mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-30 15:10:33 +00:00
8c3a02f8fe
This adds the domtree analysis to the new pass manager. The analysis returns the same DominatorTree result entity used by the old pass manager and essentially all of the code is shared. We just have different boilerplate for running and printing the analysis. I've converted one test to run in both modes just to make sure this is exercised while both are live in the tree. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225969 91177308-0d34-0410-b5e6-96231b3b80d8
359 lines
12 KiB
C++
359 lines
12 KiB
C++
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simple dominator construction algorithms for finding
|
|
// forward dominators. Postdominators are available in libanalysis, but are not
|
|
// included in libvmcore, because it's not needed. Forward dominators are
|
|
// needed to support the Verifier pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericDomTreeConstruction.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
// Always verify dominfo if expensive checking is enabled.
|
|
#ifdef XDEBUG
|
|
static bool VerifyDomInfo = true;
|
|
#else
|
|
static bool VerifyDomInfo = false;
|
|
#endif
|
|
static cl::opt<bool,true>
|
|
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
|
|
cl::desc("Verify dominator info (time consuming)"));
|
|
|
|
bool BasicBlockEdge::isSingleEdge() const {
|
|
const TerminatorInst *TI = Start->getTerminator();
|
|
unsigned NumEdgesToEnd = 0;
|
|
for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
|
|
if (TI->getSuccessor(i) == End)
|
|
++NumEdgesToEnd;
|
|
if (NumEdgesToEnd >= 2)
|
|
return false;
|
|
}
|
|
assert(NumEdgesToEnd == 1);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Provide public access to DominatorTree information. Implementation details
|
|
// can be found in Dominators.h, GenericDomTree.h, and
|
|
// GenericDomTreeConstruction.h.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
|
|
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
|
|
|
|
#define LLVM_COMMA ,
|
|
TEMPLATE_INSTANTIATION(void llvm::Calculate<Function LLVM_COMMA BasicBlock *>(
|
|
DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT LLVM_COMMA
|
|
Function &F));
|
|
TEMPLATE_INSTANTIATION(
|
|
void llvm::Calculate<Function LLVM_COMMA Inverse<BasicBlock *> >(
|
|
DominatorTreeBase<GraphTraits<Inverse<BasicBlock *> >::NodeType> &DT
|
|
LLVM_COMMA Function &F));
|
|
#undef LLVM_COMMA
|
|
|
|
// dominates - Return true if Def dominates a use in User. This performs
|
|
// the special checks necessary if Def and User are in the same basic block.
|
|
// Note that Def doesn't dominate a use in Def itself!
|
|
bool DominatorTree::dominates(const Instruction *Def,
|
|
const Instruction *User) const {
|
|
const BasicBlock *UseBB = User->getParent();
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Any unreachable use is dominated, even if Def == User.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
// An instruction doesn't dominate a use in itself.
|
|
if (Def == User)
|
|
return false;
|
|
|
|
// The value defined by an invoke dominates an instruction only if
|
|
// it dominates every instruction in UseBB.
|
|
// A PHI is dominated only if the instruction dominates every possible use
|
|
// in the UseBB.
|
|
if (isa<InvokeInst>(Def) || isa<PHINode>(User))
|
|
return dominates(Def, UseBB);
|
|
|
|
if (DefBB != UseBB)
|
|
return dominates(DefBB, UseBB);
|
|
|
|
// Loop through the basic block until we find Def or User.
|
|
BasicBlock::const_iterator I = DefBB->begin();
|
|
for (; &*I != Def && &*I != User; ++I)
|
|
/*empty*/;
|
|
|
|
return &*I == Def;
|
|
}
|
|
|
|
// true if Def would dominate a use in any instruction in UseBB.
|
|
// note that dominates(Def, Def->getParent()) is false.
|
|
bool DominatorTree::dominates(const Instruction *Def,
|
|
const BasicBlock *UseBB) const {
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Any unreachable use is dominated, even if DefBB == UseBB.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
if (DefBB == UseBB)
|
|
return false;
|
|
|
|
const InvokeInst *II = dyn_cast<InvokeInst>(Def);
|
|
if (!II)
|
|
return dominates(DefBB, UseBB);
|
|
|
|
// Invoke results are only usable in the normal destination, not in the
|
|
// exceptional destination.
|
|
BasicBlock *NormalDest = II->getNormalDest();
|
|
BasicBlockEdge E(DefBB, NormalDest);
|
|
return dominates(E, UseBB);
|
|
}
|
|
|
|
bool DominatorTree::dominates(const BasicBlockEdge &BBE,
|
|
const BasicBlock *UseBB) const {
|
|
// Assert that we have a single edge. We could handle them by simply
|
|
// returning false, but since isSingleEdge is linear on the number of
|
|
// edges, the callers can normally handle them more efficiently.
|
|
assert(BBE.isSingleEdge());
|
|
|
|
// If the BB the edge ends in doesn't dominate the use BB, then the
|
|
// edge also doesn't.
|
|
const BasicBlock *Start = BBE.getStart();
|
|
const BasicBlock *End = BBE.getEnd();
|
|
if (!dominates(End, UseBB))
|
|
return false;
|
|
|
|
// Simple case: if the end BB has a single predecessor, the fact that it
|
|
// dominates the use block implies that the edge also does.
|
|
if (End->getSinglePredecessor())
|
|
return true;
|
|
|
|
// The normal edge from the invoke is critical. Conceptually, what we would
|
|
// like to do is split it and check if the new block dominates the use.
|
|
// With X being the new block, the graph would look like:
|
|
//
|
|
// DefBB
|
|
// /\ . .
|
|
// / \ . .
|
|
// / \ . .
|
|
// / \ | |
|
|
// A X B C
|
|
// | \ | /
|
|
// . \|/
|
|
// . NormalDest
|
|
// .
