llvm/lib/IR/Function.cpp
Pete Cooper a641a4a89e Store intrinsic ID by value in Function instead of a string lookup. NFC.
On 64-bit targets, Function has 4-bytes of padding in its struct layout.

This uses the space for the intrinsic ID. It is set and recalculated whenever the function name is set.  This is similar to the current behavior which clears the function from the intrinsic ID cache when its renamed.

The intrinsic cache itself is removed as the only purpose was to speedup calls to getIntrinsicID() which now just reading the new field in the struct.

Reviewed by Duncan.  http://reviews.llvm.org/D9836

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237642 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-19 00:24:26 +00:00

990 lines
33 KiB
C++

//===-- Function.cpp - Implement the Global object classes ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Function class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Function.h"
#include "LLVMContextImpl.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/StringPool.h"
#include "llvm/Support/Threading.h"
using namespace llvm;
// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class llvm::SymbolTableListTraits<Argument, Function>;
template class llvm::SymbolTableListTraits<BasicBlock, Function>;
//===----------------------------------------------------------------------===//
// Argument Implementation
//===----------------------------------------------------------------------===//
void Argument::anchor() { }
Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
: Value(Ty, Value::ArgumentVal) {
Parent = nullptr;
if (Par)
Par->getArgumentList().push_back(this);
setName(Name);
}
void Argument::setParent(Function *parent) {
Parent = parent;
}
/// getArgNo - Return the index of this formal argument in its containing
/// function. For example in "void foo(int a, float b)" a is 0 and b is 1.
unsigned Argument::getArgNo() const {
const Function *F = getParent();
assert(F && "Argument is not in a function");
Function::const_arg_iterator AI = F->arg_begin();
unsigned ArgIdx = 0;
for (; &*AI != this; ++AI)
++ArgIdx;
return ArgIdx;
}
/// hasNonNullAttr - Return true if this argument has the nonnull attribute on
/// it in its containing function. Also returns true if at least one byte is
/// known to be dereferenceable and the pointer is in addrspace(0).
bool Argument::hasNonNullAttr() const {
if (!getType()->isPointerTy()) return false;
if (getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::NonNull))
return true;
else if (getDereferenceableBytes() > 0 &&
getType()->getPointerAddressSpace() == 0)
return true;
return false;
}
/// hasByValAttr - Return true if this argument has the byval attribute on it
/// in its containing function.
bool Argument::hasByValAttr() const {
if (!getType()->isPointerTy()) return false;
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::ByVal);
}
/// \brief Return true if this argument has the inalloca attribute on it in
/// its containing function.
bool Argument::hasInAllocaAttr() const {
if (!getType()->isPointerTy()) return false;
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::InAlloca);
}
bool Argument::hasByValOrInAllocaAttr() const {
if (!getType()->isPointerTy()) return false;
AttributeSet Attrs = getParent()->getAttributes();
return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
}
unsigned Argument::getParamAlignment() const {
assert(getType()->isPointerTy() && "Only pointers have alignments");
return getParent()->getParamAlignment(getArgNo()+1);
}
uint64_t Argument::getDereferenceableBytes() const {
assert(getType()->isPointerTy() &&
"Only pointers have dereferenceable bytes");
return getParent()->getDereferenceableBytes(getArgNo()+1);
}
uint64_t Argument::getDereferenceableOrNullBytes() const {
assert(getType()->isPointerTy() &&
"Only pointers have dereferenceable bytes");
return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
}
/// hasNestAttr - Return true if this argument has the nest attribute on
/// it in its containing function.
bool Argument::hasNestAttr() const {
if (!getType()->isPointerTy()) return false;
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::Nest);
}
/// hasNoAliasAttr - Return true if this argument has the noalias attribute on
/// it in its containing function.
bool Argument::hasNoAliasAttr() const {
if (!getType()->isPointerTy()) return false;
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::NoAlias);
}
/// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
/// on it in its containing function.
bool Argument::hasNoCaptureAttr() const {
if (!getType()->isPointerTy()) return false;
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::NoCapture);
}
/// hasSRetAttr - Return true if this argument has the sret attribute on
/// it in its containing function.
bool Argument::hasStructRetAttr() const {
if (!getType()->isPointerTy()) return false;
if (this != getParent()->arg_begin())
return false; // StructRet param must be first param
return getParent()->getAttributes().
