llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
Owen Anderson 081c34b725 Get rid of static constructors for pass registration. Instead, every pass exposes an initializeMyPassFunction(), which
must be called in the pass's constructor.  This function uses static dependency declarations to recursively initialize
the pass's dependencies.

Clients that only create passes through the createFooPass() APIs will require no changes.  Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.

I have tested this with all standard configurations of clang and llvm-gcc on Darwin.  It is possible that there are problems
with the static dependencies that will only be visible with non-standard options.  If you encounter any crash in pass
registration/creation, please send the testcase to me directly.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
2010-10-19 17:21:58 +00:00

944 lines
36 KiB
C++

//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass deletes dead arguments from internal functions. Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions. This
// pass also deletes dead return values in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments or return values.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "deadargelim"
#include "llvm/Transforms/IPO.h"
#include "llvm/CallingConv.h"
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <map>
#include <set>
using namespace llvm;
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
namespace {
/// DAE - The dead argument elimination pass.
///
class DAE : public ModulePass {
public:
/// Struct that represents (part of) either a return value or a function
/// argument. Used so that arguments and return values can be used
/// interchangably.
struct RetOrArg {
RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
IsArg(IsArg) {}
const Function *F;
unsigned Idx;
bool IsArg;
/// Make RetOrArg comparable, so we can put it into a map.
bool operator<(const RetOrArg &O) const {
if (F != O.F)
return F < O.F;
else if (Idx != O.Idx)
return Idx < O.Idx;
else
return IsArg < O.IsArg;
}
/// Make RetOrArg comparable, so we can easily iterate the multimap.
bool operator==(const RetOrArg &O) const {
return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
}
std::string getDescription() const {
return std::string((IsArg ? "Argument #" : "Return value #"))
+ utostr(Idx) + " of function " + F->getNameStr();
}
};
/// Liveness enum - During our initial pass over the program, we determine
/// that things are either alive or maybe alive. We don't mark anything
/// explicitly dead (even if we know they are), since anything not alive
/// with no registered uses (in Uses) will never be marked alive and will
/// thus become dead in the end.
enum Liveness { Live, MaybeLive };
/// Convenience wrapper
RetOrArg CreateRet(const Function *F, unsigned Idx) {
return RetOrArg(F, Idx, false);
}
/// Convenience wrapper
RetOrArg CreateArg(const Function *F, unsigned Idx) {
return RetOrArg(F, Idx, true);
}
typedef std::multimap<RetOrArg, RetOrArg> UseMap;
/// This maps a return value or argument to any MaybeLive return values or
/// arguments it uses. This allows the MaybeLive values to be marked live
/// when any of its users is marked live.
/// For example (indices are left out for clarity):
/// - Uses[ret F] = ret G
/// This means that F calls G, and F returns the value returned by G.
/// - Uses[arg F] = ret G
/// This means that some function calls G and passes its result as an
/// argument to F.
/// - Uses[ret F] = arg F
/// This means that F returns one of its own arguments.
/// - Uses[arg F] = arg G
/// This means that G calls F and passes one of its own (G's) arguments
/// directly to F.
UseMap Uses;
typedef std::set<RetOrArg> LiveSet;
typedef std::set<const Function*> LiveFuncSet;
/// This set contains all values that have been determined to be live.
LiveSet LiveValues;
/// This set contains all values that are cannot be changed in any way.
LiveFuncSet LiveFunctions;
typedef SmallVector<RetOrArg, 5> UseVector;
protected:
// DAH uses this to specify a different ID.
explicit DAE(char &ID) : ModulePass(ID) {}
public:
static char ID; // Pass identification, replacement for typeid
DAE() : ModulePass(ID) {
initializeDAEPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M);
virtual bool ShouldHackArguments() const { return false; }
private:
Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
unsigned RetValNum = 0);
Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
void SurveyFunction(const Function &F);
void MarkValue(const RetOrArg &RA, Liveness L,
const UseVector &MaybeLiveUses);
void MarkLive(const RetOrArg &RA);
void MarkLive(const Function &F);
void PropagateLiveness(const RetOrArg &RA);
bool RemoveDeadStuffFromFunction(Function *F);
bool DeleteDeadVarargs(Function &Fn);
};
}
char DAE::ID = 0;
INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
namespace {
/// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
/// deletes arguments to functions which are external. This is only for use
/// by bugpoint.
struct DAH : public DAE {
static char ID;
DAH() : DAE(ID) {}
virtual bool ShouldHackArguments() const { return true; }
};
}
char DAH::ID = 0;
INITIALIZE_PASS(DAH, "deadarghaX0r",
"Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
false, false)
/// createDeadArgEliminationPass - This pass removes arguments from functions
/// which are not used by the body of the function.
