mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-24 21:25:41 +00:00
9d60e0ff0a
A broken hint is a copy where both ends are assigned different colors. When a variable gets evicted in the neighborhood of such copies, it is likely we can reconcile some of them. ** Context ** Copies are inserted during the register allocation via splitting. These split points are required to relax the constraints on the allocation problem. When such a point is inserted, both ends of the copy would not share the same color with respect to the current allocation problem. When variables get evicted, the allocation problem becomes different and some split point may not be required anymore. However, the related variables may already have been colored. This usually shows up in the assembly with pattern like this: def A ... save A to B def A use A restore A from B ... use B Whereas we could simply have done: def B ... def A use A ... use B ** Proposed Solution ** A variable having a broken hint is marked for late recoloring if and only if selecting a register for it evict another variable. Indeed, if no eviction happens this is pointless to look for recoloring opportunities as it means the situation was the same as the initial allocation problem where we had to break the hint. Finally, when everything has been allocated, we look for recoloring opportunities for all the identified candidates. The recoloring is performed very late to rely on accurate copy cost (all involved variables are allocated). The recoloring is simple unlike the last change recoloring. It propagates the color of the broken hint to all its copy-related variables. If the color is available for them, the recoloring uses it, otherwise it gives up on that hint even if a more complex coloring would have worked. The recoloring happens only if it is profitable. The profitability is evaluated using the expected frequency of the copies of the currently recolored variable with a) its current color and b) with the target color. If a) is greater or equal than b), then it is profitable and the recoloring happen. ** Example ** Consider the following example: BB1: a = b = BB2: ... = b = a Let us assume b gets split: BB1: a = b = BB2: c = b ... d = c = d = a Because of how the allocation work, b, c, and d may be assigned different colors. Now, if a gets evicted to make room for c, assuming b and d were assigned to something different than a. We end up with: BB1: a = st a, SpillSlot b = BB2: c = b ... d = c = d e = ld SpillSlot = e This is likely that we can assign the same register for b, c, and d, getting rid of 2 copies. ** Performances ** Both ARM64 and x86_64 show performance improvements of up to 3% for the llvm-testsuite + externals with Os and O3. There are a few regressions too that comes from the (in)accuracy of the block frequency estimate. <rdar://problem/18312047> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225422 91177308-0d34-0410-b5e6-96231b3b80d8