hasAttribute(1, Attribute::StructRet);
}
/// hasReturnedAttr - Return true if this argument has the returned attribute on
/// it in its containing function.
bool Argument::hasReturnedAttr() const {
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::Returned);
}
/// hasZExtAttr - Return true if this argument has the zext attribute on it in
/// its containing function.
bool Argument::hasZExtAttr() const {
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::ZExt);
}
/// hasSExtAttr Return true if this argument has the sext attribute on it in its
/// containing function.
bool Argument::hasSExtAttr() const {
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::SExt);
}
/// Return true if this argument has the readonly or readnone attribute on it
/// in its containing function.
bool Argument::onlyReadsMemory() const {
return getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::ReadNone);
}
/// addAttr - Add attributes to an argument.
void Argument::addAttr(AttributeSet AS) {
assert(AS.getNumSlots() <= 1 &&
"Trying to add more than one attribute set to an argument!");
AttrBuilder B(AS, AS.getSlotIndex(0));
getParent()->addAttributes(getArgNo() + 1,
AttributeSet::get(Parent->getContext(),
getArgNo() + 1, B));
}
/// removeAttr - Remove attributes from an argument.
void Argument::removeAttr(AttributeSet AS) {
assert(AS.getNumSlots() <= 1 &&
"Trying to remove more than one attribute set from an argument!");
AttrBuilder B(AS, AS.getSlotIndex(0));
getParent()->removeAttributes(getArgNo() + 1,
AttributeSet::get(Parent->getContext(),
getArgNo() + 1, B));
}
//===----------------------------------------------------------------------===//
// Helper Methods in Function
//===----------------------------------------------------------------------===//
bool Function::isMaterializable() const {
return getGlobalObjectSubClassData() & IsMaterializableBit;
}
void Function::setIsMaterializable(bool V) {
setGlobalObjectBit(IsMaterializableBit, V);
}
LLVMContext &Function::getContext() const {
return getType()->getContext();
}
FunctionType *Function::getFunctionType() const { return Ty; }
bool Function::isVarArg() const {
return getFunctionType()->isVarArg();
}
Type *Function::getReturnType() const {
return getFunctionType()->getReturnType();
}
void Function::removeFromParent() {
getParent()->getFunctionList().remove(this);
}
void Function::eraseFromParent() {
getParent()->getFunctionList().erase(this);
}
//===----------------------------------------------------------------------===//
// Function Implementation
//===----------------------------------------------------------------------===//
Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
Module *ParentModule)
: GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0,
Linkage, name),
Ty(Ty) {
assert(FunctionType::isValidReturnType(getReturnType()) &&
"invalid return type");
setGlobalObjectSubClassData(0);
SymTab = new ValueSymbolTable();
// If the function has arguments, mark them as lazily built.
if (Ty->getNumParams())
setValueSubclassData(1); // Set the "has lazy arguments" bit.
if (ParentModule)
ParentModule->getFunctionList().push_back(this);
// Ensure intrinsics have the right parameter attributes.
// Note, the IntID field will have been set in Value::setName if this function
// name is a valid intrinsic ID.
if (IntID)
setAttributes(Intrinsic::getAttributes(getContext(), IntID));
}
Function::~Function() {
dropAllReferences(); // After this it is safe to delete instructions.
// Delete all of the method arguments and unlink from symbol table...
ArgumentList.clear();
delete SymTab;
// Remove the function from the on-the-side GC table.
clearGC();
}
void Function::BuildLazyArguments() const {
// Create the arguments vector, all arguments start out unnamed.
FunctionType *FT = getFunctionType();
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
assert(!FT->getParamType(i)->isVoidTy() &&
"Cannot have void typed arguments!");
ArgumentList.push_back(new Argument(FT->getParamType(i)));
}
// Clear the lazy arguments bit.
unsigned SDC = getSubclassDataFromValue();
const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
}
size_t Function::arg_size() const {
return getFunctionType()->getNumParams();
}
bool Function::arg_empty() const {
return getFunctionType()->getNumParams() == 0;
}
void Function::setParent(Module *parent) {
Parent = parent;
}
// dropAllReferences() - This function causes all the subinstructions to "let
// go" of all references that they are maintaining. This allows one to
// 'delete' a whole class at a time, even though there may be circular
// references... first all references are dropped, and all use counts go to
// zero. Then everything is deleted for real. Note that no operations are
// valid on an object that has "dropped all references", except operator
// delete.