///
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
/// llvm.vastart is never called, the varargs list is dead for the function.
bool DAE::DeleteDeadVarargs(Function &Fn) {
assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
// Ensure that the function is only directly called.
if (Fn.hasAddressTaken())
return false;
// Okay, we know we can transform this function if safe. Scan its body
// looking for calls to llvm.vastart.
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::vastart)
return false;
}
}
}
// If we get here, there are no calls to llvm.vastart in the function body,
// remove the "..." and adjust all the calls.
// Start by computing a new prototype for the function, which is the same as
// the old function, but doesn't have isVarArg set.
const FunctionType *FTy = Fn.getFunctionType();
std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
Params, false);
unsigned NumArgs = Params.size();
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, Fn.getLinkage());
NF->copyAttributesFrom(&Fn);
Fn.getParent()->getFunctionList().insert(&Fn, NF);
NF->takeName(&Fn);
// Loop over all of the callers of the function, transforming the call sites
// to pass in a smaller number of arguments into the new function.
//
std::vector<Value*> Args;
while (!Fn.use_empty()) {
CallSite CS(Fn.use_back());
Instruction *Call = CS.getInstruction();
// Pass all the same arguments.
Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
// Drop any attributes that were on the vararg arguments.
AttrListPtr PAL = CS.getAttributes();
if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
SmallVector<AttributeWithIndex, 8> AttributesVec;
for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
AttributesVec.push_back(PAL.getSlot(i));
if (Attributes FnAttrs = PAL.getFnAttributes())
AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
}
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args.begin(), Args.end(), "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
cast<InvokeInst>(New)->setAttributes(PAL);
} else {
New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
cast<CallInst>(New)->setAttributes(PAL);
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
}
New->setDebugLoc(Call->getDebugLoc());
Args.clear();
if (!Call->use_empty())
Call->replaceAllUsesWith(New);
New->takeName(Call);
// Finally, remove the old call from the program, reducing the use-count of
// F.
Call->eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
// the new arguments, also transfering over the names as well. While we're at
// it, remove the dead arguments from the DeadArguments list.
//
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
I2 = NF->arg_begin(); I != E; ++I, ++I2) {
// Move the name and users over to the new version.
I->replaceAllUsesWith(I2);
I2->takeName(I);
}
// Finally, nuke the old function.
Fn.eraseFromParent();
return true;
}
/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned NumRetVals(const Function *F) {
if (F->getReturnType()->isVoidTy())
return 0;
else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
return STy->getNumElements();
else
return 1;
}
/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
/// liveness of Use.
DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
// We're live if our use or its Function is already marked as live.
if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
return Live;
// We're maybe live otherwise, but remember that we must become live if
// Use becomes live.
MaybeLiveUses.push_back(Use);
return MaybeLive;
}
/// SurveyUse - This looks at a single use of an argument or return value
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
/// if it causes the used value to become MaybeLive.
///
/// RetValNum is the return value number to use when this use is used in a
/// return instruction. This is used in the recursion, you should always leave
/// it at 0.
DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
UseVector &MaybeLiveUses, unsigned RetValNum) {
const User *V = *U;
if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
// The value is returned from a function. It's only live when the
// function's return value is live. We use RetValNum here, for the case
// that U is really a use of an insertvalue instruction that uses the
// orginal Use.
RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
// We might be live, depending on the liveness of Use.
return MarkIfNotLive(Use, MaybeLiveUses);
}
if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
&& IV->hasIndices())
// The use we are examining is inserted into an aggregate. Our liveness
// depends on all uses of that aggregate, but if it is used as a return
// value, only index at which we were inserted counts.
