llvm/test/CodeGen/X86/avx-arith.ll
Andrew Trick 6a7770b7ae Enable MI Sched for x86.
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.

Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.

On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.

Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.

The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.

Unit tests are updated so they don't depend on SD scheduling heuristics.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192750 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-15 23:33:07 +00:00

272 lines
7.9 KiB
LLVM

; RUN: llc < %s -mtriple=x86_64-apple-darwin -mcpu=corei7-avx -mattr=+avx | FileCheck %s
; CHECK: vaddpd
define <4 x double> @addpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
entry:
%add.i = fadd <4 x double> %x, %y
ret <4 x double> %add.i
}
; CHECK: vaddpd LCP{{.*}}(%rip)
define <4 x double> @addpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
entry:
%add.i = fadd <4 x double> %y, <double 4.500000e+00, double 3.400000e+00, double 2.300000e+00, double 1.200000e+00>
ret <4 x double> %add.i
}
; CHECK: vaddps
define <8 x float> @addps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
entry:
%add.i = fadd <8 x float> %x, %y
ret <8 x float> %add.i
}
; CHECK: vaddps LCP{{.*}}(%rip)
define <8 x float> @addps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
entry:
%add.i = fadd <8 x float> %y, <float 4.500000e+00, float 0x400B333340000000, float 0x4002666660000000, float 0x3FF3333340000000, float 4.500000e+00, float 0x400B333340000000, float 0x4002666660000000, float 0x3FF3333340000000>
ret <8 x float> %add.i
}
; CHECK: vsubpd
define <4 x double> @subpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
entry:
%sub.i = fsub <4 x double> %x, %y
ret <4 x double> %sub.i
}
; CHECK: vsubpd (%
define <4 x double> @subpd256fold(<4 x double> %y, <4 x double>* nocapture %x) nounwind uwtable readonly ssp {
entry:
%tmp2 = load <4 x double>* %x, align 32
%sub.i = fsub <4 x double> %y, %tmp2
ret <4 x double> %sub.i
}
; CHECK: vsubps
define <8 x float> @subps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
entry:
%sub.i = fsub <8 x float> %x, %y
ret <8 x float> %sub.i
}
; CHECK: vsubps (%
define <8 x float> @subps256fold(<8 x float> %y, <8 x float>* nocapture %x) nounwind uwtable readonly ssp {
entry:
%tmp2 = load <8 x float>* %x, align 32
%sub.i = fsub <8 x float> %y, %tmp2
ret <8 x float> %sub.i
}
; CHECK: vmulpd
define <4 x double> @mulpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
entry:
%mul.i = fmul <4 x double> %x, %y
ret <4 x double> %mul.i
}
; CHECK: vmulpd LCP{{.*}}(%rip)
define <4 x double> @mulpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
entry:
%mul.i = fmul <4 x double> %y, <double 4.500000e+00, double 3.400000e+00, double 2.300000e+00, double 1.200000e+00>
ret <4 x double> %mul.i
}
; CHECK: vmulps
define <8 x float> @mulps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
entry:
%mul.i = fmul <8 x float> %x, %y
ret <8 x float> %mul.i
}
; CHECK: vmulps LCP{{.*}}(%rip)
define <8 x float> @mulps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
entry:
%mul.i = fmul <8 x float> %y, <float 4.500000e+00, float 0x400B333340000000, float 0x4002666660000000, float 0x3FF3333340000000, float 4.500000e+00, float 0x400B333340000000, float 0x4002666660000000, float 0x3FF3333340000000>
ret <8 x float> %mul.i
}
; CHECK: vdivpd
define <4 x double> @divpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
entry:
%div.i = fdiv <4 x double> %x, %y
ret <4 x double> %div.i
}
; CHECK: vdivpd LCP{{.*}}(%rip)
define <4 x double> @divpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
entry:
%div.i = fdiv <4 x double> %y, <double 4.500000e+00, double 3.400000e+00, double 2.300000e+00, double 1.200000e+00>
ret <4 x double> %div.i
}
; CHECK: vdivps
define <8 x float> @divps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
entry:
%div.i = fdiv <8 x float> %x, %y
ret <8 x float> %div.i
}
; CHECK: vdivps LCP{{.*}}(%rip)
define <8 x float> @divps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