//
void Function::dropAllReferences() {
setIsMaterializable(false);
for (iterator I = begin(), E = end(); I != E; ++I)
I->dropAllReferences();
// Delete all basic blocks. They are now unused, except possibly by
// blockaddresses, but BasicBlock's destructor takes care of those.
while (!BasicBlocks.empty())
BasicBlocks.begin()->eraseFromParent();
// Prefix and prologue data are stored in a side table.
setPrefixData(nullptr);
setPrologueData(nullptr);
// Metadata is stored in a side-table.
clearMetadata();
}
void Function::addAttribute(unsigned i, Attribute::AttrKind attr) {
AttributeSet PAL = getAttributes();
PAL = PAL.addAttribute(getContext(), i, attr);
setAttributes(PAL);
}
void Function::addAttributes(unsigned i, AttributeSet attrs) {
AttributeSet PAL = getAttributes();
PAL = PAL.addAttributes(getContext(), i, attrs);
setAttributes(PAL);
}
void Function::removeAttributes(unsigned i, AttributeSet attrs) {
AttributeSet PAL = getAttributes();
PAL = PAL.removeAttributes(getContext(), i, attrs);
setAttributes(PAL);
}
void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
AttributeSet PAL = getAttributes();
PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
setAttributes(PAL);
}
void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
AttributeSet PAL = getAttributes();
PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
setAttributes(PAL);
}
// Maintain the GC name for each function in an on-the-side table. This saves
// allocating an additional word in Function for programs which do not use GC
// (i.e., most programs) at the cost of increased overhead for clients which do
// use GC.
static DenseMap<const Function*,PooledStringPtr> *GCNames;
static StringPool *GCNamePool;
static ManagedStatic<sys::SmartRWMutex<true> > GCLock;
bool Function::hasGC() const {
sys::SmartScopedReader<true> Reader(*GCLock);
return GCNames && GCNames->count(this);
}
const char *Function::getGC() const {
assert(hasGC() && "Function has no collector");
sys::SmartScopedReader<true> Reader(*GCLock);
return *(*GCNames)[this];
}
void Function::setGC(const char *Str) {
sys::SmartScopedWriter<true> Writer(*GCLock);
if (!GCNamePool)
GCNamePool = new StringPool();
if (!GCNames)
GCNames = new DenseMap<const Function*,PooledStringPtr>();
(*GCNames)[this] = GCNamePool->intern(Str);
}
void Function::clearGC() {
sys::SmartScopedWriter<true> Writer(*GCLock);
if (GCNames) {
GCNames->erase(this);
if (GCNames->empty()) {
delete GCNames;
GCNames = nullptr;
if (GCNamePool->empty()) {
delete GCNamePool;
GCNamePool = nullptr;
}
}
}
}
/// copyAttributesFrom - copy all additional attributes (those not needed to
/// create a Function) from the Function Src to this one.
void Function::copyAttributesFrom(const GlobalValue *Src) {
assert(isa<Function>(Src) && "Expected a Function!");
GlobalObject::copyAttributesFrom(Src);
const Function *SrcF = cast<Function>(Src);
setCallingConv(SrcF->getCallingConv());
setAttributes(SrcF->getAttributes());
if (SrcF->hasGC())
setGC(SrcF->getGC());
else
clearGC();
if (SrcF->hasPrefixData())
setPrefixData(SrcF->getPrefixData());
else
setPrefixData(nullptr);
if (SrcF->hasPrologueData())
setPrologueData(SrcF->getPrologueData());
else
setPrologueData(nullptr);
}
/// \brief This does the actual lookup of an intrinsic ID which
/// matches the given function name.
static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) {
unsigned Len = ValName->getKeyLength();
const char *Name = ValName->getKeyData();
#define GET_FUNCTION_RECOGNIZER
#include "llvm/IR/Intrinsics.gen"
#undef GET_FUNCTION_RECOGNIZER
return Intrinsic::not_intrinsic;
}
void Function::recalculateIntrinsicID() {
const ValueName *ValName = this->getValueName();
if (!ValName || !isIntrinsic()) {
IntID = Intrinsic::not_intrinsic;
return;
}
IntID = lookupIntrinsicID(ValName);
}
/// Returns a stable mangling for the type specified for use in the name
/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
/// of named types is simply their name. Manglings for unnamed types consist
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
/// combined with the mangling of their component types. A vararg function
/// type will have a suffix of 'vararg'. Since function types can contain
/// other function types, we close a function type mangling with suffix 'f'
/// which can't be confused with it's prefix. This ensures we don't have
/// collisions between two unrelated function types. Otherwise, you might
/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
/// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
/// cases) fall back to the MVT codepath, where they could be mangled to
/// 'x86mmx', for example; matching on derived types is not sufficient to mangle
/// everything.
