on completely unknown type sets.
bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
bool (*Pred)(MVT::SimpleValueType),
const char *PredicateName) {
assert(isCompletelyUnknown());
ArrayRef<MVT::SimpleValueType> LegalTypes =
TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
if (TP.hasError())
return false;
for (MVT::SimpleValueType VT : LegalTypes)
if (!Pred || Pred(VT))
TypeVec.push_back(VT);
// If we have nothing that matches the predicate, bail out.
if (TypeVec.empty()) {
TP.error("Type inference contradiction found, no " +
std::string(PredicateName) + " types found");
return false;
}
// No need to sort with one element.
if (TypeVec.size() == 1) return true;
// Remove duplicates.
array_pod_sort(TypeVec.begin(), TypeVec.end());
TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
return true;
}
/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
/// integer value type.
bool EEVT::TypeSet::hasIntegerTypes() const {
return any_of(TypeVec, isInteger);
}
/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
/// a floating point value type.
bool EEVT::TypeSet::hasFloatingPointTypes() const {
return any_of(TypeVec, isFloatingPoint);
}
/// hasScalarTypes - Return true if this TypeSet contains a scalar value type.
bool EEVT::TypeSet::hasScalarTypes() const {
return any_of(TypeVec, isScalar);
}
/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
/// value type.
bool EEVT::TypeSet::hasVectorTypes() const {
return any_of(TypeVec, isVector);
}
std::string EEVT::TypeSet::getName() const {
if (TypeVec.empty()) return "<empty>";
std::string Result;
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
std::string VTName = llvm::getEnumName(TypeVec[i]);
// Strip off MVT:: prefix if present.
if (VTName.substr(0,5) == "MVT::")
VTName = VTName.substr(5);
if (i) Result += ':';
Result += VTName;
}
if (TypeVec.size() == 1)
return Result;
return "{" + Result + "}";
}
/// MergeInTypeInfo - This merges in type information from the specified
/// argument. If 'this' changes, it returns true. If the two types are
/// contradictory (e.g. merge f32 into i32) then this flags an error.
bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
return false;
if (isCompletelyUnknown()) {
*this = InVT;
return true;
}
assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns");
// Handle the abstract cases, seeing if we can resolve them better.
switch (TypeVec[0]) {
default: break;
case MVT::iPTR:
case MVT::iPTRAny:
if (InVT.hasIntegerTypes()) {
EEVT::TypeSet InCopy(InVT);
InCopy.EnforceInteger(TP);
InCopy.EnforceScalar(TP);
if (InCopy.isConcrete()) {
// If the RHS has one integer type, upgrade iPTR to i32.
TypeVec[0] = InVT.TypeVec[0];
return true;
}
// If the input has multiple scalar integers, this doesn't add any info.
if (!InCopy.isCompletelyUnknown())
return false;
}
break;
}
// If the input constraint is iAny/iPTR and this is an integer type list,
// remove non-integer types from the list.
if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
hasIntegerTypes()) {
bool MadeChange = EnforceInteger(TP);
// If we're merging in iPTR/iPTRAny and the node currently has a list of
// multiple different integer types, replace them with a single iPTR.
if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
TypeVec.size() != 1) {
TypeVec.assign(1, InVT.TypeVec[0]);
MadeChange = true;
}
return MadeChange;
}
// If this is a type list and the RHS is a typelist as well, eliminate entries
// from this list that aren't in the other one.
TypeSet InputSet(*this);
TypeVec.clear();
std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(),
InVT.TypeVec.begin(), InVT.TypeVec.end(),
std::back_inserter(TypeVec));
// If the intersection is the same size as the original set then we're done.
if (TypeVec.size() == InputSet.TypeVec.size())
return false;
// If we removed all of our types, we have a type contradiction.
if (!TypeVec.empty())
return true;
// FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, merging '" +
InVT.getName() + "' into '" + InputSet.getName() + "'");
return false;
}
/// EnforceInteger - Remove all non-integer types from this set.
bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
if (TP.hasError())
return false;
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isInteger, "integer");
if (!hasFloatingPointTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the fp types.
TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isInteger))),
TypeVec.end());
if (TypeVec.empty()) {
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be integer");
return false;
}
return true;
}
/// EnforceFloatingPoint - Remove all integer types from this set.
bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
if (TP.hasError())
return false;
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
if (!hasIntegerTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the integer types.
TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isFloatingPoint))),
TypeVec.end());
if (TypeVec.empty()) {
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be floating point");
return false;
}
return true;
}
/// EnforceScalar - Remove all vector types from this.
bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
if (TP.hasError())
return false;
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isScalar, "scalar");
if (!hasVectorTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the vector types.
TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isScalar))),
TypeVec.end());
if (TypeVec.empty()) {
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be scalar");
return false;
}
return true;
}
/// EnforceVector - Remove all vector types from this.
bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
if (TP.hasError())
return false;
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isVector, "vector");
TypeSet InputSet(*this);
bool MadeChange = false;
// Filter out all the scalar types.
TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isVector))),
TypeVec.end());
if (TypeVec.empty()) {
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be a vector");
return false;
}
return MadeChange;
}
/// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors
/// this should be based on the element type. Update this and other based on
/// this information.
bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
if (TP.hasError())
return false;
// Both operands must be integer or FP, but we don't care which.
bool MadeChange = false;
if (isCompletelyUnknown())
MadeChange = FillWithPossibleTypes(TP);
if (Other.isCompletelyUnknown())
MadeChange = Other.FillWithPossibleTypes(TP);
// If one side is known to be integer or known to be FP but the other side has
// no information, get at least the type integrality info in there.
if (!hasFloatingPointTypes())
MadeChange |= Other.EnforceInteger(TP);
else if (!hasIntegerTypes())
MadeChange |= Other.EnforceFloatingPoint(TP);
if (!Other.hasFloatingPointTypes())
MadeChange |= EnforceInteger(TP);
else if (!Other.hasIntegerTypes())
MadeChange |= EnforceFloatingPoint(TP);
assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
"Should have a type list now");
// If one contains vectors but the other doesn't pull vectors out.
if (!hasVectorTypes())
MadeChange |= Other.EnforceScalar(TP);
else if (!hasScalarTypes())
MadeChange |= Other.EnforceVector(TP);
if (!Other.hasVectorTypes())
MadeChange |= EnforceScalar(TP);
else if (!Other.hasScalarTypes())
MadeChange |= EnforceVector(TP);
// This code does not currently handle nodes which have multiple types,
// where some types are integer, and some are fp. Assert that this is not
// the case.
assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
!(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
"SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
if (TP.hasError())
return false;
// Okay, find the smallest type from current set and remove anything the
// same or smaller from the other set. We need to ensure that the scalar
// type size is smaller than the scalar size of the smallest type. For
// vectors, we also need to make sure that the total size is no larger than
// the size of the smallest type.
{
TypeSet InputSet(Other);
MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(),
[](MVT A, MVT B) {
return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
(A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
A.getSizeInBits() < B.getSizeInBits());
});
auto I = remove_if(Other.TypeVec, [Smallest](MVT OtherVT) {
// Don't compare vector and non-vector types.
if (OtherVT.isVector() != Smallest.isVector())
return false;
// The getSizeInBits() check here is only needed for vectors, but is
// a subset of the scalar check for scalars so no need to qualify.
return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits() ||
OtherVT.getSizeInBits() < Smallest.getSizeInBits();
});
MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types.
Other.TypeVec.erase(I, Other.TypeVec.end());
if (Other.TypeVec.empty()) {
TP.error("Type inference contradiction found, '" + InputSet.getName() +
"' has nothing larger than '" + getName() +"'!");
return false;
}
}
// Okay, find the largest type from the other set and remove anything the
// same or smaller from the current set. We need to ensure that the scalar
// type size is larger than the scalar size of the largest type. For
// vectors, we also need to make sure that the total size is no smaller than
// the size of the largest type.
{
TypeSet InputSet(*this);
MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(),
[](MVT A, MVT B) {
return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
(A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
A.getSizeInBits() < B.getSizeInBits());
});
auto I = remove_if(TypeVec, [Largest](MVT OtherVT) {
// Don't compare vector and non-vector types.
if (OtherVT.isVector() != Largest.isVector())
return false;
return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() ||
OtherVT.getSizeInBits() > Largest.getSizeInBits();
});
MadeChange |= I != TypeVec.end(); // If we're about to remove types.
TypeVec.erase(I, TypeVec.end());
if (TypeVec.empty()) {
TP.error("Type inference contradiction found, '" + InputSet.getName() +
"' has nothing smaller than '" + Other.getName() +"'!");
return false;
}
}
return MadeChange;
}
/// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
/// whose element is specified by VTOperand.
bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT,
TreePattern &TP) {
bool MadeChange = false;
MadeChange |= EnforceVector(TP);
TypeSet InputSet(*this);
// Filter out all the types which don't have the right element type.
auto I = remove_if(TypeVec, [VT](MVT VVT) {
return VVT.getVectorElementType().SimpleTy != VT;
});
MadeChange |= I != TypeVec.end();
TypeVec.erase(I, TypeVec.end());
if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have a vector element of type " +
getEnumName(VT));
return false;
}
return MadeChange;
}
/// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
/// whose element is specified by VTOperand.
bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
TreePattern &TP) {
if (TP.hasError())
return false;
// "This" must be a vector and "VTOperand" must be a scalar.
bool MadeChange = false;
MadeChange |= EnforceVector(TP);
MadeChange |= VTOperand.EnforceScalar(TP);
// If we know the vector type, it forces the scalar to agree.
if (isConcrete()) {
MVT IVT = getConcrete();
IVT = IVT.getVectorElementType();
return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
}
// If the scalar type is known, filter out vector types whose element types
// disagree.
if (!VTOperand.isConcrete())
return MadeChange;
MVT::SimpleValueType VT = VTOperand.getConcrete();
MadeChange |= EnforceVectorEltTypeIs(VT, TP);
return MadeChange;
}
/// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a
/// vector type specified by VTOperand.
bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
TreePattern &TP) {
if (TP.hasError())
return false;
// "This" must be a vector and "VTOperand" must be a vector.
bool MadeChange = false;
MadeChange |= EnforceVector(TP);
MadeChange |= VTOperand.EnforceVector(TP);
// If one side is known to be integer or known to be FP but the other side has
// no information, get at least the type integrality info in there.
if (!hasFloatingPointTypes())
MadeChange |= VTOperand.EnforceInteger(TP);
else if (!hasIntegerTypes())
MadeChange |= VTOperand.EnforceFloatingPoint(TP);
if (!VTOperand.hasFloatingPointTypes())
MadeChange |= EnforceInteger(TP);
else if (!VTOperand.hasIntegerTypes())
MadeChange |= EnforceFloatingPoint(TP);
assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() &&
"Should have a type list now");
// If we know the vector type, it forces the scalar types to agree.
// Also force one vector to have more elements than the other.
if (isConcrete()) {
MVT IVT = getConcrete();
unsigned NumElems = IVT.getVectorNumElements();
IVT = IVT.getVectorElementType();
EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
// Only keep types that have less elements than VTOperand.
TypeSet InputSet(VTOperand);
auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) {
return VVT.getVectorNumElements() >= NumElems;
});
MadeChange |= I != VTOperand.TypeVec.end();
VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have less vector elements than '" +
getName() + "'");
return false;
}
} else if (VTOperand.isConcrete()) {
MVT IVT = VTOperand.getConcrete();
unsigned NumElems = IVT.getVectorNumElements();
IVT = IVT.getVectorElementType();
EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
// Only keep types that have more elements than 'this'.
