llvm/lib/DebugInfo/PDB/Raw/PDBFile.cpp
Zachary Turner 99272168e0 [pdb] Handle stream index errors better.
Reviewed By: ruiu
Differential Revision: http://reviews.llvm.org/D21128

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272172 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-08 17:26:39 +00:00

363 lines
12 KiB
C++

//===- PDBFile.cpp - Low level interface to a PDB file ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/PDB/Raw/PDBFile.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/DebugInfo/CodeView/StreamArray.h"
#include "llvm/DebugInfo/CodeView/StreamReader.h"
#include "llvm/DebugInfo/PDB/Raw/DbiStream.h"
#include "llvm/DebugInfo/PDB/Raw/DirectoryStreamData.h"
#include "llvm/DebugInfo/PDB/Raw/IndexedStreamData.h"
#include "llvm/DebugInfo/PDB/Raw/InfoStream.h"
#include "llvm/DebugInfo/PDB/Raw/NameHashTable.h"
#include "llvm/DebugInfo/PDB/Raw/PublicsStream.h"
#include "llvm/DebugInfo/PDB/Raw/RawError.h"
#include "llvm/DebugInfo/PDB/Raw/SymbolStream.h"
#include "llvm/DebugInfo/PDB/Raw/TpiStream.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace llvm;
using namespace llvm::pdb;
namespace {
static const char Magic[] = {'M', 'i', 'c', 'r', 'o', 's', 'o', 'f',
't', ' ', 'C', '/', 'C', '+', '+', ' ',
'M', 'S', 'F', ' ', '7', '.', '0', '0',
'\r', '\n', '\x1a', 'D', 'S', '\0', '\0', '\0'};
// The superblock is overlaid at the beginning of the file (offset 0).
// It starts with a magic header and is followed by information which describes
// the layout of the file system.
struct SuperBlock {
char MagicBytes[sizeof(Magic)];
// The file system is split into a variable number of fixed size elements.
// These elements are referred to as blocks. The size of a block may vary
// from system to system.
support::ulittle32_t BlockSize;
// This field's purpose is not yet known.
support::ulittle32_t Unknown0;
// This contains the number of blocks resident in the file system. In
// practice, NumBlocks * BlockSize is equivalent to the size of the PDB file.
support::ulittle32_t NumBlocks;
// This contains the number of bytes which make up the directory.
support::ulittle32_t NumDirectoryBytes;
// This field's purpose is not yet known.
support::ulittle32_t Unknown1;
// This contains the block # of the block map.
support::ulittle32_t BlockMapAddr;
};
typedef codeview::FixedStreamArray<support::ulittle32_t> ulittle_array;
}
struct llvm::pdb::PDBFileContext {
std::unique_ptr<MemoryBuffer> Buffer;
const SuperBlock *SB;
ArrayRef<support::ulittle32_t> StreamSizes;
std::vector<ulittle_array> StreamMap;
};
static Error checkOffset(MemoryBufferRef M, uintptr_t Addr,
const uint64_t Size) {
if (Addr + Size < Addr || Addr + Size < Size ||
Addr + Size > uintptr_t(M.getBufferEnd()) ||
Addr < uintptr_t(M.getBufferStart())) {
return make_error<RawError>(raw_error_code::corrupt_file,
"Invalid buffer address");
}
return Error::success();
}
template <typename T>
static Error checkOffset(MemoryBufferRef M, ArrayRef<T> AR) {
return checkOffset(M, uintptr_t(AR.data()), (uint64_t)AR.size() * sizeof(T));
}
PDBFile::PDBFile(std::unique_ptr<MemoryBuffer> MemBuffer) {
Context.reset(new PDBFileContext());
Context->Buffer = std::move(MemBuffer);
}
PDBFile::~PDBFile() {}
uint32_t PDBFile::getBlockSize() const { return Context->SB->BlockSize; }
uint32_t PDBFile::getUnknown0() const { return Context->SB->Unknown0; }
uint32_t PDBFile::getBlockCount() const { return Context->SB->NumBlocks; }
uint32_t PDBFile::getNumDirectoryBytes() const {
return Context->SB->NumDirectoryBytes;
}
uint32_t PDBFile::getBlockMapIndex() const { return Context->SB->BlockMapAddr; }
uint32_t PDBFile::getUnknown1() const { return Context->SB->Unknown1; }
uint32_t PDBFile::getNumDirectoryBlocks() const {
return bytesToBlocks(Context->SB->NumDirectoryBytes, Context->SB->BlockSize);
}
uint64_t PDBFile::getBlockMapOffset() const {
return (uint64_t)Context->SB->BlockMapAddr * Context->SB->BlockSize;
}
uint32_t PDBFile::getNumStreams() const { return Context->StreamSizes.size(); }
uint32_t PDBFile::getStreamByteSize(uint32_t StreamIndex) const {
return Context->StreamSizes[StreamIndex];
}
ArrayRef<support::ulittle32_t>
PDBFile::getStreamBlockList(uint32_t StreamIndex) const {
auto Result = Context->StreamMap[StreamIndex];
codeview::StreamReader Reader(Result.getUnderlyingStream());
ArrayRef<support::ulittle32_t> Array;
if (auto EC = Reader.readArray(Array, Result.size()))
return ArrayRef<support::ulittle32_t>();
return Array;
}
ArrayRef<uint8_t> PDBFile::getBlockData(uint32_t BlockIndex,
uint32_t NumBytes) const {
uint64_t StreamBlockOffset = blockToOffset(BlockIndex, getBlockSize());
return ArrayRef<uint8_t>(
reinterpret_cast<const uint8_t *>(Context->Buffer->getBufferStart()) +
StreamBlockOffset,
NumBytes);
}
Error PDBFile::parseFileHeaders() {
std::error_code EC;
MemoryBufferRef BufferRef = *Context->Buffer;
// Make sure the file is sufficiently large to hold a super block.