RetValNum = *IV->idx_begin();
// Note that if we are used as the aggregate operand to the insertvalue,
// we don't change RetValNum, but do survey all our uses.
Liveness Result = MaybeLive;
for (Value::const_use_iterator I = IV->use_begin(),
E = V->use_end(); I != E; ++I) {
Result = SurveyUse(I, MaybeLiveUses, RetValNum);
if (Result == Live)
break;
}
return Result;
}
if (ImmutableCallSite CS = V) {
const Function *F = CS.getCalledFunction();
if (F) {
// Used in a direct call.
// Find the argument number. We know for sure that this use is an
// argument, since if it was the function argument this would be an
// indirect call and the we know can't be looking at a value of the
// label type (for the invoke instruction).
unsigned ArgNo = CS.getArgumentNo(U);
if (ArgNo >= F->getFunctionType()->getNumParams())
// The value is passed in through a vararg! Must be live.
return Live;
assert(CS.getArgument(ArgNo)
== CS->getOperand(U.getOperandNo())
&& "Argument is not where we expected it");
// Value passed to a normal call. It's only live when the corresponding
// argument to the called function turns out live.
RetOrArg Use = CreateArg(F, ArgNo);
return MarkIfNotLive(Use, MaybeLiveUses);
}
}
// Used in any other way? Value must be live.
return Live;
}
/// SurveyUses - This looks at all the uses of the given value
/// Returns the Liveness deduced from the uses of this value.
///
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
/// the result is Live, MaybeLiveUses might be modified but its content should
/// be ignored (since it might not be complete).
DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
// Assume it's dead (which will only hold if there are no uses at all..).
Liveness Result = MaybeLive;
// Check each use.
for (Value::const_use_iterator I = V->use_begin(),
E = V->use_end(); I != E; ++I) {
Result = SurveyUse(I, MaybeLiveUses);
if (Result == Live)
break;
}
return Result;
}
// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value. This fills in the LiveValues set and Uses
// map.
//
// We consider arguments of non-internal functions to be intrinsically alive as
// well as arguments to functions which have their "address taken".
//
void DAE::SurveyFunction(const Function &F) {
unsigned RetCount = NumRetVals(&F);
// Assume all return values are dead
typedef SmallVector<Liveness, 5> RetVals;
RetVals RetValLiveness(RetCount, MaybeLive);
typedef SmallVector<UseVector, 5> RetUses;
// These vectors map each return value to the uses that make it MaybeLive, so
// we can add those to the Uses map if the return value really turns out to be
// MaybeLive. Initialized to a list of RetCount empty lists.
RetUses MaybeLiveRetUses(RetCount);
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
!= F.getFunctionType()->getReturnType()) {
// We don't support old style multiple return values.
MarkLive(F);
return;
}
if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
MarkLive(F);
return;
}
DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
// Keep track of the number of live retvals, so we can skip checks once all
// of them turn out to be live.
unsigned NumLiveRetVals = 0;
const Type *STy = dyn_cast<StructType>(F.getReturnType());
// Loop all uses of the function.
for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
I != E; ++I) {
// If the function is PASSED IN as an argument, its address has been
// taken.
ImmutableCallSite CS(*I);
if (!CS || !CS.isCallee(I)) {
MarkLive(F);
return;
}
// If this use is anything other than a call site, the function is alive.
const Instruction *TheCall = CS.getInstruction();
if (!TheCall) { // Not a direct call site?
MarkLive(F);
return;
}
// If we end up here, we are looking at a direct call to our function.
// Now, check how our return value(s) is/are used in this caller. Don't
// bother checking return values if all of them are live already.
if (NumLiveRetVals != RetCount) {
if (STy) {
// Check all uses of the return value.
for (Value::const_use_iterator I = TheCall->use_begin(),
E = TheCall->use_end(); I != E; ++I) {
const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
if (Ext && Ext->hasIndices()) {
// This use uses a part of our return value, survey the uses of
// that part and store the results for this index only.
unsigned Idx = *Ext->idx_begin();
if (RetValLiveness[Idx] != Live) {
RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
if (RetValLiveness[Idx] == Live)
NumLiveRetVals++;
}
} else {
// Used by something else than extractvalue. Mark all return
// values as live.
