mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-09 21:50:38 +00:00
2df3f58a0b
These the methods are target-independent since they simply scan the memory operands. They can live in TargetInstrInfoImpl. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137063 91177308-0d34-0410-b5e6-96231b3b80d8
367 lines
17 KiB
C++
367 lines
17 KiB
C++
//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the X86 implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef X86INSTRUCTIONINFO_H
|
|
#define X86INSTRUCTIONINFO_H
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "X86.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
|
|
#define GET_INSTRINFO_HEADER
|
|
#include "X86GenInstrInfo.inc"
|
|
|
|
namespace llvm {
|
|
class X86RegisterInfo;
|
|
class X86TargetMachine;
|
|
|
|
namespace X86 {
|
|
// X86 specific condition code. These correspond to X86_*_COND in
|
|
// X86InstrInfo.td. They must be kept in synch.
|
|
enum CondCode {
|
|
COND_A = 0,
|
|
COND_AE = 1,
|
|
COND_B = 2,
|
|
COND_BE = 3,
|
|
COND_E = 4,
|
|
COND_G = 5,
|
|
COND_GE = 6,
|
|
COND_L = 7,
|
|
COND_LE = 8,
|
|
COND_NE = 9,
|
|
COND_NO = 10,
|
|
COND_NP = 11,
|
|
COND_NS = 12,
|
|
COND_O = 13,
|
|
COND_P = 14,
|
|
COND_S = 15,
|
|
|
|
// Artificial condition codes. These are used by AnalyzeBranch
|
|
// to indicate a block terminated with two conditional branches to
|
|
// the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
|
|
// which can't be represented on x86 with a single condition. These
|
|
// are never used in MachineInstrs.
|
|
COND_NE_OR_P,
|
|
COND_NP_OR_E,
|
|
|
|
COND_INVALID
|
|
};
|
|
|
|
// Turn condition code into conditional branch opcode.
|
|
unsigned GetCondBranchFromCond(CondCode CC);
|
|
|
|
/// GetOppositeBranchCondition - Return the inverse of the specified cond,
|
|
/// e.g. turning COND_E to COND_NE.
|
|
CondCode GetOppositeBranchCondition(X86::CondCode CC);
|
|
} // end namespace X86;
|
|
|
|
|
|
/// isGlobalStubReference - Return true if the specified TargetFlag operand is
|
|
/// a reference to a stub for a global, not the global itself.
|
|
inline static bool isGlobalStubReference(unsigned char TargetFlag) {
|
|
switch (TargetFlag) {
|
|
case X86II::MO_DLLIMPORT: // dllimport stub.
|
|
case X86II::MO_GOTPCREL: // rip-relative GOT reference.
|
|
case X86II::MO_GOT: // normal GOT reference.
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
|
|
case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
|
|
case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isGlobalRelativeToPICBase - Return true if the specified global value
|
|
/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
|
|
/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
|
|
inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
|
|
switch (TargetFlag) {
|
|
case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
|
|
case X86II::MO_GOT: // isPICStyleGOT: other global.
|
|
case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
|
|
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
|
|
case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
|
|
case X86II::MO_TLVP: // ??? Pretty sure..
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline static bool isScale(const MachineOperand &MO) {
|
|
return MO.isImm() &&
|
|
(MO.getImm() == 1 || MO.getImm() == 2 ||
|
|
MO.getImm() == 4 || MO.getImm() == 8);
|
|
}
|
|
|
|
inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
|
|
if (MI->getOperand(Op).isFI()) return true;
|
|
return Op+4 <= MI->getNumOperands() &&
|
|
MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
|
|
MI->getOperand(Op+2).isReg() &&
|
|
(MI->getOperand(Op+3).isImm() ||
|
|
MI->getOperand(Op+3).isGlobal() ||
|
|
MI->getOperand(Op+3).isCPI() ||
|
|
MI->getOperand(Op+3).isJTI());
|
|
}
|
|
|
|
inline static bool isMem(const MachineInstr *MI, unsigned Op) {
|
|
if (MI->getOperand(Op).isFI()) return true;
|
|
return Op+5 <= MI->getNumOperands() &&
|
|
MI->getOperand(Op+4).isReg() &&
|
|
isLeaMem(MI, Op);
|
|
}
|
|
|
|
class X86InstrInfo : public X86GenInstrInfo {
|
|
X86TargetMachine &TM;
|
|
const X86RegisterInfo RI;
|
|
|
|
/// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
|
|
/// RegOp2MemOpTable2 - Load / store folding opcode maps.