// Do this before attempting to read the super block.
if (BufferRef.getBufferSize() < sizeof(SuperBlock))
return make_error<RawError>(raw_error_code::corrupt_file,
"Does not contain superblock");
Context->SB =
reinterpret_cast<const SuperBlock *>(BufferRef.getBufferStart());
const SuperBlock *SB = Context->SB;
// Check the magic bytes.
if (memcmp(SB->MagicBytes, Magic, sizeof(Magic)) != 0)
return make_error<RawError>(raw_error_code::corrupt_file,
"MSF magic header doesn't match");
// We don't support blocksizes which aren't a multiple of four bytes.
if (SB->BlockSize % sizeof(support::ulittle32_t) != 0)
return make_error<RawError>(raw_error_code::corrupt_file,
"Block size is not multiple of 4.");
switch (SB->BlockSize) {
case 512: case 1024: case 2048: case 4096:
break;
default:
// An invalid block size suggests a corrupt PDB file.
return make_error<RawError>(raw_error_code::corrupt_file,
"Unsupported block size.");
}
if (BufferRef.getBufferSize() % SB->BlockSize != 0)
return make_error<RawError>(raw_error_code::corrupt_file,
"File size is not a multiple of block size");
// We don't support directories whose sizes aren't a multiple of four bytes.
if (SB->NumDirectoryBytes % sizeof(support::ulittle32_t) != 0)
return make_error<RawError>(raw_error_code::corrupt_file,
"Directory size is not multiple of 4.");
// The number of blocks which comprise the directory is a simple function of
// the number of bytes it contains.
uint64_t NumDirectoryBlocks = getNumDirectoryBlocks();
// The block map, as we understand it, is a block which consists of a list of
// block numbers.
// It is unclear what would happen if the number of blocks couldn't fit on a
// single block.
if (NumDirectoryBlocks > SB->BlockSize / sizeof(support::ulittle32_t))
return make_error<RawError>(raw_error_code::corrupt_file,
"Too many directory blocks.");
// Make sure the directory block array fits within the file.
if (auto EC = checkOffset(BufferRef, getDirectoryBlockArray()))
return EC;
return Error::success();
}
Error PDBFile::parseStreamData() {
assert(Context && Context->SB);
if (DirectoryStream)
return Error::success();
uint32_t NumStreams = 0;
const SuperBlock *SB = Context->SB;
// Normally you can't use a MappedBlockStream without having fully parsed the
// PDB file, because it accesses the directory and various other things, which
// is exactly what we are attempting to parse. By specifying a custom
// subclass of IPDBStreamData which only accesses the fields that have already
// been parsed, we can avoid this and reuse MappedBlockStream.
auto DS = MappedBlockStream::createDirectoryStream(*this);
if (!DS)
return DS.takeError();
codeview::StreamReader Reader(**DS);
if (auto EC = Reader.readInteger(NumStreams))
return EC;
if (auto EC = Reader.readArray(Context->StreamSizes, NumStreams))
return EC;
for (uint32_t I = 0; I < NumStreams; ++I) {
uint64_t NumExpectedStreamBlocks =
bytesToBlocks(getStreamByteSize(I), SB->BlockSize);
ulittle_array Blocks;
if (auto EC = Reader.readArray(Blocks, NumExpectedStreamBlocks))
return EC;
Context->StreamMap.push_back(Blocks);
}
// We should have read exactly SB->NumDirectoryBytes bytes.