for (unsigned i = 0; i != RetCount; ++i )
RetValLiveness[i] = Live;
NumLiveRetVals = RetCount;
break;
}
}
} else {
// Single return value
RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
if (RetValLiveness[0] == Live)
NumLiveRetVals = RetCount;
}
}
}
// Now we've inspected all callers, record the liveness of our return values.
for (unsigned i = 0; i != RetCount; ++i)
MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
// Now, check all of our arguments.
unsigned i = 0;
UseVector MaybeLiveArgUses;
for (Function::const_arg_iterator AI = F.arg_begin(),
E = F.arg_end(); AI != E; ++AI, ++i) {
// See what the effect of this use is (recording any uses that cause
// MaybeLive in MaybeLiveArgUses).
Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
// Mark the result.
MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
// Clear the vector again for the next iteration.
MaybeLiveArgUses.clear();
}
}
/// MarkValue - This function marks the liveness of RA depending on L. If L is
/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
/// such that RA will be marked live if any use in MaybeLiveUses gets marked
/// live later on.
void DAE::MarkValue(const RetOrArg &RA, Liveness L,
const UseVector &MaybeLiveUses) {
switch (L) {
case Live: MarkLive(RA); break;
case MaybeLive:
{
// Note any uses of this value, so this return value can be
// marked live whenever one of the uses becomes live.
for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
UE = MaybeLiveUses.end(); UI != UE; ++UI)
Uses.insert(std::make_pair(*UI, RA));
break;
}
}
}
/// MarkLive - Mark the given Function as alive, meaning that it cannot be
/// changed in any way. Additionally,
/// mark any values that are used as this function's parameters or by its return
/// values (according to Uses) live as well.
void DAE::MarkLive(const Function &F) {
DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
// Mark the function as live.
LiveFunctions.insert(&F);
// Mark all arguments as live.
for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
PropagateLiveness(CreateArg(&F, i));
// Mark all return values as live.
for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
PropagateLiveness(CreateRet(&F, i));
}
/// MarkLive - Mark the given return value or argument as live. Additionally,
/// mark any values that are used by this value (according to Uses) live as
/// well.
void DAE::MarkLive(const RetOrArg &RA) {
if (LiveFunctions.count(RA.F))
return; // Function was already marked Live.
if (!LiveValues.insert(RA).second)
return; // We were already marked Live.
DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
PropagateLiveness(RA);
}
/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
/// to any other values it uses (according to Uses).
void DAE::PropagateLiveness(const RetOrArg &RA) {
// We don't use upper_bound (or equal_range) here, because our recursive call
// to ourselves is likely to cause the upper_bound (which is the first value
// not belonging to RA) to become erased and the iterator invalidated.
UseMap::iterator Begin = Uses.lower_bound(RA);
UseMap::iterator E = Uses.end();
UseMap::iterator I;
for (I = Begin; I != E && I->first == RA; ++I)
MarkLive(I->second);
// Erase RA from the Uses map (from the lower bound to wherever we ended up
// after the loop).
Uses.erase(Begin, I);
}
// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
// that are not in LiveValues. Transform the function and all of the callees of
// the function to not have these arguments and return values.
//
bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Don't modify fully live functions
if (LiveFunctions.count(F))
return false;
// Start by computing a new prototype for the function, which is the same as
// the old function, but has fewer arguments and a different return type.
const FunctionType *FTy = F->getFunctionType();
std::vector<const Type*> Params;
// Set up to build a new list of parameter attributes.
SmallVector<AttributeWithIndex, 8> AttributesVec;
const AttrListPtr &PAL = F->getAttributes();
// The existing function return attributes.