static std::string getMangledTypeStr(Type* Ty) {
std::string Result;
if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
getMangledTypeStr(PTyp->getElementType());
} else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
Result += "a" + llvm::utostr(ATyp->getNumElements()) +
getMangledTypeStr(ATyp->getElementType());
} else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
assert(!STyp->isLiteral() && "TODO: implement literal types");
Result += STyp->getName();
} else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
Result += "f_" + getMangledTypeStr(FT->getReturnType());
for (size_t i = 0; i < FT->getNumParams(); i++)
Result += getMangledTypeStr(FT->getParamType(i));
if (FT->isVarArg())
Result += "vararg";
// Ensure nested function types are distinguishable.
Result += "f";
} else if (Ty)
Result += EVT::getEVT(Ty).getEVTString();
return Result;
}
std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
static const char * const Table[] = {
"not_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_NAME_TABLE
};
if (Tys.empty())
return Table[id];
std::string Result(Table[id]);
for (unsigned i = 0; i < Tys.size(); ++i) {
Result += "." + getMangledTypeStr(Tys[i]);
}
return Result;
}
/// IIT_Info - These are enumerators that describe the entries returned by the
/// getIntrinsicInfoTableEntries function.
///
/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
enum IIT_Info {
// Common values should be encoded with 0-15.
IIT_Done = 0,
IIT_I1 = 1,
IIT_I8 = 2,
IIT_I16 = 3,
IIT_I32 = 4,
IIT_I64 = 5,
IIT_F16 = 6,
IIT_F32 = 7,
IIT_F64 = 8,
IIT_V2 = 9,
IIT_V4 = 10,
IIT_V8 = 11,
IIT_V16 = 12,
IIT_V32 = 13,
IIT_PTR = 14,
IIT_ARG = 15,
// Values from 16+ are only encodable with the inefficient encoding.
IIT_V64 = 16,
IIT_MMX = 17,
IIT_METADATA = 18,
IIT_EMPTYSTRUCT = 19,
IIT_STRUCT2 = 20,
IIT_STRUCT3 = 21,
IIT_STRUCT4 = 22,
IIT_STRUCT5 = 23,
IIT_EXTEND_ARG = 24,
IIT_TRUNC_ARG = 25,
IIT_ANYPTR = 26,
IIT_V1 = 27,
IIT_VARARG = 28,
IIT_HALF_VEC_ARG = 29,
IIT_SAME_VEC_WIDTH_ARG = 30,
IIT_PTR_TO_ARG = 31,
IIT_VEC_OF_PTRS_TO_ELT = 32
};
static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
IIT_Info Info = IIT_Info(Infos[NextElt++]);
unsigned StructElts = 2;
using namespace Intrinsic;
switch (Info) {
case IIT_Done:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
return;
case IIT_VARARG:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
return;
case IIT_MMX:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
return;
case IIT_METADATA:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
return;
case IIT_F16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
return;
case IIT_F32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
return;
case IIT_F64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
return;
case IIT_I1:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
return;
case IIT_I8:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
return;
case IIT_I16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
return;
case IIT_I32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
return;
case IIT_I64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
return;
case IIT_V1:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V2:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V4:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V8:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_V64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_PTR:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
DecodeIITType(NextElt, Infos, OutputTable);
return;
case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
Infos[NextElt++]));
DecodeIITType(NextElt, Infos, OutputTable);
return;
}
case IIT_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
return;
}
case IIT_EXTEND_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
ArgInfo));
return;
}
case IIT_TRUNC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
ArgInfo));
return;
}
case IIT_HALF_VEC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
ArgInfo));
return;
}
case IIT_SAME_VEC_WIDTH_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
ArgInfo));
return;
}
case IIT_PTR_TO_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
ArgInfo));
return;
}
case IIT_VEC_OF_PTRS_TO_ELT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
ArgInfo));
return;
}
case IIT_EMPTYSTRUCT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
case IIT_STRUCT2: {
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
for (unsigned i = 0; i != StructElts; ++i)
DecodeIITType(NextElt, Infos, OutputTable);
return;
}
}
llvm_unreachable("unhandled");
}
#define GET_INTRINSIC_GENERATOR_GLOBAL
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_GENERATOR_GLOBAL
void Intrinsic::getIntrinsicInfoTableEntries(ID id,
SmallVectorImpl<IITDescriptor> &T){
// Check to see if the intrinsic's type was expressible by the table.
unsigned TableVal = IIT_Table[id-1];
// Decode the TableVal into an array of IITValues.