TypeSet InputSet(*this);
auto I = remove_if(TypeVec, [NumElems](MVT VVT) {
return VVT.getVectorNumElements() <= NumElems;
});
MadeChange |= I != TypeVec.end();
TypeVec.erase(I, TypeVec.end());
if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have more vector elements than '" +
VTOperand.getName() + "'");
return false;
}
}
return MadeChange;
}
/// EnforceVectorSameNumElts - 'this' is now constrained to
/// be a vector with same num elements as VTOperand.
bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand,
TreePattern &TP) {
if (TP.hasError())
return false;
// "This" must be a vector and "VTOperand" must be a vector.
bool MadeChange = false;
MadeChange |= EnforceVector(TP);
MadeChange |= VTOperand.EnforceVector(TP);
// If we know one of the vector types, it forces the other type to agree.
if (isConcrete()) {
MVT IVT = getConcrete();
unsigned NumElems = IVT.getVectorNumElements();
// Only keep types that have same elements as 'this'.
TypeSet InputSet(VTOperand);
auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) {
return VVT.getVectorNumElements() != NumElems;
});
MadeChange |= I != VTOperand.TypeVec.end();
VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have same number elements as '" +
getName() + "'");
return false;
}
} else if (VTOperand.isConcrete()) {
MVT IVT = VTOperand.getConcrete();
unsigned NumElems = IVT.getVectorNumElements();
// Only keep types that have same elements as VTOperand.
TypeSet InputSet(*this);
auto I = remove_if(TypeVec, [NumElems](MVT VVT) {
return VVT.getVectorNumElements() != NumElems;
});
MadeChange |= I != TypeVec.end();
TypeVec.erase(I, TypeVec.end());
if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have same number elements than '" +
VTOperand.getName() + "'");
return false;
}
}
return MadeChange;
}
/// EnforceSameSize - 'this' is now constrained to be same size as VTOperand.
bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand,
TreePattern &TP) {
if (TP.hasError())
return false;
bool MadeChange = false;
// If we know one of the types, it forces the other type agree.
if (isConcrete()) {
MVT IVT = getConcrete();
unsigned Size = IVT.getSizeInBits();
// Only keep types that have the same size as 'this'.
TypeSet InputSet(VTOperand);
auto I = remove_if(VTOperand.TypeVec,
[&](MVT VT) { return VT.getSizeInBits() != Size; });
MadeChange |= I != VTOperand.TypeVec.end();
VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have same size as '" +
getName() + "'");
return false;
}
} else if (VTOperand.isConcrete()) {
MVT IVT = VTOperand.getConcrete();
unsigned Size = IVT.getSizeInBits();
// Only keep types that have the same size as VTOperand.
TypeSet InputSet(*this);
auto I =
remove_if(TypeVec, [&](MVT VT) { return VT.getSizeInBits() != Size; });
MadeChange |= I != TypeVec.end();
TypeVec.erase(I, TypeVec.end());
if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have same size as '" +
VTOperand.getName() + "'");
return false;
}
}
return MadeChange;
}
//===----------------------------------------------------------------------===//
// Helpers for working with extended types.
/// Dependent variable map for CodeGenDAGPattern variant generation
typedef std::map<std::string, int> DepVarMap;
static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
if (N->isLeaf()) {
if (isa<DefInit>(N->getLeafValue()))
DepMap[N->getName()]++;
} else {
for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
FindDepVarsOf(N->getChild(i), DepMap);
}
}
/// Find dependent variables within child patterns
static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
DepVarMap depcounts;
FindDepVarsOf(N, depcounts);
for (const std::pair<std::string, int> &Pair : depcounts) {
if (Pair.second > 1)
DepVars.insert(Pair.first);
}
}
#ifndef NDEBUG
/// Dump the dependent variable set:
static void DumpDepVars(MultipleUseVarSet &DepVars) {
if (DepVars.empty()) {
DEBUG(errs() << "<empty set>");
} else {
DEBUG(errs() << "[ ");
for (const std::string &DepVar : DepVars) {
DEBUG(errs() << DepVar << " ");
}
DEBUG(errs() << "]");
}
}
#endif
//===----------------------------------------------------------------------===//
// TreePredicateFn Implementation
//===----------------------------------------------------------------------===//
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
assert((getPredCode().empty() || getImmCode().empty()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate");
}
std::string TreePredicateFn::getPredCode() const {
return PatFragRec->getRecord()->getValueAsString("PredicateCode");
}
std::string TreePredicateFn::getImmCode() const {
return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
}
/// isAlwaysTrue - Return true if this is a noop predicate.
bool TreePredicateFn::isAlwaysTrue() const {
return getPredCode().empty() && getImmCode().empty();
}
/// Return the name to use in the generated code to reference this, this is
/// "Predicate_foo" if from a pattern fragment "foo".
std::string TreePredicateFn::getFnName() const {
return "Predicate_" + PatFragRec->getRecord()->getName().str();
}
/// getCodeToRunOnSDNode - Return the code for the function body that
/// evaluates this predicate. The argument is expected to be in "Node",
/// not N. This handles casting and conversion to a concrete node type as
/// appropriate.
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
// Handle immediate predicates first.
std::string ImmCode = getImmCode();
if (!ImmCode.empty()) {
std::string Result =
" int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
return Result + ImmCode;
}
// Handle arbitrary node predicates.
assert(!getPredCode().empty() && "Don't have any predicate code!");
std::string ClassName;
if (PatFragRec->getOnlyTree()->isLeaf())
ClassName = "SDNode";
else {
Record *Op = PatFragRec->getOnlyTree()->getOperator();
ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
}
std::string Result;
if (ClassName == "SDNode")
Result = " SDNode *N = Node;\n";
else
Result = " auto *N = cast<" + ClassName + ">(Node);\n";
return Result + getPredCode();
}
//===----------------------------------------------------------------------===//
// PatternToMatch implementation
//
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(const TreePatternNode *P,
const CodeGenDAGPatterns &CGP) {
unsigned Size = 3; // The node itself.
// If the root node is a ConstantSDNode, increases its size.
// e.g. (set R32:$dst, 0).
if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
Size += 2;
const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
if (AM) {
Size += AM->getComplexity();
// We don't want to count any children twice, so return early.
return Size;
}
// If this node has some predicate function that must match, it adds to the
// complexity of this node.
if (!P->getPredicateFns().empty())
++Size;
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getNumTypes() &&
Child->getType(0) != MVT::Other)
Size += getPatternSize(Child, CGP);
else if (Child->isLeaf()) {
if (isa<IntInit>(Child->getLeafValue()))
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
else if (Child->getComplexPatternInfo(CGP))
Size += getPatternSize(Child, CGP);
else if (!Child->getPredicateFns().empty())
++Size;
}
}
return Size;
}
/// Compute the complexity metric for the input pattern. This roughly
/// corresponds to the number of nodes that are covered.
int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
}
/// getPredicateCheck - Return a single string containing all of this
/// pattern's predicates concatenated with "&&" operators.
///
std::string PatternToMatch::getPredicateCheck() const {
SmallVector<Record *, 4> PredicateRecs;
for (Init *I : Predicates->getValues()) {
if (DefInit *Pred = dyn_cast<DefInit>(I)) {
Record *Def = Pred->getDef();
if (!Def->isSubClassOf("Predicate")) {
#ifndef NDEBUG
Def->dump();
#endif
llvm_unreachable("Unknown predicate type!");
}
PredicateRecs.push_back(Def);
}
}
// Sort so that different orders get canonicalized to the same string.
std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord());
SmallString<128> PredicateCheck;
for (Record *Pred : PredicateRecs) {
if (!PredicateCheck.empty())
PredicateCheck += " && ";
PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")";
}
return PredicateCheck.str();
}
//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//
SDTypeConstraint::SDTypeConstraint(Record *R) {
OperandNo = R->getValueAsInt("OperandNum");
if (R->isSubClassOf("SDTCisVT")) {
ConstraintType = SDTCisVT;
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
if (x.SDTCisVT_Info.VT == MVT::isVoid)
PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
} else if (R->isSubClassOf("SDTCisPtrTy")) {
ConstraintType = SDTCisPtrTy;
} else if (R->isSubClassOf("SDTCisInt")) {
ConstraintType = SDTCisInt;
} else if (R->isSubClassOf("SDTCisFP")) {
ConstraintType = SDTCisFP;
} else if (R->isSubClassOf("SDTCisVec")) {
ConstraintType = SDTCisVec;
} else if (R->isSubClassOf("SDTCisSameAs")) {
ConstraintType = SDTCisSameAs;
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
ConstraintType = SDTCisVTSmallerThanOp;
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
ConstraintType = SDTCisOpSmallerThanOp;
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
R->getValueAsInt("BigOperandNum");
} else if (R->isSubClassOf("SDTCisEltOfVec")) {
ConstraintType = SDTCisEltOfVec;
x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
} else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
ConstraintType = SDTCisSubVecOfVec;
x.SDTCisSubVecOfVec_Info.OtherOperandNum =
R->getValueAsInt("OtherOpNum");
} else if (R->isSubClassOf("SDTCVecEltisVT")) {
ConstraintType = SDTCVecEltisVT;
x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
if (MVT(x.SDTCVecEltisVT_Info.VT).isVector())
PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT");
if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() &&
!MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint())
PrintFatalError(R->getLoc(), "Must use integer or floating point type "
"as SDTCVecEltisVT");
} else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
ConstraintType = SDTCisSameNumEltsAs;
x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisSameSizeAs")) {
ConstraintType = SDTCisSameSizeAs;
x.SDTCisSameSizeAs_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else {
PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
}
}
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, and the result number in ResNo.
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
const SDNodeInfo &NodeInfo,
unsigned &ResNo) {
unsigned NumResults = NodeInfo.getNumResults();
if (OpNo < NumResults) {
ResNo = OpNo;
return N;
}
OpNo -= NumResults;
if (OpNo >= N->getNumChildren()) {
std::string S;
raw_string_ostream OS(S);
OS << "Invalid operand number in type constraint "
<< (OpNo+NumResults) << " ";
N->print(OS);
PrintFatalError(OS.str());
}
return N->getChild(OpNo);
}
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, flag an error.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
const SDNodeInfo &NodeInfo,
TreePattern &TP) const {
if (TP.hasError())
return false;
unsigned ResNo = 0; // The result number being referenced.
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
switch (ConstraintType) {
case SDTCisVT:
// Operand must be a particular type.
return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
case SDTCisPtrTy:
// Operand must be same as target pointer type.
return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
case SDTCisInt:
// Require it to be one of the legal integer VTs.
return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
case SDTCisFP:
// Require it to be one of the legal fp VTs.
return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
case SDTCisVec:
// Require it to be one of the legal vector VTs.
return NodeToApply->getExtType(ResNo).EnforceVector(TP);
case SDTCisSameAs: {
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
}
case SDTCisVTSmallerThanOp: {
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
// have an integer type that is smaller than the VT.
if (!NodeToApply->isLeaf() ||
!isa<DefInit>(NodeToApply->getLeafValue()) ||
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
->isSubClassOf("ValueType")) {
TP.error(N->getOperator()->getName() + " expects a VT operand!");
return false;
}
MVT::SimpleValueType VT =
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
EEVT::TypeSet TypeListTmp(VT, TP);
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
OResNo);
return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
}
case SDTCisOpSmallerThanOp: {
unsigned BResNo = 0;
TreePatternNode *BigOperand =
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
BResNo);
return NodeToApply->getExtType(ResNo).
EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
}
case SDTCisEltOfVec: {
unsigned VResNo = 0;
TreePatternNode *VecOperand =
getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
VResNo);
// Filter vector types out of VecOperand that don't have the right element
// type.
return VecOperand->getExtType(VResNo).
EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
}
case SDTCisSubVecOfVec: {
unsigned VResNo = 0;
TreePatternNode *BigVecOperand =
getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
VResNo);
// Filter vector types out of BigVecOperand that don't have the
// right subvector type.
return BigVecOperand->getExtType(VResNo).
EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
}
case SDTCVecEltisVT: {
return NodeToApply->getExtType(ResNo).
EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP);
}
case SDTCisSameNumEltsAs: {
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
N, NodeInfo, OResNo);
return OtherNode->getExtType(OResNo).
EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP);
}
case SDTCisSameSizeAs: {
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
N, NodeInfo, OResNo);
return OtherNode->getExtType(OResNo).
EnforceSameSize(NodeToApply->getExtType(ResNo), TP);
}
}
llvm_unreachable("Invalid ConstraintType!");
}
// Update the node type to match an instruction operand or result as specified
// in the ins or outs lists on the instruction definition. Return true if the
// type was actually changed.
bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
Record *Operand,
TreePattern &TP) {
// The 'unknown' operand indicates that types should be inferred from the
// context.
if (Operand->isSubClassOf("unknown_class"))
return false;
// The Operand class specifies a type directly.
if (Operand->isSubClassOf("Operand"))
return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
TP);
// PointerLikeRegClass has a type that is determined at runtime.
if (Operand->isSubClassOf("PointerLikeRegClass"))
return UpdateNodeType(ResNo, MVT::iPTR, TP);
// Both RegisterClass and RegisterOperand operands derive their types from a
// register class def.
Record *RC = nullptr;
if (Operand->isSubClassOf("RegisterClass"))
RC = Operand;
else if (Operand->isSubClassOf("RegisterOperand"))
RC = Operand->getValueAsDef("RegClass");
assert(RC && "Unknown operand type");
CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
}
//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
EnumName = R->getValueAsString("Opcode");
SDClassName = R->getValueAsString("SDClass");
Record *TypeProfile = R->getValueAsDef("TypeProfile");
NumResults = TypeProfile->getValueAsInt("NumResults");
NumOperands = TypeProfile->getValueAsInt("NumOperands");
// Parse the properties.
Properties = 0;
for (Record *Property : R->getValueAsListOfDefs("Properties")) {
if (Property->getName() == "SDNPCommutative") {
Properties |= 1 << SDNPCommutative;
} else if (Property->getName() == "SDNPAssociative") {
Properties |= 1 << SDNPAssociative;
} else if (Property->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (Property->getName() == "SDNPOutGlue") {
Properties |= 1 << SDNPOutGlue;
} else if (Property->getName() == "SDNPInGlue") {
Properties |= 1 << SDNPInGlue;
} else if (Property->getName() == "SDNPOptInGlue") {
Properties |= 1 << SDNPOptInGlue;
} else if (Property->getName() == "SDNPMayStore") {
Properties |= 1 << SDNPMayStore;
} else if (Property->getName() == "SDNPMayLoad") {
Properties |= 1 << SDNPMayLoad;
} else if (Property->getName() == "SDNPSideEffect") {
Properties |= 1 << SDNPSideEffect;
} else if (Property->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
} else if (Property->getName() == "SDNPVariadic") {
Properties |= 1 << SDNPVariadic;
} else {
PrintFatalError("Unknown SD Node property '" +
Property->getName() + "' on node '" +
R->getName() + "'!");
}
}
// Parse the type constraints.
std::vector<Record*> ConstraintList =
TypeProfile->getValueAsListOfDefs("Constraints");
TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
}
/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
unsigned NumResults = getNumResults();
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
assert(ResNo == 0 && "Only handles single result nodes so far");
for (const SDTypeConstraint &Constraint : TypeConstraints) {
// Make sure that this applies to the correct node result.
if (Constraint.OperandNo >= NumResults) // FIXME: need value #
continue;
switch (Constraint.ConstraintType) {
default: break;
case SDTypeConstraint::SDTCisVT:
return Constraint.x.SDTCisVT_Info.VT;
case SDTypeConstraint::SDTCisPtrTy:
return MVT::iPTR;
}
}
return MVT::Other;
}
//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//
TreePatternNode::~TreePatternNode() {
#if 0 // FIXME: implement refcounted tree nodes!
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
delete getChild(i);
#endif
}
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
if (Operator->getName() == "set" ||
Operator->getName() == "implicit")
return 0; // All return nothing.
if (Operator->isSubClassOf("Intrinsic"))
return CDP.getIntrinsic(Operator).IS.RetVTs.size();
if (Operator->isSubClassOf("SDNode"))
return CDP.getSDNodeInfo(Operator).getNumResults();
if (Operator->isSubClassOf("PatFrag")) {
// If we've already parsed this pattern fragment, get it. Otherwise, handle
// the forward reference case where one pattern fragment references another
// before it is processed.
if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
return PFRec->getOnlyTree()->getNumTypes();
// Get the result tree.
DagInit *Tree = Operator->getValueAsDag("Fragment");
Record *Op = nullptr;
if (Tree)
if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
Op = DI->getDef();
assert(Op && "Invalid Fragment");
return GetNumNodeResults(Op, CDP);
}
if (Operator->isSubClassOf("Instruction")) {
CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
// Subtract any defaulted outputs.
for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
Record *OperandNode = InstInfo.Operands[i].Rec;
if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
--NumDefsToAdd;
}
// Add on one implicit def if it has a resolvable type.
if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
++NumDefsToAdd;
return NumDefsToAdd;
}
if (Operator->isSubClassOf("SDNodeXForm"))
return 1; // FIXME: Generalize SDNodeXForm
if (Operator->isSubClassOf("ValueType"))
return 1; // A type-cast of one result.
if (Operator->isSubClassOf("ComplexPattern"))
return 1;
Operator->dump();
PrintFatalError("Unhandled node in GetNumNodeResults");
}
void TreePatternNode::print(raw_ostream &OS) const {
if (isLeaf())
OS << *getLeafValue();
else
OS << '(' << getOperator()->getName();
for (unsigned i = 0, e = Types.size(); i != e; ++i)
OS << ':' << getExtType(i).getName();
if (!isLeaf()) {
if (getNumChildren() != 0) {
OS << " ";
getChild(0)->print(OS);
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
OS << ", ";
getChild(i)->print(OS);
}
}
OS << ")";
}
for (const TreePredicateFn &Pred : PredicateFns)
OS << "<<P:" << Pred.getFnName() << ">>";
if (TransformFn)
OS << "<<X:" << TransformFn->getName() << ">>";
if (!getName().empty())
OS << ":$" << getName();
}
void TreePatternNode::dump() const {
print(errs());
}
/// isIsomorphicTo - Return true if this node is recursively
/// isomorphic to the specified node. For this comparison, the node's
/// entire state is considered. The assigned name is ignored, since
/// nodes with differing names are considered isomorphic. However, if
/// the assigned name is present in the dependent variable set, then
/// the assigned name is considered significant and the node is
/// isomorphic if the names match.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
const MultipleUseVarSet &DepVars) const {
if (N == this) return true;
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
getPredicateFns() != N->getPredicateFns() ||
getTransformFn() != N->getTransformFn())
return false;
if (isLeaf()) {
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
return ((DI->getDef() == NDI->getDef())
&& (DepVars.find(getName()) == DepVars.end()
|| getName() == N->getName()));
}
}
return getLeafValue() == N->getLeafValue();
}
if (N->getOperator() != getOperator() ||
N->getNumChildren() != getNumChildren()) return false;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
return false;
return true;
}
/// clone - Make a copy of this tree and all of its children.
///
TreePatternNode *TreePatternNode::clone() const {
TreePatternNode *New;
if (isLeaf()) {
New = new TreePatternNode(getLeafValue(), getNumTypes());
} else {
std::vector<TreePatternNode*> CChildren;
CChildren.reserve(Children.size());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
CChildren.push_back(getChild(i)->clone());
New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
}
New->setName(getName());
New->Types = Types;
New->setPredicateFns(getPredicateFns());
New->setTransformFn(getTransformFn());
return New;
}
/// RemoveAllTypes - Recursively strip all the types of this tree.
void TreePatternNode::RemoveAllTypes() {
// Reset to unknown type.
std::fill(Types.begin(), Types.end(), EEVT::TypeSet());
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
getChild(i)->RemoveAllTypes();
}
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
if (Child->isLeaf()) {
Init *Val = Child->getLeafValue();
// Note that, when substituting into an output pattern, Val might be an
// UnsetInit.
if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
cast<DefInit>(Val)->getDef()->getName() == "node")) {
// We found a use of a formal argument, replace it with its value.
TreePatternNode *NewChild = ArgMap[Child->getName()];
assert(NewChild && "Couldn't find formal argument!");
assert((Child->getPredicateFns().empty() ||
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
"Non-empty child predicate clobbered!");
setChild(i, NewChild);
}
} else {
getChild(i)->SubstituteFormalArguments(ArgMap);
}
}
}
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
if (TP.hasError())
return nullptr;
if (isLeaf())
return this; // nothing to do.
Record *Op = getOperator();
if (!Op->isSubClassOf("PatFrag")) {
// Just recursively inline children nodes.
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
assert((Child->getPredicateFns().empty() ||
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
"Non-empty child predicate clobbered!");
setChild(i, NewChild);
}
return this;
}
// Otherwise, we found a reference to a fragment. First, look up its
// TreePattern record.
TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
// Verify that we are passing the right number of operands.
if (Frag->getNumArgs() != Children.size()) {
TP.error("'" + Op->getName() + "' fragment requires " +
utostr(Frag->getNumArgs()) + " operands!");
return nullptr;
}
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
TreePredicateFn PredFn(Frag);
if (!PredFn.isAlwaysTrue())
FragTree->addPredicateFn(PredFn);
// Resolve formal arguments to their actual value.
if (Frag->getNumArgs()) {
// Compute the map of formal to actual arguments.
std::map<std::string, TreePatternNode*> ArgMap;
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
FragTree->SubstituteFormalArguments(ArgMap);
}
FragTree->setName(getName());
for (unsigned i = 0, e = Types.size(); i != e; ++i)
FragTree->UpdateNodeType(i, getExtType(i), TP);
// Transfer in the old predicates.
for (const TreePredicateFn &Pred : getPredicateFns())
FragTree->addPredicateFn(Pred);
// Get a new copy of this fragment to stitch into here.
//delete this; // FIXME: implement refcounting!
// The fragment we inlined could have recursive inlining that is needed. See
// if there are any pattern fragments in it and inline them as needed.
return FragTree->InlinePatternFragments(TP);
}
/// getImplicitType - Check to see if the specified record has an implicit
/// type which should be applied to it. This will infer the type of register
/// references from the register file information, for example.
///
/// When Unnamed is set, return the type of a DAG operand with no name, such as
/// the F8RC register class argument in:
///
/// (COPY_TO_REGCLASS GPR:$src, F8RC)
///
/// When Unnamed is false, return the type of a named DAG operand such as the
/// GPR:$src operand above.
///
static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
bool NotRegisters,
bool Unnamed,
TreePattern &TP) {
// Check to see if this is a register operand.
if (R->isSubClassOf("RegisterOperand")) {
assert(ResNo == 0 && "Regoperand ref only has one result!");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
Record *RegClass = R->getValueAsDef("RegClass");
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
}
// Check to see if this is a register or a register class.
if (R->isSubClassOf("RegisterClass")) {
assert(ResNo == 0 && "Regclass ref only has one result!");
// An unnamed register class represents itself as an i32 immediate, for
// example on a COPY_TO_REGCLASS instruction.
if (Unnamed)
return EEVT::TypeSet(MVT::i32, TP);
// In a named operand, the register class provides the possible set of
// types.
