llvm/lib/CodeGen/RegAllocSimple.cpp
2002-12-25 05:04:20 +00:00

409 lines
14 KiB
C++

//===-- RegAllocSimple.cpp - A simple generic register allocator ----------===//
//
// This file implements a simple register allocator. *Very* simple.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include <iostream>
#include <set>
namespace {
Statistic<> NumSpilled ("ra-simple", "Number of registers spilled");
Statistic<> NumReloaded("ra-simple", "Number of registers reloaded");
class RegAllocSimple : public FunctionPass {
TargetMachine &TM;
MachineFunction *MF;
const MRegisterInfo *RegInfo;
unsigned NumBytesAllocated;
// Maps SSA Regs => offsets on the stack where these values are stored
std::map<unsigned, unsigned> VirtReg2OffsetMap;
// RegsUsed - Keep track of what registers are currently in use.
std::set<unsigned> RegsUsed;
// RegClassIdx - Maps RegClass => which index we can take a register
// from. Since this is a simple register allocator, when we need a register
// of a certain class, we just take the next available one.
std::map<const TargetRegisterClass*, unsigned> RegClassIdx;
public:
RegAllocSimple(TargetMachine &tm)
: TM(tm), RegInfo(tm.getRegisterInfo()) {
RegsUsed.insert(RegInfo->getFramePointer());
RegsUsed.insert(RegInfo->getStackPointer());
cleanupAfterFunction();
}
bool runOnFunction(Function &Fn) {
return runOnMachineFunction(MachineFunction::get(&Fn));
}
virtual const char *getPassName() const {
return "Simple Register Allocator";
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
void EliminatePHINodes(MachineBasicBlock &MBB);
/// EmitPrologue/EmitEpilogue - Use the register info object to add a
/// prologue/epilogue to the function and save/restore any callee saved
/// registers we are responsible for.
///
void EmitPrologue();
void EmitEpilogue(MachineBasicBlock &MBB);
/// getStackSpaceFor - This returns the offset of the specified virtual
/// register on the stack, allocating space if neccesary.
unsigned getStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass);
/// Given a virtual register, return a compatible physical register that is
/// currently unused.
///
/// Side effect: marks that register as being used until manually cleared
///
unsigned getFreeReg(unsigned virtualReg);
/// Returns all `borrowed' registers back to the free pool
void clearAllRegs() {
RegClassIdx.clear();
}
/// Invalidates any references, real or implicit, to physical registers
///
void invalidatePhysRegs(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
const MachineInstrDescriptor &Desc = TM.getInstrInfo().get(Opcode);
if (const unsigned *regs = Desc.ImplicitUses)
while (*regs)
RegsUsed.insert(*regs++);
if (const unsigned *regs = Desc.ImplicitDefs)
while (*regs)
RegsUsed.insert(*regs++);
}
void cleanupAfterFunction() {
VirtReg2OffsetMap.clear();
NumBytesAllocated = 4; // FIXME: This is X86 specific
}
/// Moves value from memory into that register
unsigned reloadVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I, unsigned VirtReg);
/// Saves reg value on the stack (maps virtual register to stack value)
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg, unsigned PhysReg);
};
}
/// getStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned RegAllocSimple::getStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass) {
// Find the location VirtReg would belong...
std::map<unsigned, unsigned>::iterator I =
VirtReg2OffsetMap.lower_bound(VirtReg);
if (I != VirtReg2OffsetMap.end() && I->first == VirtReg)
return I->second; // Already has space allocated?
unsigned RegSize = regClass->getDataSize();
// Align NumBytesAllocated. We should be using TargetData alignment stuff
// to determine this, but we don't know the LLVM type associated with the
// virtual register. Instead, just align to a multiple of the size for now.
NumBytesAllocated += RegSize-1;
NumBytesAllocated = NumBytesAllocated/RegSize*RegSize;
// Assign the slot...
VirtReg2OffsetMap.insert(I, std::make_pair(VirtReg, NumBytesAllocated));
// Reserve the space!
NumBytesAllocated += RegSize;
return NumBytesAllocated-RegSize;
}
unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) {
const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(virtualReg);
unsigned regIdx = RegClassIdx[RC]++;
assert(regIdx < RC->getNumRegs() && "Not enough registers!");
unsigned physReg = RC->getRegister(regIdx);
if (RegsUsed.find(physReg) == RegsUsed.end())
return physReg;
else
return getFreeReg(virtualReg);
}
unsigned RegAllocSimple::reloadVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned VirtReg) {
const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(VirtReg);
unsigned stackOffset = getStackSpaceFor(VirtReg, RC);
unsigned PhysReg = getFreeReg(VirtReg);
// Add move instruction(s)
++NumReloaded;
RegInfo->loadRegOffset2Reg(MBB, I, PhysReg, RegInfo->getFramePointer(),
-stackOffset, RC);
return PhysReg;
}
void RegAllocSimple::spillVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned VirtReg, unsigned PhysReg)
{
const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(VirtReg);
unsigned stackOffset = getStackSpaceFor(VirtReg, RC);
// Add move instruction(s)
++NumSpilled;
RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(),
-stackOffset, RC);
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
void RegAllocSimple::EliminatePHINodes(MachineBasicBlock &MBB) {
const MachineInstrInfo &MII = TM.getInstrInfo();
while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
MachineInstr *MI = MBB.front();
// Unlink the PHI node from the basic block... but don't delete the PHI yet
MBB.erase(MBB.begin());
DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n");
assert(MI->getOperand(0).isVirtualRegister() &&
"PHI node doesn't write virt reg?");
unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
MachineOperand &opVal = MI->getOperand(i-1);
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the phi
MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the
// same basic block. It doesn't matter which entry we use though, because
// all incoming values are guaranteed to be the same for a particular bb.