SmallVector<unsigned char, 8> IITValues;
ArrayRef<unsigned char> IITEntries;
unsigned NextElt = 0;
if ((TableVal >> 31) != 0) {
// This is an offset into the IIT_LongEncodingTable.
IITEntries = IIT_LongEncodingTable;
// Strip sentinel bit.
NextElt = (TableVal << 1) >> 1;
} else {
// Decode the TableVal into an array of IITValues. If the entry was encoded
// into a single word in the table itself, decode it now.
do {
IITValues.push_back(TableVal & 0xF);
TableVal >>= 4;
} while (TableVal);
IITEntries = IITValues;
NextElt = 0;
}
// Okay, decode the table into the output vector of IITDescriptors.
DecodeIITType(NextElt, IITEntries, T);
while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
DecodeIITType(NextElt, IITEntries, T);
}
static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
ArrayRef<Type*> Tys, LLVMContext &Context) {
using namespace Intrinsic;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void: return Type::getVoidTy(Context);
case IITDescriptor::VarArg: return Type::getVoidTy(Context);
case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
case IITDescriptor::Half: return Type::getHalfTy(Context);
case IITDescriptor::Float: return Type::getFloatTy(Context);
case IITDescriptor::Double: return Type::getDoubleTy(Context);
case IITDescriptor::Integer:
return IntegerType::get(Context, D.Integer_Width);
case IITDescriptor::Vector:
return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
case IITDescriptor::Pointer:
return PointerType::get(DecodeFixedType(Infos, Tys, Context),
D.Pointer_AddressSpace);
case IITDescriptor::Struct: {
Type *Elts[5];
assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
Elts[i] = DecodeFixedType(Infos, Tys, Context);
return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
}
case IITDescriptor::Argument:
return Tys[D.getArgumentNumber()];
case IITDescriptor::ExtendArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getExtendedElementVectorType(VTy);
return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
}
case IITDescriptor::TruncArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getTruncatedElementVectorType(VTy);
IntegerType *ITy = cast<IntegerType>(Ty);
assert(ITy->getBitWidth() % 2 == 0);
return IntegerType::get(Context, ITy->getBitWidth() / 2);
}
case IITDescriptor::HalfVecArgument:
return VectorType::getHalfElementsVectorType(cast<VectorType>(
Tys[D.getArgumentNumber()]));
case IITDescriptor::SameVecWidthArgument: {
Type *EltTy = DecodeFixedType(Infos, Tys, Context);
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
return VectorType::get(EltTy, VTy->getNumElements());
}
llvm_unreachable("unhandled");
}
case IITDescriptor::PtrToArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
return PointerType::getUnqual(Ty);
}
case IITDescriptor::VecOfPtrsToElt: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
if (!VTy)
llvm_unreachable("Expected an argument of Vector Type");
Type *EltTy = VTy->getVectorElementType();
return VectorType::get(PointerType::getUnqual(EltTy),
VTy->getNumElements());
}
}
llvm_unreachable("unhandled");
}
FunctionType *Intrinsic::getType(LLVMContext &Context,
ID id, ArrayRef<Type*> Tys) {
SmallVector<IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(id, Table);
ArrayRef<IITDescriptor> TableRef = Table;
Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
SmallVector<Type*, 8> ArgTys;
while (!TableRef.empty())
ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
// DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
// If we see void type as the type of the last argument, it is vararg intrinsic
if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
ArgTys.pop_back();
return FunctionType::get(ResultTy, ArgTys, true);
}
return FunctionType::get(ResultTy, ArgTys, false);
}
bool Intrinsic::isOverloaded(ID id) {
#define GET_INTRINSIC_OVERLOAD_TABLE
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_OVERLOAD_TABLE
}
/// This defines the "Intrinsic::getAttributes(ID id)" method.