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
}
if (R->isSubClassOf("PatFrag")) {
assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
// Pattern fragment types will be resolved when they are inlined.
return EEVT::TypeSet(); // Unknown.
}
if (R->isSubClassOf("Register")) {
assert(ResNo == 0 && "Registers only produce one result!");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return EEVT::TypeSet(T.getRegisterVTs(R));
}
if (R->isSubClassOf("SubRegIndex")) {
assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
return EEVT::TypeSet(MVT::i32, TP);
}
if (R->isSubClassOf("ValueType")) {
assert(ResNo == 0 && "This node only has one result!");
// An unnamed VTSDNode represents itself as an MVT::Other immediate.
//
// (sext_inreg GPR:$src, i16)
// ~~~
if (Unnamed)
return EEVT::TypeSet(MVT::Other, TP);
// With a name, the ValueType simply provides the type of the named
// variable.
//
// (sext_inreg i32:$src, i16)
// ~~~~~~~~
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
return EEVT::TypeSet(getValueType(R), TP);
}
if (R->isSubClassOf("CondCode")) {
assert(ResNo == 0 && "This node only has one result!");
// Using a CondCodeSDNode.
return EEVT::TypeSet(MVT::Other, TP);
}
if (R->isSubClassOf("ComplexPattern")) {
assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
TP);
}
if (R->isSubClassOf("PointerLikeRegClass")) {
assert(ResNo == 0 && "Regclass can only have one result!");
return EEVT::TypeSet(MVT::iPTR, TP);
}
if (R->getName() == "node" || R->getName() == "srcvalue" ||
R->getName() == "zero_reg") {
// Placeholder.
return EEVT::TypeSet(); // Unknown.
}
if (R->isSubClassOf("Operand"))
return EEVT::TypeSet(getValueType(R->getValueAsDef("Type")));
TP.error("Unknown node flavor used in pattern: " + R->getName());
return EEVT::TypeSet(MVT::Other, TP);
}
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
return nullptr;
unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
return &CDP.getIntrinsicInfo(IID);
}
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
/// return the ComplexPattern information, otherwise return null.
const ComplexPattern *
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
Record *Rec;
if (isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
if (!DI)
return nullptr;
Rec = DI->getDef();
} else
Rec = getOperator();
if (!Rec->isSubClassOf("ComplexPattern"))
return nullptr;
return &CGP.getComplexPattern(Rec);
}
unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
// A ComplexPattern specifically declares how many results it fills in.
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
return CP->getNumOperands();
// If MIOperandInfo is specified, that gives the count.
if (isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
if (DI && DI->getDef()->isSubClassOf("Operand")) {
DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
if (MIOps->getNumArgs())
return MIOps->getNumArgs();
}
}
// Otherwise there is just one result.
return 1;
}
/// NodeHasProperty - Return true if this node has the specified property.
bool TreePatternNode::NodeHasProperty(SDNP Property,
const CodeGenDAGPatterns &CGP) const {
if (isLeaf()) {
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
return CP->hasProperty(Property);
return false;
}
Record *Operator = getOperator();
if (!Operator->isSubClassOf("SDNode")) return false;
return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}
/// TreeHasProperty - Return true if any node in this tree has the specified
/// property.
bool TreePatternNode::TreeHasProperty(SDNP Property,
const CodeGenDAGPatterns &CGP) const {
if (NodeHasProperty(Property, CGP))
return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->TreeHasProperty(Property, CGP))
return true;
return false;
}
/// isCommutativeIntrinsic - Return true if the node corresponds to a
/// commutative intrinsic.
bool
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
return Int->isCommutative;
return false;
}
static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
if (!N->isLeaf())
return N->getOperator()->isSubClassOf(Class);
DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
if (DI && DI->getDef()->isSubClassOf(Class))
return true;
return false;
}
static void emitTooManyOperandsError(TreePattern &TP,
StringRef InstName,
unsigned Expected,
unsigned Actual) {
TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
" operands but expected only " + Twine(Expected) + "!");
}
static void emitTooFewOperandsError(TreePattern &TP,
StringRef InstName,
unsigned Actual) {
TP.error("Instruction '" + InstName +
"' expects more than the provided " + Twine(Actual) + " operands!");
}
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, flag an error.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
if (TP.hasError())
return false;
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
if (isLeaf()) {
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
// If it's a regclass or something else known, include the type.
bool MadeChange = false;
for (unsigned i = 0, e = Types.size(); i != e; ++i)
MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
NotRegisters,
!hasName(), TP), TP);
return MadeChange;
}
if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
assert(Types.size() == 1 && "Invalid IntInit");
// Int inits are always integers. :)
bool MadeChange = Types[0].EnforceInteger(TP);
if (!Types[0].isConcrete())
return MadeChange;
MVT::SimpleValueType VT = getType(0);
if (VT == MVT::iPTR || VT == MVT::iPTRAny)
return MadeChange;
unsigned Size = MVT(VT).getSizeInBits();
// Make sure that the value is representable for this type.
if (Size >= 32) return MadeChange;
// Check that the value doesn't use more bits than we have. It must either
// be a sign- or zero-extended equivalent of the original.
int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
return MadeChange;
TP.error("Integer value '" + itostr(II->getValue()) +
"' is out of range for type '" + getEnumName(getType(0)) + "'!");
return false;
}
return false;
}
// special handling for set, which isn't really an SDNode.
if (getOperator()->getName() == "set") {
assert(getNumTypes() == 0 && "Set doesn't produce a value");
assert(getNumChildren() >= 2 && "Missing RHS of a set?");
unsigned NC = getNumChildren();
TreePatternNode *SetVal = getChild(NC-1);
bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
for (unsigned i = 0; i < NC-1; ++i) {
TreePatternNode *Child = getChild(i);
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
// Types of operands must match.
MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
}
return MadeChange;
}
if (getOperator()->getName() == "implicit") {
assert(getNumTypes() == 0 && "Node doesn't produce a value");
bool MadeChange = false;
for (unsigned i = 0; i < getNumChildren(); ++i)
MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
bool MadeChange = false;
// Apply the result type to the node.
unsigned NumRetVTs = Int->IS.RetVTs.size();
unsigned NumParamVTs = Int->IS.ParamVTs.size();
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
if (getNumChildren() != NumParamVTs + 1) {
TP.error("Intrinsic '" + Int->Name + "' expects " +
utostr(NumParamVTs) + " operands, not " +
utostr(getNumChildren() - 1) + " operands!");
return false;
}
// Apply type info to the intrinsic ID.
MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
}
return MadeChange;
}
if (getOperator()->isSubClassOf("SDNode")) {
const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
// Check that the number of operands is sane. Negative operands -> varargs.
if (NI.getNumOperands() >= 0 &&
getNumChildren() != (unsigned)NI.getNumOperands()) {
TP.error(getOperator()->getName() + " node requires exactly " +
itostr(NI.getNumOperands()) + " operands!");
return false;
}
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
if (getOperator()->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
CodeGenInstruction &InstInfo =
CDP.getTargetInfo().getInstruction(getOperator());
bool MadeChange = false;
// Apply the result types to the node, these come from the things in the
// (outs) list of the instruction.
unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
Inst.getNumResults());
for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
// If the instruction has implicit defs, we apply the first one as a result.
// FIXME: This sucks, it should apply all implicit defs.
if (!InstInfo.ImplicitDefs.empty()) {
unsigned ResNo = NumResultsToAdd;
// FIXME: Generalize to multiple possible types and multiple possible
// ImplicitDefs.
MVT::SimpleValueType VT =
InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
if (VT != MVT::Other)
MadeChange |= UpdateNodeType(ResNo, VT, TP);
}
// If this is an INSERT_SUBREG, constrain the source and destination VTs to
// be the same.
if (getOperator()->getName() == "INSERT_SUBREG") {
assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
} else if (getOperator()->getName() == "REG_SEQUENCE") {
// We need to do extra, custom typechecking for REG_SEQUENCE since it is
// variadic.
unsigned NChild = getNumChildren();
if (NChild < 3) {
TP.error("REG_SEQUENCE requires at least 3 operands!");
return false;
}
if (NChild % 2 == 0) {
TP.error("REG_SEQUENCE requires an odd number of operands!");
return false;
}
if (!isOperandClass(getChild(0), "RegisterClass")) {
TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
return false;
}
for (unsigned I = 1; I < NChild; I += 2) {
TreePatternNode *SubIdxChild = getChild(I + 1);
if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
itostr(I + 1) + "!");
return false;
}
}
}
unsigned ChildNo = 0;
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
Record *OperandNode = Inst.getOperand(i);
// If the instruction expects a predicate or optional def operand, we
// codegen this by setting the operand to it's default value if it has a
// non-empty DefaultOps field.
if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
continue;
// Verify that we didn't run out of provided operands.
if (ChildNo >= getNumChildren()) {
emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
return false;
}
TreePatternNode *Child = getChild(ChildNo++);
unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
// If the operand has sub-operands, they may be provided by distinct
// child patterns, so attempt to match each sub-operand separately.
if (OperandNode->isSubClassOf("Operand")) {
DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
// But don't do that if the whole operand is being provided by
// a single ComplexPattern-related Operand.
if (Child->getNumMIResults(CDP) < NumArgs) {
// Match first sub-operand against the child we already have.
Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
MadeChange |=
Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
// And the remaining sub-operands against subsequent children.
for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
if (ChildNo >= getNumChildren()) {
emitTooFewOperandsError(TP, getOperator()->getName(),
getNumChildren());
return false;
}
Child = getChild(ChildNo++);
SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
MadeChange |=
Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
}
continue;
}
}
}
// If we didn't match by pieces above, attempt to match the whole
// operand now.
MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
}
if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
emitTooManyOperandsError(TP, getOperator()->getName(),
ChildNo, getNumChildren());
return false;
}
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
if (getOperator()->isSubClassOf("ComplexPattern")) {
bool MadeChange = false;
for (unsigned i = 0; i < getNumChildren(); ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
// Node transforms always take one operand.
if (getNumChildren() != 1) {
TP.error("Node transform '" + getOperator()->getName() +
"' requires one operand!");
return false;
}
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
// If either the output or input of the xform does not have exact
// type info. We assume they must be the same. Otherwise, it is perfectly
// legal to transform from one type to a completely different type.
#if 0
if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
return MadeChange;
}
#endif
return MadeChange;
}
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
/// RHS of a commutative operation, not the on LHS.
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
if (!N->isLeaf() && N->getOperator()->getName() == "imm")
return true;
if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
return true;
return false;
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true. This is
/// used as a sanity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason,
const CodeGenDAGPatterns &CDP) {
if (isLeaf()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->canPatternMatch(Reason, CDP))
return false;
// If this is an intrinsic, handle cases that would make it not match. For
// example, if an operand is required to be an immediate.
if (getOperator()->isSubClassOf("Intrinsic")) {
// TODO:
return true;
}
if (getOperator()->isSubClassOf("ComplexPattern"))
return true;
// If this node is a commutative operator, check that the LHS isn't an
// immediate.
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
// Scan all of the operands of the node and make sure that only the last one
// is a constant node, unless the RHS also is.