assert(Reader.bytesRemaining() == 0);
DirectoryStream = std::move(*DS);
return Error::success();
}
llvm::ArrayRef<support::ulittle32_t> PDBFile::getDirectoryBlockArray() const {
return makeArrayRef(
reinterpret_cast<const support::ulittle32_t *>(
Context->Buffer->getBufferStart() + getBlockMapOffset()),
getNumDirectoryBlocks());
}
Expected<InfoStream &> PDBFile::getPDBInfoStream() {
if (!Info) {
auto InfoS = MappedBlockStream::createIndexedStream(StreamPDB, *this);
if (!InfoS)
return InfoS.takeError();
auto TempInfo = llvm::make_unique<InfoStream>(std::move(*InfoS));
if (auto EC = TempInfo->reload())
return std::move(EC);
Info = std::move(TempInfo);
}
return *Info;
}
Expected<DbiStream &> PDBFile::getPDBDbiStream() {
if (!Dbi) {
auto DbiS = MappedBlockStream::createIndexedStream(StreamDBI, *this);
if (!DbiS)
return DbiS.takeError();
auto TempDbi = llvm::make_unique<DbiStream>(*this, std::move(*DbiS));
if (auto EC = TempDbi->reload())
return std::move(EC);
Dbi = std::move(TempDbi);
}
return *Dbi;
}
Expected<TpiStream &> PDBFile::getPDBTpiStream() {
if (!Tpi) {
auto TpiS = MappedBlockStream::createIndexedStream(StreamTPI, *this);
if (!TpiS)
return TpiS.takeError();
auto TempTpi = llvm::make_unique<TpiStream>(*this, std::move(*TpiS));
if (auto EC = TempTpi->reload())
return std::move(EC);
Tpi = std::move(TempTpi);
}
return *Tpi;
}
Expected<TpiStream &> PDBFile::getPDBIpiStream() {
if (!Ipi) {
auto IpiS = MappedBlockStream::createIndexedStream(StreamIPI, *this);
if (!IpiS)
return IpiS.takeError();
auto TempIpi = llvm::make_unique<TpiStream>(*this, std::move(*IpiS));
if (auto EC = TempIpi->reload())
return std::move(EC);
Ipi = std::move(TempIpi);
}
return *Ipi;
}
Expected<PublicsStream &> PDBFile::getPDBPublicsStream() {
if (!Publics) {
auto DbiS = getPDBDbiStream();
if (!DbiS)
return DbiS.takeError();
uint32_t PublicsStreamNum = DbiS->getPublicSymbolStreamIndex();
auto PublicS =
MappedBlockStream::createIndexedStream(PublicsStreamNum, *this);
if (!PublicS)
return PublicS.takeError();
auto TempPublics =
llvm::make_unique<PublicsStream>(*this, std::move(*PublicS));
if (auto EC = TempPublics->reload())
return std::move(EC);
Publics = std::move(TempPublics);
}
return *Publics;
}
Expected<SymbolStream &> PDBFile::getPDBSymbolStream() {
if (!Symbols) {
auto DbiS = getPDBDbiStream();
if (!DbiS)
return DbiS.takeError();
uint32_t SymbolStreamNum = DbiS->getSymRecordStreamIndex();
auto SymbolS =
MappedBlockStream::createIndexedStream(SymbolStreamNum, *this);
if (!SymbolS)
return SymbolS.takeError();
auto TempSymbols = llvm::make_unique<SymbolStream>(std::move(*SymbolS));
if (auto EC = TempSymbols->reload())
return std::move(EC);
Symbols = std::move(TempSymbols);
}
return *Symbols;
}
Expected<NameHashTable &> PDBFile::getStringTable() {
if (!StringTable || !StringTableStream) {
auto IS = getPDBInfoStream();
if (!IS)
return IS.takeError();
uint32_t NameStreamIndex = IS->getNamedStreamIndex("/names");
if (NameStreamIndex == 0)
return make_error<RawError>(raw_error_code::no_stream);
if (NameStreamIndex >= getNumStreams())
return make_error<RawError>(raw_error_code::no_stream);
auto NS = MappedBlockStream::createIndexedStream(NameStreamIndex, *this);
if (!NS)
return NS.takeError();
codeview::StreamReader Reader(**NS);
auto N = llvm::make_unique<NameHashTable>();
if (auto EC = N->load(Reader))
return std::move(EC);
StringTable = std::move(N);
StringTableStream = std::move(*NS);
}
return *StringTable;
}