//
// Note that this is N^2 in the number of phi node entries, but since the
// # of entries is tiny, this is not a problem.
//
bool HaveNotEmitted = true;
for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
HaveNotEmitted = false;
break;
}
if (HaveNotEmitted) {
MachineBasicBlock::iterator opI = opBlock.end();
MachineInstr *opMI = *--opI;
// must backtrack over ALL the branches in the previous block
while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
opMI = *--opI;
// move back to the first branch instruction so new instructions
// are inserted right in front of it and not in front of a non-branch
//
if (!MII.isBranch(opMI->getOpcode()))
++opI;
const TargetRegisterClass *RC =
MF->getSSARegMap()->getRegClass(virtualReg);
// Retrieve the constant value from this op, move it to target
// register of the phi
if (opVal.isImmediate()) {
RegInfo->moveImm2Reg(opBlock, opI, virtualReg,
(unsigned) opVal.getImmedValue(), RC);
} else {
RegInfo->moveReg2Reg(opBlock, opI, virtualReg,
opVal.getAllocatedRegNum(), RC);
}
}
}
// really delete the PHI instruction now!
delete MI;
}
}
void RegAllocSimple::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
// Made to combat the incorrect allocation of r2 = add r1, r1
std::map<unsigned, unsigned> Virt2PhysRegMap;
MachineInstr *MI = *I;
// a preliminary pass that will invalidate any registers that
// are used by the instruction (including implicit uses)
invalidatePhysRegs(MI);
// Loop over uses, move from memory into registers
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &op = MI->getOperand(i);
if (op.isVirtualRegister()) {
unsigned virtualReg = (unsigned) op.getAllocatedRegNum();
DEBUG(std::cerr << "op: " << op << "\n");
DEBUG(std::cerr << "\t inst[" << i << "]: ";
MI->print(std::cerr, TM));
// make sure the same virtual register maps to the same physical
// register in any given instruction
unsigned physReg = Virt2PhysRegMap[virtualReg];
if (physReg == 0) {
if (op.opIsDef()) {
if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
assert(MI->getOperand(1).isRegister() &&
MI->getOperand(1).getAllocatedRegNum() &&
MI->getOperand(1).opIsUse() &&
"Two address instruction invalid!");
physReg = MI->getOperand(1).getAllocatedRegNum();
} else {
physReg = getFreeReg(virtualReg);
}
++I;
spillVirtReg(MBB, I, virtualReg, physReg);
--I;
} else {
physReg = reloadVirtReg(MBB, I, virtualReg);
Virt2PhysRegMap[virtualReg] = physReg;
}
}
MI->SetMachineOperandReg(i, physReg);
DEBUG(std::cerr << "virt: " << virtualReg <<
", phys: " << op.getAllocatedRegNum() << "\n");
}
}
clearAllRegs();
}
}
/// EmitPrologue - Use the register info object to add a prologue to the
/// function and save any callee saved registers we are responsible for.
///
void RegAllocSimple::EmitPrologue() {
// Get a list of the callee saved registers, so that we can save them on entry
// to the function.
//
MachineBasicBlock &MBB = MF->front(); // Prolog goes in entry BB
MachineBasicBlock::iterator I = MBB.begin();
const unsigned *CSRegs = RegInfo->getCalleeSaveRegs();
for (unsigned i = 0; CSRegs[i]; ++i) {
const TargetRegisterClass *RegClass = RegInfo->getRegClass(CSRegs[i]);
unsigned Offset = getStackSpaceFor(CSRegs[i], RegClass);
// Insert the spill to the stack frame...
RegInfo->storeReg2RegOffset(MBB, I,CSRegs[i],RegInfo->getFramePointer(),
-Offset, RegClass);
++NumSpilled;
}
// Add prologue to the function...
RegInfo->emitPrologue(*MF, NumBytesAllocated);
}
/// EmitEpilogue - Use the register info object to add a epilogue to the
/// function and restore any callee saved registers we are responsible for.
///
void RegAllocSimple::EmitEpilogue(MachineBasicBlock &MBB) {
// Insert instructions before the return.
MachineBasicBlock::iterator I = MBB.end()-1;
const unsigned *CSRegs = RegInfo->getCalleeSaveRegs();
for (unsigned i = 0; CSRegs[i]; ++i) {
const TargetRegisterClass *RegClass = RegInfo->getRegClass(CSRegs[i]);
unsigned Offset = getStackSpaceFor(CSRegs[i], RegClass);
RegInfo->loadRegOffset2Reg(MBB, I, CSRegs[i],RegInfo->getFramePointer(),
-Offset, RegClass);
--I; // Insert in reverse order
++NumReloaded;
}
RegInfo->emitEpilogue(MBB, NumBytesAllocated);
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
// First pass: eliminate PHI instructions by inserting copies into predecessor
// blocks.
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
EliminatePHINodes(*MBB);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
// Round stack allocation up to a nice alignment to keep the stack aligned
// FIXME: This is X86 specific! Move to frame manager
NumBytesAllocated = (NumBytesAllocated + 3) & ~3;
// Emit a prologue for the function...
EmitPrologue();
const MachineInstrInfo &MII = TM.getInstrInfo();
// Add epilogue to restore the callee-save registers in each exiting block
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// If last instruction is a return instruction, add an epilogue
if (MII.isReturn(MBB->back()->getOpcode()))
EmitEpilogue(*MBB);
}
cleanupAfterFunction();
return true;
}
Pass *createSimpleRegisterAllocator(TargetMachine &TM) {
return new RegAllocSimple(TM);
}