|
|
///
|
|
DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
|
|
DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
|
|
DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
|
|
DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
|
|
|
|
/// MemOp2RegOpTable - Load / store unfolding opcode map.
|
|
///
|
|
DenseMap<unsigned, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
|
|
|
|
public:
|
|
explicit X86InstrInfo(X86TargetMachine &tm);
|
|
|
|
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
|
|
/// such, whenever a client has an instance of instruction info, it should
|
|
/// always be able to get register info as well (through this method).
|
|
///
|
|
virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
|
|
|
|
/// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
|
|
/// extension instruction. That is, it's like a copy where it's legal for the
|
|
/// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
|
|
/// true, then it's expected the pre-extension value is available as a subreg
|
|
/// of the result register. This also returns the sub-register index in
|
|
/// SubIdx.
|
|
virtual bool isCoalescableExtInstr(const MachineInstr &MI,
|
|
unsigned &SrcReg, unsigned &DstReg,
|
|
unsigned &SubIdx) const;
|
|
|
|
unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
|
|
/// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
|
|
/// stack locations as well. This uses a heuristic so it isn't
|
|
/// reliable for correctness.
|
|
unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
|
|
int &FrameIndex) const;
|
|
|
|
unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
|
|
/// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
|
|
/// stack locations as well. This uses a heuristic so it isn't
|
|
/// reliable for correctness.
|
|
unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
|
|
int &FrameIndex) const;
|
|
|
|
bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
|
|
AliasAnalysis *AA) const;
|
|
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
unsigned DestReg, unsigned SubIdx,
|
|
const MachineInstr *Orig,
|
|
const TargetRegisterInfo &TRI) const;
|
|
|
|
/// convertToThreeAddress - This method must be implemented by targets that
|
|
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
|
|
/// may be able to convert a two-address instruction into a true
|
|
/// three-address instruction on demand. This allows the X86 target (for
|
|
/// example) to convert ADD and SHL instructions into LEA instructions if they
|
|
/// would require register copies due to two-addressness.
|
|
///
|
|
/// This method returns a null pointer if the transformation cannot be
|
|
/// performed, otherwise it returns the new instruction.
|
|
///
|
|
virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
LiveVariables *LV) const;
|
|
|
|
/// commuteInstruction - We have a few instructions that must be hacked on to
|
|
/// commute them.
|
|
///
|
|
virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
|
|
|
|
// Branch analysis.
|
|
virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
|
|
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const;
|
|
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
|
|
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
DebugLoc DL) const;
|
|
virtual void copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const;
|
|
virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned SrcReg, bool isKill, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
|
|
SmallVectorImpl<MachineOperand> &Addr,
|
|
const TargetRegisterClass *RC,
|
|
MachineInstr::mmo_iterator MMOBegin,
|
|
MachineInstr::mmo_iterator MMOEnd,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const;
|
|
|
|
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned DestReg, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
|
|
SmallVectorImpl<MachineOperand> &Addr,
|
|
const TargetRegisterClass *RC,
|
|
MachineInstr::mmo_iterator MMOBegin,
|
|
MachineInstr::mmo_iterator MMOEnd,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const;
|
|
virtual
|
|
MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
|
|
int FrameIx, uint64_t Offset,
|
|
const MDNode *MDPtr,
|
|
DebugLoc DL) const;
|
|
|
|
/// foldMemoryOperand - If this target supports it, fold a load or store of
|
|
/// the specified stack slot into the specified machine instruction for the
|
|
/// specified operand(s). If this is possible, the target should perform the
|
|
/// folding and return true, otherwise it should return false. If it folds
|
|
/// the instruction, it is likely that the MachineInstruction the iterator
|
|
/// references has been changed.