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
if (OnlyOnRHSOfCommutative(getChild(i))) {
Reason="Immediate value must be on the RHS of commutative operators!";
return false;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// TreePattern implementation
//
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
isInputPattern(isInput), HasError(false) {
for (Init *I : RawPat->getValues())
Trees.push_back(ParseTreePattern(I, ""));
}
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
isInputPattern(isInput), HasError(false) {
Trees.push_back(ParseTreePattern(Pat, ""));
}
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
isInputPattern(isInput), HasError(false) {
Trees.push_back(Pat);
}
void TreePattern::error(const Twine &Msg) {
if (HasError)
return;
dump();
PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
HasError = true;
}
void TreePattern::ComputeNamedNodes() {
for (TreePatternNode *Tree : Trees)
ComputeNamedNodes(Tree);
}
void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
if (!N->getName().empty())
NamedNodes[N->getName()].push_back(N);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
ComputeNamedNodes(N->getChild(i));
}
TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
Record *R = DI->getDef();
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
// TreePatternNode of its own. For example:
/// (foo GPR, imm) -> (foo GPR, (imm))
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
return ParseTreePattern(
DagInit::get(DI, nullptr,
std::vector<std::pair<Init*, StringInit*> >()),
OpName);
// Input argument?
TreePatternNode *Res = new TreePatternNode(DI, 1);
if (R->getName() == "node" && !OpName.empty()) {
if (OpName.empty())
error("'node' argument requires a name to match with operand list");
Args.push_back(OpName);
}
Res->setName(OpName);
return Res;
}
// ?:$name or just $name.
if (isa<UnsetInit>(TheInit)) {
if (OpName.empty())
error("'?' argument requires a name to match with operand list");
TreePatternNode *Res = new TreePatternNode(TheInit, 1);
Args.push_back(OpName);
Res->setName(OpName);
return Res;
}
if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
if (!OpName.empty())
error("Constant int argument should not have a name!");
return new TreePatternNode(II, 1);
}
if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
// Turn this into an IntInit.
Init *II = BI->convertInitializerTo(IntRecTy::get());
if (!II || !isa<IntInit>(II))
error("Bits value must be constants!");
return ParseTreePattern(II, OpName);
}
DagInit *Dag = dyn_cast<DagInit>(TheInit);
if (!Dag) {
TheInit->dump();
error("Pattern has unexpected init kind!");
}
DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
if (!OpDef) error("Pattern has unexpected operator type!");
Record *Operator = OpDef->getDef();
if (Operator->isSubClassOf("ValueType")) {
// If the operator is a ValueType, then this must be "type cast" of a leaf
// node.
if (Dag->getNumArgs() != 1)
error("Type cast only takes one operand!");
TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
Dag->getArgNameStr(0));
// Apply the type cast.
assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
New->UpdateNodeType(0, getValueType(Operator), *this);
if (!OpName.empty())
error("ValueType cast should not have a name!");
return New;
}
// Verify that this is something that makes sense for an operator.
if (!Operator->isSubClassOf("PatFrag") &&
!Operator->isSubClassOf("SDNode") &&
!Operator->isSubClassOf("Instruction") &&
!Operator->isSubClassOf("SDNodeXForm") &&
!Operator->isSubClassOf("Intrinsic") &&
!Operator->isSubClassOf("ComplexPattern") &&
Operator->getName() != "set" &&
Operator->getName() != "implicit")
error("Unrecognized node '" + Operator->getName() + "'!");
// Check to see if this is something that is illegal in an input pattern.
if (isInputPattern) {
if (Operator->isSubClassOf("Instruction") ||
Operator->isSubClassOf("SDNodeXForm"))
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
} else {
if (Operator->isSubClassOf("Intrinsic"))
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
if (Operator->isSubClassOf("SDNode") &&
Operator->getName() != "imm" &&
Operator->getName() != "fpimm" &&
Operator->getName() != "tglobaltlsaddr" &&
Operator->getName() != "tconstpool" &&
Operator->getName() != "tjumptable" &&
Operator->getName() != "tframeindex" &&
Operator->getName() != "texternalsym" &&
Operator->getName() != "tblockaddress" &&
Operator->getName() != "tglobaladdr" &&
Operator->getName() != "bb" &&
Operator->getName() != "vt" &&
Operator->getName() != "mcsym")
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
}
std::vector<TreePatternNode*> Children;
// Parse all the operands.
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
// If the operator is an intrinsic, then this is just syntactic sugar for for
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
// convert the intrinsic name to a number.
if (Operator->isSubClassOf("Intrinsic")) {
const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
// If this intrinsic returns void, it must have side-effects and thus a
// chain.
if (Int.IS.RetVTs.empty())
Operator = getDAGPatterns().get_intrinsic_void_sdnode();
else if (Int.ModRef != CodeGenIntrinsic::NoMem)
// Has side-effects, requires chain.
Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
else // Otherwise, no chain.
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
Children.insert(Children.begin(), IIDNode);
}
if (Operator->isSubClassOf("ComplexPattern")) {
for (unsigned i = 0; i < Children.size(); ++i) {
TreePatternNode *Child = Children[i];
if (Child->getName().empty())
error("All arguments to a ComplexPattern must be named");
// Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
// and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
// neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
auto OperandId = std::make_pair(Operator, i);
auto PrevOp = ComplexPatternOperands.find(Child->getName());
if (PrevOp != ComplexPatternOperands.end()) {
if (PrevOp->getValue() != OperandId)
error("All ComplexPattern operands must appear consistently: "
"in the same order in just one ComplexPattern instance.");
} else
ComplexPatternOperands[Child->getName()] = OperandId;
}
}
unsigned NumResults = GetNumNodeResults(Operator, CDP);
TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
Result->setName(OpName);
if (Dag->getName()) {
assert(Result->getName().empty());
Result->setName(Dag->getNameStr());
}
return Result;
}
/// SimplifyTree - See if we can simplify this tree to eliminate something that
/// will never match in favor of something obvious that will. This is here
/// strictly as a convenience to target authors because it allows them to write
/// more type generic things and have useless type casts fold away.
///
/// This returns true if any change is made.
static bool SimplifyTree(TreePatternNode *&N) {
if (N->isLeaf())
return false;
// If we have a bitconvert with a resolved type and if the source and
// destination types are the same, then the bitconvert is useless, remove it.
if (N->getOperator()->getName() == "bitconvert" &&
N->getExtType(0).isConcrete() &&
N->getExtType(0) == N->getChild(0)->getExtType(0) &&
N->getName().empty()) {
N = N->getChild(0);
SimplifyTree(N);
return true;
}
// Walk all children.
bool MadeChange = false;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
MadeChange |= SimplifyTree(Child);
N->setChild(i, Child);
}
return MadeChange;
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are inferred, false
/// otherwise. Flags an error if a type contradiction is found.
bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
if (NamedNodes.empty())
ComputeNamedNodes();
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (TreePatternNode *Tree : Trees) {
MadeChange |= Tree->ApplyTypeConstraints(*this, false);
MadeChange |= SimplifyTree(Tree);
}
// If there are constraints on our named nodes, apply them.
for (auto &Entry : NamedNodes) {
SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
// If we have input named node types, propagate their types to the named
// values here.
if (InNamedTypes) {
if (!InNamedTypes->count(Entry.getKey())) {
error("Node '" + std::string(Entry.getKey()) +
"' in output pattern but not input pattern");
return true;
}
const SmallVectorImpl<TreePatternNode*> &InNodes =
InNamedTypes->find(Entry.getKey())->second;
// The input types should be fully resolved by now.
for (TreePatternNode *Node : Nodes) {
// If this node is a register class, and it is the root of the pattern
// then we're mapping something onto an input register. We allow
// changing the type of the input register in this case. This allows
// us to match things like:
// def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
if (Node == Trees[0] && Node->isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
DI->getDef()->isSubClassOf("RegisterOperand")))
continue;
}
assert(Node->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
*this);
}
}
// If there are multiple nodes with the same name, they must all have the
// same type.
if (Entry.second.size() > 1) {
for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
}
}
}
}
bool HasUnresolvedTypes = false;
for (const TreePatternNode *Tree : Trees)
HasUnresolvedTypes |= Tree->ContainsUnresolvedType();
return !HasUnresolvedTypes;
}
void TreePattern::print(raw_ostream &OS) const {
OS << getRecord()->getName();
if (!Args.empty()) {
OS << "(" << Args[0];
for (unsigned i = 1, e = Args.size(); i != e; ++i)
OS << ", " << Args[i];
OS << ")";
}
OS << ": ";
if (Trees.size() > 1)
OS << "[\n";
for (const TreePatternNode *Tree : Trees) {
OS << "\t";
Tree->print(OS);
OS << "\n";
}
if (Trees.size() > 1)
OS << "]\n";
}
void TreePattern::dump() const { print(errs()); }
//===----------------------------------------------------------------------===//
// CodeGenDAGPatterns implementation
//
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
Records(R), Target(R) {
Intrinsics = CodeGenIntrinsicTable(Records, false);
TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
ParseNodeInfo();
ParseNodeTransforms();
ParseComplexPatterns();
ParsePatternFragments();
ParseDefaultOperands();
ParseInstructions();
ParsePatternFragments(/*OutFrags*/true);
ParsePatterns();
// Generate variants. For example, commutative patterns can match
// multiple ways. Add them to PatternsToMatch as well.
GenerateVariants();
// Infer instruction flags. For example, we can detect loads,
// stores, and side effects in many cases by examining an
// instruction's pattern.
InferInstructionFlags();
// Verify that instruction flags match the patterns.
VerifyInstructionFlags();
}
Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
Record *N = Records.getDef(Name);
if (!N || !N->isSubClassOf("SDNode"))
PrintFatalError("Error getting SDNode '" + Name + "'!");
return N;
}
// Parse all of the SDNode definitions for the target, populating SDNodes.
void CodeGenDAGPatterns::ParseNodeInfo() {
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
while (!Nodes.empty()) {
SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
Nodes.pop_back();
}
// Get the builtin intrinsic nodes.
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
}
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void CodeGenDAGPatterns::ParseNodeTransforms() {
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
while (!Xforms.empty()) {
Record *XFormNode = Xforms.back();
Record *SDNode = XFormNode->getValueAsDef("Opcode");
std::string Code = XFormNode->getValueAsString("XFormFunction");
SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
Xforms.pop_back();
}
}
void CodeGenDAGPatterns::ParseComplexPatterns() {
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
while (!AMs.empty()) {
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
AMs.pop_back();
}
}
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map. After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
// First step, parse all of the fragments.
for (Record *Frag : Fragments) {
if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
continue;
DagInit *Tree = Frag->getValueAsDag("Fragment");
TreePattern *P =
(PatternFragments[Frag] = llvm::make_unique<TreePattern>(
Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
*this)).get();
// Validate the argument list, converting it to set, to discard duplicates.
std::vector<std::string> &Args = P->getArgList();
std::set<std::string> OperandsSet(Args.begin(), Args.end());
if (OperandsSet.count(""))
P->error("Cannot have unnamed 'node' values in pattern fragment!");
// Parse the operands list.
DagInit *OpsList = Frag->getValueAsDag("Operands");
DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
// Special cases: ops == outs == ins. Different names are used to
// improve readability.
if (!OpsOp ||
(OpsOp->getDef()->getName() != "ops" &&
OpsOp->getDef()->getName() != "outs" &&
OpsOp->getDef()->getName() != "ins"))
P->error("Operands list should start with '(ops ... '!");
// Copy over the arguments.
Args.clear();
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
if (!isa<DefInit>(OpsList->getArg(j)) ||
cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
P->error("Operands list should all be 'node' values.");
if (!OpsList->getArgName(j))
P->error("Operands list should have names for each operand!");
StringRef ArgNameStr = OpsList->getArgNameStr(j);
if (!OperandsSet.count(ArgNameStr))
P->error("'" + ArgNameStr +
"' does not occur in pattern or was multiply specified!");
OperandsSet.erase(ArgNameStr);
Args.push_back(ArgNameStr);
}
if (!OperandsSet.empty())
P->error("Operands list does not contain an entry for operand '" +
*OperandsSet.begin() + "'!");
// If there is a code init for this fragment, keep track of the fact that
// this fragment uses it.