|
|
//
|
|
// Given the definition of dominance, NormalDest is dominated by X iff X
|
|
// dominates all of NormalDest's predecessors (X, B, C in the example). X
|
|
// trivially dominates itself, so we only have to find if it dominates the
|
|
// other predecessors. Since the only way out of X is via NormalDest, X can
|
|
// only properly dominate a node if NormalDest dominates that node too.
|
|
for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
|
|
PI != E; ++PI) {
|
|
const BasicBlock *BB = *PI;
|
|
if (BB == Start)
|
|
continue;
|
|
|
|
if (!dominates(End, BB))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
|
|
// Assert that we have a single edge. We could handle them by simply
|
|
// returning false, but since isSingleEdge is linear on the number of
|
|
// edges, the callers can normally handle them more efficiently.
|
|
assert(BBE.isSingleEdge());
|
|
|
|
Instruction *UserInst = cast<Instruction>(U.getUser());
|
|
// A PHI in the end of the edge is dominated by it.
|
|
PHINode *PN = dyn_cast<PHINode>(UserInst);
|
|
if (PN && PN->getParent() == BBE.getEnd() &&
|
|
PN->getIncomingBlock(U) == BBE.getStart())
|
|
return true;
|
|
|
|
// Otherwise use the edge-dominates-block query, which
|
|
// handles the crazy critical edge cases properly.
|
|
const BasicBlock *UseBB;
|
|
if (PN)
|
|
UseBB = PN->getIncomingBlock(U);
|
|
else
|
|
UseBB = UserInst->getParent();
|
|
return dominates(BBE, UseBB);
|
|
}
|
|
|
|
bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
|
|
Instruction *UserInst = cast<Instruction>(U.getUser());
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Determine the block in which the use happens. PHI nodes use
|
|
// their operands on edges; simulate this by thinking of the use
|
|
// happening at the end of the predecessor block.
|
|
const BasicBlock *UseBB;
|
|
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
|
|
UseBB = PN->getIncomingBlock(U);
|
|
else
|
|
UseBB = UserInst->getParent();
|
|
|
|
// Any unreachable use is dominated, even if Def == User.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
// Invoke instructions define their return values on the edges
|
|
// to their normal successors, so we have to handle them specially.
|
|
// Among other things, this means they don't dominate anything in
|
|
// their own block, except possibly a phi, so we don't need to
|
|
// walk the block in any case.
|
|
if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
|
|
BasicBlock *NormalDest = II->getNormalDest();
|
|
BasicBlockEdge E(DefBB, NormalDest);
|
|
return dominates(E, U);
|
|
}
|
|
|
|
// If the def and use are in different blocks, do a simple CFG dominator
|
|
// tree query.
|
|
if (DefBB != UseBB)
|
|
return dominates(DefBB, UseBB);
|
|
|
|
// Ok, def and use are in the same block. If the def is an invoke, it
|
|
// doesn't dominate anything in the block. If it's a PHI, it dominates
|
|
// everything in the block.
|
|
if (isa<PHINode>(UserInst))
|
|
return true;
|
|
|
|
// Otherwise, just loop through the basic block until we find Def or User.
|
|
BasicBlock::const_iterator I = DefBB->begin();
|
|
for (; &*I != Def && &*I != UserInst; ++I)
|
|
/*empty*/;
|
|
|
|
return &*I != UserInst;
|
|
}
|
|
|
|
bool DominatorTree::isReachableFromEntry(const Use &U) const {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
|
|
// ConstantExprs aren't really reachable from the entry block, but they
|
|
// don't need to be treated like unreachable code either.
|
|
if (!I) return true;
|
|
|
|
// PHI nodes use their operands on their incoming edges.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I))
|
|
return isReachableFromEntry(PN->getIncomingBlock(U));
|
|
|
|
// Everything else uses their operands in their own block.
|
|
return isReachableFromEntry(I->getParent());
|
|
}
|
|
|
|
void DominatorTree::verifyDomTree() const {
|
|
if (!VerifyDomInfo)
|
|
return;
|
|
|
|
Function &F = *getRoot()->getParent();
|
|
|
|
DominatorTree OtherDT;
|
|
OtherDT.recalculate(F);
|
|
if (compare(OtherDT)) {
|
|
errs() << "DominatorTree is not up to date!\nComputed:\n";
|
|
print(errs());
|
|
errs() << "\nActual:\n";
|
|
OtherDT.print(errs());
|
|
abort();
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTreeAnalysis and related pass implementations
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the DominatorTreeAnalysis which is used with the new pass
|
|
// manager. It also implements some methods from utility passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DominatorTree DominatorTreeAnalysis::run(Function &F) {
|
|
DominatorTree DT;
|
|
DT.recalculate(F);
|
|
return DT;
|
|
}
|
|
|
|
char DominatorTreeAnalysis::PassID;
|
|
|
|
DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
|
|
FunctionAnalysisManager *AM) {
|
|
OS << "DominatorTree for function: " << F.getName() << "\n";
|
|
AM->getResult<DominatorTreeAnalysis>(F).print(OS);
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
|
|
FunctionAnalysisManager *AM) {
|
|
AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTreeWrapperPass Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The implementation details of the wrapper pass that holds a DominatorTree
|
|
// suitable for use with the legacy pass manager.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char DominatorTreeWrapperPass::ID = 0;
|
|
INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
|
|
"Dominator Tree Construction", true, true)
|
|
|
|
bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
|
|
DT.recalculate(F);
|
|
return false;
|
|
}
|
|
|
|
void DominatorTreeWrapperPass::verifyAnalysis() const { DT.verifyDomTree(); }
|
|
|
|
void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
|
|
DT.print(OS);
|
|
}
|
|
|