entry:
%div.i = fdiv <8 x float> %y, <float 4.500000e+00, float 0x400B333340000000, float 0x4002666660000000, float 0x3FF3333340000000, float 4.500000e+00, float 0x400B333340000000, float 0x4002666660000000, float 0x3FF3333340000000>
ret <8 x float> %div.i
}
; CHECK: vsqrtss
define float @sqrtA(float %a) nounwind uwtable readnone ssp {
entry:
%conv1 = tail call float @sqrtf(float %a) nounwind readnone
ret float %conv1
}
declare double @sqrt(double) readnone
; CHECK: vsqrtsd
define double @sqrtB(double %a) nounwind uwtable readnone ssp {
entry:
%call = tail call double @sqrt(double %a) nounwind readnone
ret double %call
}
declare float @sqrtf(float) readnone
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpaddq %xmm
; CHECK-NEXT: vpaddq %xmm
; CHECK-NEXT: vinsertf128 $1
define <4 x i64> @vpaddq(<4 x i64> %i, <4 x i64> %j) nounwind readnone {
%x = add <4 x i64> %i, %j
ret <4 x i64> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpaddd %xmm
; CHECK-NEXT: vpaddd %xmm
; CHECK-NEXT: vinsertf128 $1
define <8 x i32> @vpaddd(<8 x i32> %i, <8 x i32> %j) nounwind readnone {
%x = add <8 x i32> %i, %j
ret <8 x i32> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpaddw %xmm
; CHECK-NEXT: vpaddw %xmm
; CHECK-NEXT: vinsertf128 $1
define <16 x i16> @vpaddw(<16 x i16> %i, <16 x i16> %j) nounwind readnone {
%x = add <16 x i16> %i, %j
ret <16 x i16> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpaddb %xmm
; CHECK-NEXT: vpaddb %xmm
; CHECK-NEXT: vinsertf128 $1
define <32 x i8> @vpaddb(<32 x i8> %i, <32 x i8> %j) nounwind readnone {
%x = add <32 x i8> %i, %j
ret <32 x i8> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpsubq %xmm
; CHECK-NEXT: vpsubq %xmm
; CHECK-NEXT: vinsertf128 $1
define <4 x i64> @vpsubq(<4 x i64> %i, <4 x i64> %j) nounwind readnone {
%x = sub <4 x i64> %i, %j
ret <4 x i64> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpsubd %xmm
; CHECK-NEXT: vpsubd %xmm
; CHECK-NEXT: vinsertf128 $1
define <8 x i32> @vpsubd(<8 x i32> %i, <8 x i32> %j) nounwind readnone {
%x = sub <8 x i32> %i, %j
ret <8 x i32> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpsubw %xmm
; CHECK-NEXT: vpsubw %xmm
; CHECK-NEXT: vinsertf128 $1
define <16 x i16> @vpsubw(<16 x i16> %i, <16 x i16> %j) nounwind readnone {
%x = sub <16 x i16> %i, %j
ret <16 x i16> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpsubb %xmm
; CHECK-NEXT: vpsubb %xmm
; CHECK-NEXT: vinsertf128 $1
define <32 x i8> @vpsubb(<32 x i8> %i, <32 x i8> %j) nounwind readnone {
%x = sub <32 x i8> %i, %j
ret <32 x i8> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpmulld %xmm
; CHECK-NEXT: vpmulld %xmm
; CHECK-NEXT: vinsertf128 $1
define <8 x i32> @vpmulld(<8 x i32> %i, <8 x i32> %j) nounwind readnone {
%x = mul <8 x i32> %i, %j
ret <8 x i32> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpmullw %xmm
; CHECK-NEXT: vpmullw %xmm
; CHECK-NEXT: vinsertf128 $1
define <16 x i16> @vpmullw(<16 x i16> %i, <16 x i16> %j) nounwind readnone {
%x = mul <16 x i16> %i, %j
ret <16 x i16> %x
}
; CHECK: vextractf128 $1
; CHECK-NEXT: vextractf128 $1
; CHECK-NEXT: vpmuludq %xmm
; CHECK-NEXT: vpsrlq $32, %xmm
; CHECK-NEXT: vpmuludq %xmm
; CHECK-NEXT: vpsllq $32, %xmm
; CHECK-NEXT: vpaddq %xmm
; CHECK-NEXT: vpsrlq $32, %xmm
; CHECK-NEXT: vpmuludq %xmm
; CHECK-NEXT: vpsllq $32, %xmm
; CHECK-NEXT: vpaddq %xmm
; CHECK-NEXT: vpmuludq %xmm
; CHECK-NEXT: vpsrlq $32, %xmm
; CHECK-NEXT: vpmuludq %xmm
; CHECK-NEXT: vpsllq $32, %xmm
; CHECK-NEXT: vpaddq %xmm
; CHECK-NEXT: vpsrlq $32, %xmm
; CHECK-NEXT: vpmuludq %xmm
; CHECK-NEXT: vpsllq $32, %xmm
; CHECK-NEXT: vpaddq %xmm
; CHECK-NEXT: vinsertf128 $1
define <4 x i64> @mul-v4i64(<4 x i64> %i, <4 x i64> %j) nounwind readnone {
%x = mul <4 x i64> %i, %j
ret <4 x i64> %x
}
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define <4 x float> @int_sqrt_ss() {
; CHECK: int_sqrt_ss
; CHECK: vsqrtss
%x0 = load float addrspace(1)* undef, align 8
%x1 = insertelement <4 x float> undef, float %x0, i32 0
%x2 = call <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float> %x1) nounwind
ret <4 x float> %x2
}