TreePredicateFn PredFn(P);
if (!PredFn.isAlwaysTrue())
P->getOnlyTree()->addPredicateFn(PredFn);
// If there is a node transformation corresponding to this, keep track of
// it.
Record *Transform = Frag->getValueAsDef("OperandTransform");
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
P->getOnlyTree()->setTransformFn(Transform);
}
// Now that we've parsed all of the tree fragments, do a closure on them so
// that there are not references to PatFrags left inside of them.
for (Record *Frag : Fragments) {
if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
continue;
TreePattern &ThePat = *PatternFragments[Frag];
ThePat.InlinePatternFragments();
// Infer as many types as possible. Don't worry about it if we don't infer
// all of them, some may depend on the inputs of the pattern.
ThePat.InferAllTypes();
ThePat.resetError();
// If debugging, print out the pattern fragment result.
DEBUG(ThePat.dump());
}
}
void CodeGenDAGPatterns::ParseDefaultOperands() {
std::vector<Record*> DefaultOps;
DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
// Find some SDNode.
assert(!SDNodes.empty() && "No SDNodes parsed?");
Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
// Clone the DefaultInfo dag node, changing the operator from 'ops' to
// SomeSDnode so that we can parse this.
std::vector<std::pair<Init*, StringInit*> > Ops;
for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
DefaultInfo->getArgName(op)));
DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
// Create a TreePattern to parse this.
TreePattern P(DefaultOps[i], DI, false, *this);
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
// Copy the operands over into a DAGDefaultOperand.
DAGDefaultOperand DefaultOpInfo;
TreePatternNode *T = P.getTree(0);
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
TreePatternNode *TPN = T->getChild(op);
while (TPN->ApplyTypeConstraints(P, false))
/* Resolve all types */;
if (TPN->ContainsUnresolvedType()) {
PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
DefaultOps[i]->getName() +
"' doesn't have a concrete type!");
}
DefaultOpInfo.DefaultOps.push_back(TPN);
}
// Insert it into the DefaultOperands map so we can find it later.
DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
}
}
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input. Return true if this is a real use.
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs) {
// No name -> not interesting.
if (Pat->getName().empty()) {
if (Pat->isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
DI->getDef()->isSubClassOf("RegisterOperand")))
I->error("Input " + DI->getDef()->getName() + " must be named!");
}
return false;
}
Record *Rec;
if (Pat->isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
Rec = DI->getDef();
} else {
Rec = Pat->getOperator();
}
// SRCVALUE nodes are ignored.
if (Rec->getName() == "srcvalue")
return false;
TreePatternNode *&Slot = InstInputs[Pat->getName()];
if (!Slot) {
Slot = Pat;
return true;
}
Record *SlotRec;
if (Slot->isLeaf()) {
SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
} else {
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
SlotRec = Slot->getOperator();
}
// Ensure that the inputs agree if we've already seen this input.
if (Rec != SlotRec)
I->error("All $" + Pat->getName() + " inputs must agree with each other");
if (Slot->getExtTypes() != Pat->getExtTypes())
I->error("All $" + Pat->getName() + " inputs must agree with each other");
return true;
}
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern. Report errors if we see anything naughty.
void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs,
std::map<std::string, TreePatternNode*>&InstResults,
std::vector<Record*> &InstImpResults) {
if (Pat->isLeaf()) {
bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
}
if (Pat->getOperator()->getName() == "implicit") {
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I->error("implicitly defined value should be a register!");
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
if (!Val || !Val->getDef()->isSubClassOf("Register"))
I->error("implicitly defined value should be a register!");
InstImpResults.push_back(Val->getDef());
}
return;
}
if (Pat->getOperator()->getName() != "set") {
// If this is not a set, verify that the children nodes are not void typed,
// and recurse.
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
if (Pat->getChild(i)->getNumTypes() == 0)
I->error("Cannot have void nodes inside of patterns!");
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
InstImpResults);
}
// If this is a non-leaf node with no children, treat it basically as if
// it were a leaf. This handles nodes like (imm).
bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
}
// Otherwise, this is a set, validate and collect instruction results.
if (Pat->getNumChildren() == 0)
I->error("set requires operands!");
if (Pat->getTransformFn())
I->error("Cannot specify a transform function on a set node!");
// Check the set destinations.
unsigned NumDests = Pat->getNumChildren()-1;
for (unsigned i = 0; i != NumDests; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I->error("set destination should be a register!");
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
if (!Val) {
I->error("set destination should be a register!");
continue;
}
if (Val->getDef()->isSubClassOf("RegisterClass") ||
Val->getDef()->isSubClassOf("ValueType") ||
Val->getDef()->isSubClassOf("RegisterOperand") ||
Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
if (Dest->getName().empty())
I->error("set destination must have a name!");
if (InstResults.count(Dest->getName()))
I->error("cannot set '" + Dest->getName() +"' multiple times");
InstResults[Dest->getName()] = Dest;
} else if (Val->getDef()->isSubClassOf("Register")) {
InstImpResults.push_back(Val->getDef());
} else {
I->error("set destination should be a register!");
}
}
// Verify and collect info from the computation.
FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
InstInputs, InstResults, InstImpResults);
}
//===----------------------------------------------------------------------===//
// Instruction Analysis
//===----------------------------------------------------------------------===//
class InstAnalyzer {
const CodeGenDAGPatterns &CDP;
public:
bool hasSideEffects;
bool mayStore;
bool mayLoad;
bool isBitcast;
bool isVariadic;
InstAnalyzer(const CodeGenDAGPatterns &cdp)
: CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
isBitcast(false), isVariadic(false) {}
void Analyze(const TreePattern *Pat) {
// Assume only the first tree is the pattern. The others are clobber nodes.
AnalyzeNode(Pat->getTree(0));
}
void Analyze(const PatternToMatch *Pat) {
AnalyzeNode(Pat->getSrcPattern());
}
private:
bool IsNodeBitcast(const TreePatternNode *N) const {
if (hasSideEffects || mayLoad || mayStore || isVariadic)
return false;
if (N->getNumChildren() != 2)
return false;
const TreePatternNode *N0 = N->getChild(0);
if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
return false;
const TreePatternNode *N1 = N->getChild(1);
if (N1->isLeaf())
return false;
if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
return false;
const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
return false;
return OpInfo.getEnumName() == "ISD::BITCAST";
}
public:
void AnalyzeNode(const TreePatternNode *N) {
if (N->isLeaf()) {
if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
Record *LeafRec = DI->getDef();
// Handle ComplexPattern leaves.
if (LeafRec->isSubClassOf("ComplexPattern")) {
const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
if (CP.hasProperty(SDNPMayStore)) mayStore = true;
if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
}
}
return;
}
// Analyze children.
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
AnalyzeNode(N->getChild(i));
// Ignore set nodes, which are not SDNodes.
if (N->getOperator()->getName() == "set") {
isBitcast = IsNodeBitcast(N);
return;
}
// Notice properties of the node.
if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
// If this is an intrinsic, analyze it.
if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
mayLoad = true;// These may load memory.
if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
// ReadWriteMem intrinsics can have other strange effects.
hasSideEffects = true;
}
}
};
static bool InferFromPattern(CodeGenInstruction &InstInfo,
const InstAnalyzer &PatInfo,
Record *PatDef) {
bool Error = false;
// Remember where InstInfo got its flags.
if (InstInfo.hasUndefFlags())
InstInfo.InferredFrom = PatDef;
// Check explicitly set flags for consistency.
if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
!InstInfo.hasSideEffects_Unset) {
// Allow explicitly setting hasSideEffects = 1 on instructions, even when
// the pattern has no side effects. That could be useful for div/rem
// instructions that may trap.
if (!InstInfo.hasSideEffects) {
Error = true;
PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
Twine(InstInfo.hasSideEffects));
}
}
if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
Error = true;
PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
Twine(InstInfo.mayStore));
}
if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
// Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
// Some targets translate immediates to loads.
if (!InstInfo.mayLoad) {
Error = true;
PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
Twine(InstInfo.mayLoad));
}
}
// Transfer inferred flags.
InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
InstInfo.mayStore |= PatInfo.mayStore;
InstInfo.mayLoad |= PatInfo.mayLoad;
// These flags are silently added without any verification.
InstInfo.isBitcast |= PatInfo.isBitcast;
// Don't infer isVariadic. This flag means something different on SDNodes and
// instructions. For example, a CALL SDNode is variadic because it has the
// call arguments as operands, but a CALL instruction is not variadic - it
// has argument registers as implicit, not explicit uses.
return Error;
}
/// hasNullFragReference - Return true if the DAG has any reference to the
/// null_frag operator.
static bool hasNullFragReference(DagInit *DI) {
DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
if (!OpDef) return false;
Record *Operator = OpDef->getDef();
// If this is the null fragment, return true.
if (Operator->getName() == "null_frag") return true;
// If any of the arguments reference the null fragment, return true.
for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
if (Arg && hasNullFragReference(Arg))
return true;
}
return false;
}
/// hasNullFragReference - Return true if any DAG in the list references
/// the null_frag operator.
static bool hasNullFragReference(ListInit *LI) {
for (Init *I : LI->getValues()) {
DagInit *DI = dyn_cast<DagInit>(I);
assert(DI && "non-dag in an instruction Pattern list?!");
if (hasNullFragReference(DI))
return true;
}
return false;
}
/// Get all the instructions in a tree.
static void
getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
if (Tree->isLeaf())
return;
if (Tree->getOperator()->isSubClassOf("Instruction"))
Instrs.push_back(Tree->getOperator());
for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
getInstructionsInTree(Tree->getChild(i), Instrs);
}
/// Check the class of a pattern leaf node against the instruction operand it
/// represents.
static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
Record *Leaf) {
if (OI.Rec == Leaf)
return true;
// Allow direct value types to be used in instruction set patterns.
// The type will be checked later.
if (Leaf->isSubClassOf("ValueType"))
return true;
// Patterns can also be ComplexPattern instances.
if (Leaf->isSubClassOf("ComplexPattern"))
return true;
return false;
}
const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
// Parse the instruction.
TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
// Inline pattern fragments into it.
I->InlinePatternFragments();
// Infer as many types as possible. If we cannot infer all of them, we can
// never do anything with this instruction pattern: report it to the user.
if (!I->InferAllTypes())
I->error("Could not infer all types in pattern!");
// InstInputs - Keep track of all of the inputs of the instruction, along
// with the record they are declared as.
std::map<std::string, TreePatternNode*> InstInputs;
// InstResults - Keep track of all the virtual registers that are 'set'
// in the instruction, including what reg class they are.
std::map<std::string, TreePatternNode*> InstResults;
std::vector<Record*> InstImpResults;
// Verify that the top-level forms in the instruction are of void type, and
// fill in the InstResults map.
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
TreePatternNode *Pat = I->getTree(j);
if (Pat->getNumTypes() != 0) {
std::string Types;
for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
if (k > 0)
Types += ", ";
Types += Pat->getExtType(k).getName();
}
I->error("Top-level forms in instruction pattern should have"
" void types, has types " + Types);
}
// Find inputs and outputs, and verify the structure of the uses/defs.