|
|
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
int FrameIndex) const;
|
|
|
|
/// foldMemoryOperand - Same as the previous version except it allows folding
|
|
/// of any load and store from / to any address, not just from a specific
|
|
/// stack slot.
|
|
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr* LoadMI) const;
|
|
|
|
/// canFoldMemoryOperand - Returns true if the specified load / store is
|
|
/// folding is possible.
|
|
virtual bool canFoldMemoryOperand(const MachineInstr*,
|
|
const SmallVectorImpl<unsigned> &) const;
|
|
|
|
/// unfoldMemoryOperand - Separate a single instruction which folded a load or
|
|
/// a store or a load and a store into two or more instruction. If this is
|
|
/// possible, returns true as well as the new instructions by reference.
|
|
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
|
|
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const;
|
|
|
|
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
|
|
SmallVectorImpl<SDNode*> &NewNodes) const;
|
|
|
|
/// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
|
|
/// instruction after load / store are unfolded from an instruction of the
|
|
/// specified opcode. It returns zero if the specified unfolding is not
|
|
/// possible. If LoadRegIndex is non-null, it is filled in with the operand
|
|
/// index of the operand which will hold the register holding the loaded
|
|
/// value.
|
|
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
|
|
bool UnfoldLoad, bool UnfoldStore,
|
|
unsigned *LoadRegIndex = 0) const;
|
|
|
|
/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
|
|
/// to determine if two loads are loading from the same base address. It
|
|
/// should only return true if the base pointers are the same and the
|
|
/// only differences between the two addresses are the offset. It also returns
|
|
/// the offsets by reference.
|
|
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
|
|
int64_t &Offset1, int64_t &Offset2) const;
|
|
|
|
/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
|
|
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
|
|
/// be scheduled togther. On some targets if two loads are loading from
|
|
/// addresses in the same cache line, it's better if they are scheduled
|
|
/// together. This function takes two integers that represent the load offsets
|
|
/// from the common base address. It returns true if it decides it's desirable
|
|
/// to schedule the two loads together. "NumLoads" is the number of loads that
|
|
/// have already been scheduled after Load1.
|
|
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
|
|
int64_t Offset1, int64_t Offset2,
|
|
unsigned NumLoads) const;
|
|
|
|
virtual void getNoopForMachoTarget(MCInst &NopInst) const;
|
|
|
|
virtual
|
|
bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
|
|
|
|
/// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
|
|
/// instruction that defines the specified register class.
|
|
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
|
|
|
|
static bool isX86_64ExtendedReg(const MachineOperand &MO) {
|
|
if (!MO.isReg()) return false;
|
|
return X86II::isX86_64ExtendedReg(MO.getReg());
|
|
}
|
|
|
|
/// getGlobalBaseReg - Return a virtual register initialized with the
|
|
/// the global base register value. Output instructions required to
|
|
/// initialize the register in the function entry block, if necessary.
|
|
///
|
|
unsigned getGlobalBaseReg(MachineFunction *MF) const;
|
|
|
|
/// GetSSEDomain - Return the SSE execution domain of MI as the first element,
|
|
/// and a bitmask of possible arguments to SetSSEDomain ase the second.
|
|
std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
|
|
|
|
/// SetSSEDomain - Set the SSEDomain of MI.
|
|
void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
|
|
|
|
MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
unsigned OpNum,
|
|
const SmallVectorImpl<MachineOperand> &MOs,
|
|
unsigned Size, unsigned Alignment) const;
|
|
|
|
bool isHighLatencyDef(int opc) const;
|
|
|
|
bool hasHighOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineRegisterInfo *MRI,
|
|
const MachineInstr *DefMI, unsigned DefIdx,
|
|
const MachineInstr *UseMI, unsigned UseIdx) const;
|
|
|
|
private:
|
|
MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
|
|
MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
LiveVariables *LV) const;
|
|
|
|
/// isFrameOperand - Return true and the FrameIndex if the specified
|
|
/// operand and follow operands form a reference to the stack frame.
|
|
bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
|
|
int &FrameIndex) const;
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|