Attributes RAttrs = PAL.getRetAttributes();
Attributes FnAttrs = PAL.getFnAttributes();
// Find out the new return value.
const Type *RetTy = FTy->getReturnType();
const Type *NRetTy = NULL;
unsigned RetCount = NumRetVals(F);
// -1 means unused, other numbers are the new index
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
std::vector<const Type*> RetTypes;
if (RetTy->isVoidTy()) {
NRetTy = RetTy;
} else {
const StructType *STy = dyn_cast<StructType>(RetTy);
if (STy)
// Look at each of the original return values individually.
for (unsigned i = 0; i != RetCount; ++i) {
RetOrArg Ret = CreateRet(F, i);
if (LiveValues.erase(Ret)) {
RetTypes.push_back(STy->getElementType(i));
NewRetIdxs[i] = RetTypes.size() - 1;
} else {
++NumRetValsEliminated;
DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
<< F->getName() << "\n");
}
}
else
// We used to return a single value.
if (LiveValues.erase(CreateRet(F, 0))) {
RetTypes.push_back(RetTy);
NewRetIdxs[0] = 0;
} else {
DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
<< "\n");
++NumRetValsEliminated;
}
if (RetTypes.size() > 1)
// More than one return type? Return a struct with them. Also, if we used
// to return a struct and didn't change the number of return values,
// return a struct again. This prevents changing {something} into
// something and {} into void.
// Make the new struct packed if we used to return a packed struct
// already.
NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
else if (RetTypes.size() == 1)
// One return type? Just a simple value then, but only if we didn't use to
// return a struct with that simple value before.
NRetTy = RetTypes.front();
else if (RetTypes.size() == 0)
// No return types? Make it void, but only if we didn't use to return {}.
NRetTy = Type::getVoidTy(F->getContext());
}
assert(NRetTy && "No new return type found?");
// Remove any incompatible attributes, but only if we removed all return
// values. Otherwise, ensure that we don't have any conflicting attributes
// here. Currently, this should not be possible, but special handling might be
// required when new return value attributes are added.
if (NRetTy->isVoidTy())
RAttrs &= ~Attribute::typeIncompatible(NRetTy);
else
assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
&& "Return attributes no longer compatible?");
if (RAttrs)
AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
// Remember which arguments are still alive.
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
// Construct the new parameter list from non-dead arguments. Also construct
// a new set of parameter attributes to correspond. Skip the first parameter
// attribute, since that belongs to the return value.
unsigned i = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I, ++i) {
RetOrArg Arg = CreateArg(F, i);
if (LiveValues.erase(Arg)) {
Params.push_back(I->getType());
ArgAlive[i] = true;
// Get the original parameter attributes (skipping the first one, that is
// for the return value.
if (Attributes Attrs = PAL.getParamAttributes(i + 1))
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
} else {
++NumArgumentsEliminated;
DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
<< ") from " << F->getName() << "\n");
}
}
if (FnAttrs != Attribute::None)
AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
// Reconstruct the AttributesList based on the vector we constructed.
AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
AttributesVec.end());
// Create the new function type based on the recomputed parameters.
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
// No change?
if (NFTy == FTy)
return false;
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, F->getLinkage());
NF->copyAttributesFrom(F);
NF->setAttributes(NewPAL);
// Insert the new function before the old function, so we won't be processing
// it again.
F->getParent()->getFunctionList().insert(F, NF);
NF->takeName(F);
// Loop over all of the callers of the function, transforming the call sites
// to pass in a smaller number of arguments into the new function.
//
std::vector<Value*> Args;
while (!F->use_empty()) {
CallSite CS(F->use_back());
Instruction *Call = CS.getInstruction();
AttributesVec.clear();
const AttrListPtr &CallPAL = CS.getAttributes();
// The call return attributes.
Attributes RAttrs = CallPAL.getRetAttributes();
Attributes FnAttrs = CallPAL.getFnAttributes();
// Adjust in case the function was changed to return void.
RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
if (RAttrs)
AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
// Declare these outside of the loops, so we can reuse them for the second
// loop, which loops the varargs.
CallSite::arg_iterator I = CS.arg_begin();
unsigned i = 0;
// Loop over those operands, corresponding to the normal arguments to the
// original function, and add those that are still alive.
for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
if (ArgAlive[i]) {
Args.push_back(*I);
// Get original parameter attributes, but skip return attributes.
if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
Args.push_back(*I);
if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
if (FnAttrs != Attribute::None)
AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
// Reconstruct the AttributesList based on the vector we constructed.
AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
AttributesVec.end());
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args.begin(), Args.end(), "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
cast<InvokeInst>(New)->setAttributes(NewCallPAL);
} else {
New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
cast<CallInst>(New)->setAttributes(NewCallPAL);
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
}
New->setDebugLoc(Call->getDebugLoc());
Args.clear();
if (!Call->use_empty()) {
if (New->getType() == Call->getType()) {
// Return type not changed? Just replace users then.
Call->replaceAllUsesWith(New);
New->takeName(Call);
} else if (New->getType()->isVoidTy()) {
// Our return value has uses, but they will get removed later on.
// Replace by null for now.
if (!Call->getType()->isX86_MMXTy())
Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
} else {
assert(RetTy->isStructTy() &&
"Return type changed, but not into a void. The old return type"
" must have been a struct!");
Instruction *InsertPt = Call;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
BasicBlock::iterator IP = II->getNormalDest()->begin();
while (isa<PHINode>(IP)) ++IP;
InsertPt = IP;
}
// We used to return a struct. Instead of doing smart stuff with all the
// uses of this struct, we will just rebuild it using
// extract/insertvalue chaining and let instcombine clean that up.
//
// Start out building up our return value from undef
Value *RetVal = UndefValue::get(RetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
Value *V;
if (RetTypes.size() > 1)
// We are still returning a struct, so extract the value from our
// return value
V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
InsertPt);
else
// We are now returning a single element, so just insert that
V = New;
// Insert the value at the old position
RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
}
// Now, replace all uses of the old call instruction with the return
// struct we built
Call->replaceAllUsesWith(RetVal);
New->takeName(Call);
}
}
// Finally, remove the old call from the program, reducing the use-count of
// F.
Call->eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
// the new arguments, also transfering over the names as well.
i = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
I2 = NF->arg_begin(); I != E; ++I, ++i)
if (ArgAlive[i]) {
// If this is a live argument, move the name and users over to the new
// version.
I->replaceAllUsesWith(I2);
I2->takeName(I);
++I2;
} else {
// If this argument is dead, replace any uses of it with null constants
// (these are guaranteed to become unused later on).
if (!I->getType()->isX86_MMXTy())
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
}
// If we change the return value of the function we must rewrite any return
// instructions. Check this now.
if (F->getReturnType() != NF->getReturnType())
for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
Value *RetVal;
if (NFTy->getReturnType()->isVoidTy()) {
RetVal = 0;
} else {
assert (RetTy->isStructTy());
// The original return value was a struct, insert
// extractvalue/insertvalue chains to extract only the values we need
// to return and insert them into our new result.
// This does generate messy code, but we'll let it to instcombine to
// clean that up.
Value *OldRet = RI->getOperand(0);
// Start out building up our return value from undef
RetVal = UndefValue::get(NRetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
"oldret", RI);
if (RetTypes.size() > 1) {
// We're still returning a struct, so reinsert the value into
// our new return value at the new index
RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
"newret", RI);
} else {
// We are now only returning a simple value, so just return the
// extracted value.
RetVal = EV;
}
}
}
// Replace the return instruction with one returning the new return
// value (possibly 0 if we became void).
ReturnInst::Create(F->getContext(), RetVal, RI);
BB->getInstList().erase(RI);
}
// Now that the old function is dead, delete it.
F->eraseFromParent();
return true;
}
bool DAE::runOnModule(Module &M) {
bool Changed = false;
// First pass: Do a simple check to see if any functions can have their "..."
// removed. We can do this if they never call va_start. This loop cannot be
// fused with the next loop, because deleting a function invalidates
// information computed while surveying other functions.
DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
Function &F = *I++;
if (F.getFunctionType()->isVarArg())
Changed |= DeleteDeadVarargs(F);
}
// Second phase:loop through the module, determining which arguments are live.
// We assume all arguments are dead unless proven otherwise (allowing us to
// determine that dead arguments passed into recursive functions are dead).
//
DEBUG(dbgs() << "DAE - Determining liveness\n");
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
SurveyFunction(*I);
// Now, remove all dead arguments and return values from each function in
// turn.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
// Increment now, because the function will probably get removed (ie.
// replaced by a new one).
Function *F = I++;
Changed |= RemoveDeadStuffFromFunction(F);
}
return Changed;
}