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
InstImpResults);
}
// Now that we have inputs and outputs of the pattern, inspect the operands
// list for the instruction. This determines the order that operands are
// added to the machine instruction the node corresponds to.
unsigned NumResults = InstResults.size();
// Parse the operands list from the (ops) list, validating it.
assert(I->getArgList().empty() && "Args list should still be empty here!");
// Check that all of the results occur first in the list.
std::vector<Record*> Results;
SmallVector<TreePatternNode *, 2> ResNodes;
for (unsigned i = 0; i != NumResults; ++i) {
if (i == CGI.Operands.size())
I->error("'" + InstResults.begin()->first +
"' set but does not appear in operand list!");
const std::string &OpName = CGI.Operands[i].Name;
// Check that it exists in InstResults.
TreePatternNode *RNode = InstResults[OpName];
if (!RNode)
I->error("Operand $" + OpName + " does not exist in operand list!");
ResNodes.push_back(RNode);
Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
if (!R)
I->error("Operand $" + OpName + " should be a set destination: all "
"outputs must occur before inputs in operand list!");
if (!checkOperandClass(CGI.Operands[i], R))
I->error("Operand $" + OpName + " class mismatch!");
// Remember the return type.
Results.push_back(CGI.Operands[i].Rec);
// Okay, this one checks out.
InstResults.erase(OpName);
}
// Loop over the inputs next. Make a copy of InstInputs so we can destroy
// the copy while we're checking the inputs.
std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
std::vector<TreePatternNode*> ResultNodeOperands;
std::vector<Record*> Operands;
for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
CGIOperandList::OperandInfo &Op = CGI.Operands[i];
const std::string &OpName = Op.Name;
if (OpName.empty())
I->error("Operand #" + utostr(i) + " in operands list has no name!");
if (!InstInputsCheck.count(OpName)) {
// If this is an operand with a DefaultOps set filled in, we can ignore
// this. When we codegen it, we will do so as always executed.
if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
// Does it have a non-empty DefaultOps field? If so, ignore this
// operand.
if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
continue;
}
I->error("Operand $" + OpName +
" does not appear in the instruction pattern");
}
TreePatternNode *InVal = InstInputsCheck[OpName];
InstInputsCheck.erase(OpName); // It occurred, remove from map.
if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
if (!checkOperandClass(Op, InRec))
I->error("Operand $" + OpName + "'s register class disagrees"
" between the operand and pattern");
}
Operands.push_back(Op.Rec);
// Construct the result for the dest-pattern operand list.
TreePatternNode *OpNode = InVal->clone();
// No predicate is useful on the result.
OpNode->clearPredicateFns();
// Promote the xform function to be an explicit node if set.
if (Record *Xform = OpNode->getTransformFn()) {
OpNode->setTransformFn(nullptr);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
}
ResultNodeOperands.push_back(OpNode);
}
if (!InstInputsCheck.empty())
I->error("Input operand $" + InstInputsCheck.begin()->first +
" occurs in pattern but not in operands list!");
TreePatternNode *ResultPattern =
new TreePatternNode(I->getRecord(), ResultNodeOperands,
GetNumNodeResults(I->getRecord(), *this));
// Copy fully inferred output node types to instruction result pattern.
for (unsigned i = 0; i != NumResults; ++i) {
assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
ResultPattern->setType(i, ResNodes[i]->getExtType(0));
}
// Create and insert the instruction.
// FIXME: InstImpResults should not be part of DAGInstruction.
DAGInstruction TheInst(I, Results, Operands, InstImpResults);
DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
// Use a temporary tree pattern to infer all types and make sure that the
// constructed result is correct. This depends on the instruction already
// being inserted into the DAGInsts map.
TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
Temp.InferAllTypes(&I->getNamedNodesMap());
DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
return TheInsertedInst;
}
/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved. This populates the Instructions list with fully
/// resolved instructions.
void CodeGenDAGPatterns::ParseInstructions() {
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
for (Record *Instr : Instrs) {
ListInit *LI = nullptr;
if (isa<ListInit>(Instr->getValueInit("Pattern")))
LI = Instr->getValueAsListInit("Pattern");
// If there is no pattern, only collect minimal information about the
// instruction for its operand list. We have to assume that there is one
// result, as we have no detailed info. A pattern which references the
// null_frag operator is as-if no pattern were specified. Normally this
// is from a multiclass expansion w/ a SDPatternOperator passed in as
// null_frag.
if (!LI || LI->empty() || hasNullFragReference(LI)) {
std::vector<Record*> Results;
std::vector<Record*> Operands;
CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
if (InstInfo.Operands.size() != 0) {
for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
Results.push_back(InstInfo.Operands[j].Rec);
// The rest are inputs.
for (unsigned j = InstInfo.Operands.NumDefs,
e = InstInfo.Operands.size(); j < e; ++j)
Operands.push_back(InstInfo.Operands[j].Rec);
}
// Create and insert the instruction.
std::vector<Record*> ImpResults;
Instructions.insert(std::make_pair(Instr,
DAGInstruction(nullptr, Results, Operands, ImpResults)));
continue; // no pattern.
}
CodeGenInstruction &CGI = Target.getInstruction(Instr);
const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
(void)DI;
DEBUG(DI.getPattern()->dump());
}
// If we can, convert the instructions to be patterns that are matched!
for (auto &Entry : Instructions) {
DAGInstruction &TheInst = Entry.second;
TreePattern *I = TheInst.getPattern();
if (!I) continue; // No pattern.
// FIXME: Assume only the first tree is the pattern. The others are clobber
// nodes.
TreePatternNode *Pattern = I->getTree(0);
TreePatternNode *SrcPattern;
if (Pattern->getOperator()->getName() == "set") {
SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
} else{
// Not a set (store or something?)
SrcPattern = Pattern;
}
Record *Instr = Entry.first;
AddPatternToMatch(I,
PatternToMatch(Instr,
Instr->getValueAsListInit("Predicates"),
SrcPattern,
TheInst.getResultPattern(),
TheInst.getImpResults(),
Instr->getValueAsInt("AddedComplexity"),
Instr->getID()));
}
}
typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
static void FindNames(const TreePatternNode *P,
std::map<std::string, NameRecord> &Names,
TreePattern *PatternTop) {
if (!P->getName().empty()) {
NameRecord &Rec = Names[P->getName()];
// If this is the first instance of the name, remember the node.
if (Rec.second++ == 0)
Rec.first = P;
else if (Rec.first->getExtTypes() != P->getExtTypes())
PatternTop->error("repetition of value: $" + P->getName() +
" where different uses have different types!");
}
if (!P->isLeaf()) {
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
FindNames(P->getChild(i), Names, PatternTop);
}
}
void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
const PatternToMatch &PTM) {
// Do some sanity checking on the pattern we're about to match.
std::string Reason;
if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
PrintWarning(Pattern->getRecord()->getLoc(),
Twine("Pattern can never match: ") + Reason);
return;
}
// If the source pattern's root is a complex pattern, that complex pattern
// must specify the nodes it can potentially match.
if (const ComplexPattern *CP =
PTM.getSrcPattern()->getComplexPatternInfo(*this))
if (CP->getRootNodes().empty())
Pattern->error("ComplexPattern at root must specify list of opcodes it"
" could match");
// Find all of the named values in the input and output, ensure they have the
// same type.
std::map<std::string, NameRecord> SrcNames, DstNames;
FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
FindNames(PTM.getDstPattern(), DstNames, Pattern);
// Scan all of the named values in the destination pattern, rejecting them if
// they don't exist in the input pattern.
for (const auto &Entry : DstNames) {
if (SrcNames[Entry.first].first == nullptr)
Pattern->error("Pattern has input without matching name in output: $" +
Entry.first);
}
// Scan all of the named values in the source pattern, rejecting them if the
// name isn't used in the dest, and isn't used to tie two values together.
for (const auto &Entry : SrcNames)
if (DstNames[Entry.first].first == nullptr &&
SrcNames[Entry.first].second == 1)
Pattern->error("Pattern has dead named input: $" + Entry.first);
PatternsToMatch.push_back(PTM);
}
void CodeGenDAGPatterns::InferInstructionFlags() {
ArrayRef<const CodeGenInstruction*> Instructions =
Target.getInstructionsByEnumValue();
// First try to infer flags from the primary instruction pattern, if any.
SmallVector<CodeGenInstruction*, 8> Revisit;
unsigned Errors = 0;
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
CodeGenInstruction &InstInfo =
const_cast<CodeGenInstruction &>(*Instructions[i]);
// Get the primary instruction pattern.
const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
if (!Pattern) {
if (InstInfo.hasUndefFlags())
Revisit.push_back(&InstInfo);
continue;
}
InstAnalyzer PatInfo(*this);
PatInfo.Analyze(Pattern);
Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
}
// Second, look for single-instruction patterns defined outside the
// instruction.
for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
const PatternToMatch &PTM = *I;
// We can only infer from single-instruction patterns, otherwise we won't
// know which instruction should get the flags.
SmallVector<Record*, 8> PatInstrs;
getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
if (PatInstrs.size() != 1)
continue;
// Get the single instruction.
CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
// Only infer properties from the first pattern. We'll verify the others.
if (InstInfo.InferredFrom)
continue;
InstAnalyzer PatInfo(*this);
PatInfo.Analyze(&PTM);
Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
}
if (Errors)
PrintFatalError("pattern conflicts");
// Revisit instructions with undefined flags and no pattern.
if (Target.guessInstructionProperties()) {
for (CodeGenInstruction *InstInfo : Revisit) {
if (InstInfo->InferredFrom)
continue;
// The mayLoad and mayStore flags default to false.
// Conservatively assume hasSideEffects if it wasn't explicit.
if (InstInfo->hasSideEffects_Unset)
InstInfo->hasSideEffects = true;
}
return;
}
// Complain about any flags that are still undefined.
for (CodeGenInstruction *InstInfo : Revisit) {
if (InstInfo->InferredFrom)
continue;
if (InstInfo->hasSideEffects_Unset)
PrintError(InstInfo->TheDef->getLoc(),
"Can't infer hasSideEffects from patterns");
if (InstInfo->mayStore_Unset)
PrintError(InstInfo->TheDef->getLoc(),
"Can't infer mayStore from patterns");
if (InstInfo->mayLoad_Unset)
PrintError(InstInfo->TheDef->getLoc(),
"Can't infer mayLoad from patterns");
}
}
/// Verify instruction flags against pattern node properties.
void CodeGenDAGPatterns::VerifyInstructionFlags() {
unsigned Errors = 0;
for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
const PatternToMatch &PTM = *I;
SmallVector<Record*, 8> Instrs;
getInstructionsInTree(PTM.getDstPattern(), Instrs);
if (Instrs.empty())
continue;
// Count the number of instructions with each flag set.
unsigned NumSideEffects = 0;
unsigned NumStores = 0;
unsigned NumLoads = 0;
for (const Record *Instr : Instrs) {
const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
NumSideEffects += InstInfo.hasSideEffects;
NumStores += InstInfo.mayStore;
NumLoads += InstInfo.mayLoad;
}
// Analyze the source pattern.
InstAnalyzer PatInfo(*this);
PatInfo.Analyze(&PTM);
// Collect error messages.
SmallVector<std::string, 4> Msgs;
// Check for missing flags in the output.
// Permit extra flags for now at least.
if (PatInfo.hasSideEffects && !NumSideEffects)
Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
// Don't verify store flags on instructions with side effects. At least for
// intrinsics, side effects implies mayStore.
if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
Msgs.push_back("pattern may store, but mayStore isn't set");
// Similarly, mayStore implies mayLoad on intrinsics.
if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
Msgs.push_back("pattern may load, but mayLoad isn't set");
// Print error messages.
if (Msgs.empty())
continue;
++Errors;
for (const std::string &Msg : Msgs)
PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
(Instrs.size() == 1 ?