#define GET_INTRINSIC_ATTRIBUTES
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_ATTRIBUTES
Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
// There can never be multiple globals with the same name of different types,
// because intrinsics must be a specific type.
return
cast<Function>(M->getOrInsertFunction(getName(id, Tys),
getType(M->getContext(), id, Tys)));
}
// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
#include "llvm/IR/Intrinsics.gen"
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
#include "llvm/IR/Intrinsics.gen"
#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it.
bool Function::hasAddressTaken(const User* *PutOffender) const {
for (const Use &U : uses()) {
const User *FU = U.getUser();
if (isa<BlockAddress>(FU))
continue;
if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU))
return PutOffender ? (*PutOffender = FU, true) : true;
ImmutableCallSite CS(cast<Instruction>(FU));
if (!CS.isCallee(&U))
return PutOffender ? (*PutOffender = FU, true) : true;
}
return false;
}
bool Function::isDefTriviallyDead() const {
// Check the linkage
if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
!hasAvailableExternallyLinkage())
return false;
// Check if the function is used by anything other than a blockaddress.
for (const User *U : users())
if (!isa<BlockAddress>(U))
return false;
return true;
}
/// callsFunctionThatReturnsTwice - Return true if the function has a call to
/// setjmp or other function that gcc recognizes as "returning twice".
bool Function::callsFunctionThatReturnsTwice() const {
for (const_inst_iterator
I = inst_begin(this), E = inst_end(this); I != E; ++I) {
ImmutableCallSite CS(&*I);
if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
return true;
}
return false;
}
Constant *Function::getPrefixData() const {
assert(hasPrefixData());
const LLVMContextImpl::PrefixDataMapTy &PDMap =
getContext().pImpl->PrefixDataMap;
assert(PDMap.find(this) != PDMap.end());
return cast<Constant>(PDMap.find(this)->second->getReturnValue());
}
void Function::setPrefixData(Constant *PrefixData) {
if (!PrefixData && !hasPrefixData())
return;
unsigned SCData = getSubclassDataFromValue();
LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap;
ReturnInst *&PDHolder = PDMap[this];
if (PrefixData) {
if (PDHolder)
PDHolder->setOperand(0, PrefixData);
else
PDHolder = ReturnInst::Create(getContext(), PrefixData);
SCData |= (1<<1);
} else {
delete PDHolder;
PDMap.erase(this);
SCData &= ~(1<<1);
}
setValueSubclassData(SCData);
}
Constant *Function::getPrologueData() const {
assert(hasPrologueData());
const LLVMContextImpl::PrologueDataMapTy &SOMap =
getContext().pImpl->PrologueDataMap;
assert(SOMap.find(this) != SOMap.end());
return cast<Constant>(SOMap.find(this)->second->getReturnValue());
}
void Function::setPrologueData(Constant *PrologueData) {
if (!PrologueData && !hasPrologueData())
return;
unsigned PDData = getSubclassDataFromValue();
LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap;
ReturnInst *&PDHolder = PDMap[this];
if (PrologueData) {
if (PDHolder)
PDHolder->setOperand(0, PrologueData);
else
PDHolder = ReturnInst::Create(getContext(), PrologueData);
PDData |= (1<<2);
} else {
delete PDHolder;
PDMap.erase(this);
PDData &= ~(1<<2);
}
setValueSubclassData(PDData);
}
void llvm::overrideFunctionAttribute(StringRef Kind, StringRef Value,
Function &F) {
auto &Ctx = F.getContext();
AttributeSet Attrs = F.getAttributes(), AttrsToRemove;
AttrsToRemove =
AttrsToRemove.addAttribute(Ctx, AttributeSet::FunctionIndex, Kind);
Attrs = Attrs.removeAttributes(Ctx, AttributeSet::FunctionIndex,
AttrsToRemove);
Attrs = Attrs.addAttribute(Ctx, AttributeSet::FunctionIndex, Kind, Value);
F.setAttributes(Attrs);
}
void Function::setEntryCount(uint64_t Count) {
MDBuilder MDB(getContext());
setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
}
Optional<uint64_t> Function::getEntryCount() const {
MDNode *MD = getMetadata(LLVMContext::MD_prof);
if (MD && MD->getOperand(0))
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
if (MDS->getString().equals("function_entry_count")) {
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
return CI->getValue().getZExtValue();
}
return None;
}