"instruction" : "output instructions"));
// Provide the location of the relevant instruction definitions.
for (const Record *Instr : Instrs) {
if (Instr != PTM.getSrcRecord())
PrintError(Instr->getLoc(), "defined here");
const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
if (InstInfo.InferredFrom &&
InstInfo.InferredFrom != InstInfo.TheDef &&
InstInfo.InferredFrom != PTM.getSrcRecord())
PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
}
}
if (Errors)
PrintFatalError("Errors in DAG patterns");
}
/// Given a pattern result with an unresolved type, see if we can find one
/// instruction with an unresolved result type. Force this result type to an
/// arbitrary element if it's possible types to converge results.
static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
if (N->isLeaf())
return false;
// Analyze children.
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
if (ForceArbitraryInstResultType(N->getChild(i), TP))
return true;
if (!N->getOperator()->isSubClassOf("Instruction"))
return false;
// If this type is already concrete or completely unknown we can't do
// anything.
for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
continue;
// Otherwise, force its type to the first possibility (an arbitrary choice).
if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
return true;
}
return false;
}
void CodeGenDAGPatterns::ParsePatterns() {
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
for (Record *CurPattern : Patterns) {
DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
// If the pattern references the null_frag, there's nothing to do.
if (hasNullFragReference(Tree))
continue;
TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
// Inline pattern fragments into it.
Pattern->InlinePatternFragments();
ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
if (LI->empty()) continue; // no pattern.
// Parse the instruction.
TreePattern Result(CurPattern, LI, false, *this);
// Inline pattern fragments into it.
Result.InlinePatternFragments();
if (Result.getNumTrees() != 1)
Result.error("Cannot handle instructions producing instructions "
"with temporaries yet!");
bool IterateInference;
bool InferredAllPatternTypes, InferredAllResultTypes;
do {
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
InferredAllPatternTypes =
Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
InferredAllResultTypes =
Result.InferAllTypes(&Pattern->getNamedNodesMap());
IterateInference = false;
// Apply the type of the result to the source pattern. This helps us
// resolve cases where the input type is known to be a pointer type (which
// is considered resolved), but the result knows it needs to be 32- or
// 64-bits. Infer the other way for good measure.
for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
Pattern->getTree(0)->getNumTypes());
i != e; ++i) {
IterateInference = Pattern->getTree(0)->UpdateNodeType(
i, Result.getTree(0)->getExtType(i), Result);
IterateInference |= Result.getTree(0)->UpdateNodeType(
i, Pattern->getTree(0)->getExtType(i), Result);
}
// If our iteration has converged and the input pattern's types are fully
// resolved but the result pattern is not fully resolved, we may have a
// situation where we have two instructions in the result pattern and
// the instructions require a common register class, but don't care about
// what actual MVT is used. This is actually a bug in our modelling:
// output patterns should have register classes, not MVTs.
//
// In any case, to handle this, we just go through and disambiguate some
// arbitrary types to the result pattern's nodes.
if (!IterateInference && InferredAllPatternTypes &&
!InferredAllResultTypes)
IterateInference =
ForceArbitraryInstResultType(Result.getTree(0), Result);
} while (IterateInference);
// Verify that we inferred enough types that we can do something with the
// pattern and result. If these fire the user has to add type casts.
if (!InferredAllPatternTypes)
Pattern->error("Could not infer all types in pattern!");
if (!InferredAllResultTypes) {
Pattern->dump();
Result.error("Could not infer all types in pattern result!");
}
// Validate that the input pattern is correct.
std::map<std::string, TreePatternNode*> InstInputs;
std::map<std::string, TreePatternNode*> InstResults;
std::vector<Record*> InstImpResults;
for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
InstInputs, InstResults,
InstImpResults);
// Promote the xform function to be an explicit node if set.
TreePatternNode *DstPattern = Result.getOnlyTree();
std::vector<TreePatternNode*> ResultNodeOperands;
for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
TreePatternNode *OpNode = DstPattern->getChild(ii);
if (Record *Xform = OpNode->getTransformFn()) {
OpNode->setTransformFn(nullptr);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
}
ResultNodeOperands.push_back(OpNode);
}
DstPattern = Result.getOnlyTree();
if (!DstPattern->isLeaf())
DstPattern = new TreePatternNode(DstPattern->getOperator(),
ResultNodeOperands,
DstPattern->getNumTypes());
for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
Temp.InferAllTypes();
AddPatternToMatch(Pattern,
PatternToMatch(CurPattern,
CurPattern->getValueAsListInit("Predicates"),
Pattern->getTree(0),
Temp.getOnlyTree(), InstImpResults,
CurPattern->getValueAsInt("AddedComplexity"),
CurPattern->getID()));
}
}
/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(TreePatternNode *Orig,
const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
std::vector<TreePatternNode*> &OutVariants,
CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
// Make sure that each operand has at least one variant to choose from.
for (const auto &Variants : ChildVariants)
if (Variants.empty())
return;
// The end result is an all-pairs construction of the resultant pattern.
std::vector<unsigned> Idxs;
Idxs.resize(ChildVariants.size());
bool NotDone;
do {
#ifndef NDEBUG
DEBUG(if (!Idxs.empty()) {
errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
for (unsigned Idx : Idxs) {
errs() << Idx << " ";
}
errs() << "]\n";
});
#endif
// Create the variant and add it to the output list.
std::vector<TreePatternNode*> NewChildren;
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
auto R = llvm::make_unique<TreePatternNode>(
Orig->getOperator(), NewChildren, Orig->getNumTypes());
// Copy over properties.
R->setName(Orig->getName());
R->setPredicateFns(Orig->getPredicateFns());
R->setTransformFn(Orig->getTransformFn());
for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
R->setType(i, Orig->getExtType(i));
// If this pattern cannot match, do not include it as a variant.
std::string ErrString;
// Scan to see if this pattern has already been emitted. We can get
// duplication due to things like commuting:
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
// which are the same pattern. Ignore the dups.
if (R->canPatternMatch(ErrString, CDP) &&
none_of(OutVariants, [&](TreePatternNode *Variant) {
return R->isIsomorphicTo(Variant, DepVars);
}))
OutVariants.push_back(R.release());
// Increment indices to the next permutation by incrementing the
// indices from last index backward, e.g., generate the sequence
// [0, 0], [0, 1], [1, 0], [1, 1].
int IdxsIdx;
for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
Idxs[IdxsIdx] = 0;
else
break;
}
NotDone = (IdxsIdx >= 0);
} while (NotDone);
}
/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNode *Orig,
const std::vector<TreePatternNode*> &LHS,
const std::vector<TreePatternNode*> &RHS,
std::vector<TreePatternNode*> &OutVariants,
CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
std::vector<std::vector<TreePatternNode*> > ChildVariants;
ChildVariants.push_back(LHS);
ChildVariants.push_back(RHS);
CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
}
static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
std::vector<TreePatternNode *> &Children) {
assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
Record *Operator = N->getOperator();
// Only permit raw nodes.
if (!N->getName().empty() || !N->getPredicateFns().empty() ||
N->getTransformFn()) {
Children.push_back(N);
return;
}
if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
Children.push_back(N->getChild(0));
else
GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
Children.push_back(N->getChild(1));
else
GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
}
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNode *N,
std::vector<TreePatternNode*> &OutVariants,
CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
// We cannot permute leaves or ComplexPattern uses.
if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
OutVariants.push_back(N);
return;
}
// Look up interesting info about the node.
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
// If this node is associative, re-associate.
if (NodeInfo.hasProperty(SDNPAssociative)) {
// Re-associate by pulling together all of the linked operators
std::vector<TreePatternNode*> MaximalChildren;
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
// Only handle child sizes of 3. Otherwise we'll end up trying too many
// permutations.
if (MaximalChildren.size() == 3) {
// Find the variants of all of our maximal children.
std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
// There are only two ways we can permute the tree:
// (A op B) op C and A op (B op C)
// Within these forms, we can also permute A/B/C.
// Generate legal pair permutations of A/B/C.
std::vector<TreePatternNode*> ABVariants;
std::vector<TreePatternNode*> BAVariants;
std::vector<TreePatternNode*> ACVariants;
std::vector<TreePatternNode*> CAVariants;
std::vector<TreePatternNode*> BCVariants;
std::vector<TreePatternNode*> CBVariants;
CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
// Combine those into the result: (x op x) op x
CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
// Combine those into the result: x op (x op x)
CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
return;
}
}
// Compute permutations of all children.
std::vector<std::vector<TreePatternNode*> > ChildVariants;
ChildVariants.resize(N->getNumChildren());
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
// Build all permutations based on how the children were formed.
CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
// If this node is commutative, consider the commuted order.
bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
assert((N->getNumChildren()==2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!");
// Don't count children which are actually register references.
unsigned NC = 0;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (Child->isLeaf())
if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
Record *RR = DI->getDef();
if (RR->isSubClassOf("Register"))
continue;
}
NC++;
}
// Consider the commuted order.
if (isCommIntrinsic) {
// Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
// operands are the commutative operands, and there might be more operands
// after those.
assert(NC >= 3 &&
"Commutative intrinsic should have at least 3 children!");
std::vector<std::vector<TreePatternNode*> > Variants;
Variants.push_back(ChildVariants[0]); // Intrinsic id.
Variants.push_back(ChildVariants[2]);
Variants.push_back(ChildVariants[1]);
for (unsigned i = 3; i != NC; ++i)
Variants.push_back(ChildVariants[i]);
CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
} else if (NC == 2)
CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
OutVariants, CDP, DepVars);
}
}
// GenerateVariants - Generate variants. For example, commutative patterns can
// match multiple ways. Add them to PatternsToMatch as well.
void CodeGenDAGPatterns::GenerateVariants() {
DEBUG(errs() << "Generating instruction variants.\n");
// Loop over all of the patterns we've collected, checking to see if we can
// generate variants of the instruction, through the exploitation of
// identities. This permits the target to provide aggressive matching without
// the .td file having to contain tons of variants of instructions.
//
// Note that this loop adds new patterns to the PatternsToMatch list, but we
// intentionally do not reconsider these. Any variants of added patterns have
// already been added.
//
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
MultipleUseVarSet DepVars;
std::vector<TreePatternNode*> Variants;
FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
DEBUG(errs() << "Dependent/multiply used variables: ");
DEBUG(DumpDepVars(DepVars));
DEBUG(errs() << "\n");
GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
DepVars);
assert(!Variants.empty() && "Must create at least original variant!");
Variants.erase(Variants.begin()); // Remove the original pattern.
if (Variants.empty()) // No variants for this pattern.
continue;
DEBUG(errs() << "FOUND VARIANTS OF: ";
PatternsToMatch[i].getSrcPattern()->dump();
errs() << "\n");
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
TreePatternNode *Variant = Variants[v];
DEBUG(errs() << " VAR#" << v << ": ";
Variant->dump();
errs() << "\n");
// Scan to see if an instruction or explicit pattern already matches this.
bool AlreadyExists = false;
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
// Skip if the top level predicates do not match.
if (PatternsToMatch[i].getPredicates() !=
PatternsToMatch[p].getPredicates())
continue;
// Check to see if this variant already exists.
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
DepVars)) {
DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
AlreadyExists = true;
break;
}
}
// If we already have it, ignore the variant.
if (AlreadyExists) continue;
// Otherwise, add it to the list of patterns we have.
PatternsToMatch.emplace_back(
PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
Variant, PatternsToMatch[i].getDstPattern(),
PatternsToMatch[i].getDstRegs(),
PatternsToMatch[i].getAddedComplexity(), Record::getNewUID());
}
DEBUG(errs() << "\n");
}
}