mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-03 17:31:50 +00:00
efb8e3e113
For an undef operand, MO.getReg() is meaningless and we should not use it. Undef operands should be skipped entirely. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78095 91177308-0d34-0410-b5e6-96231b3b80d8
1139 lines
39 KiB
C++
1139 lines
39 KiB
C++
//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Methods common to all machine instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetInstrDesc.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LeakDetector.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineOperand Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AddRegOperandToRegInfo - Add this register operand to the specified
|
|
/// MachineRegisterInfo. If it is null, then the next/prev fields should be
|
|
/// explicitly nulled out.
|
|
void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
|
|
assert(isReg() && "Can only add reg operand to use lists");
|
|
|
|
// If the reginfo pointer is null, just explicitly null out or next/prev
|
|
// pointers, to ensure they are not garbage.
|
|
if (RegInfo == 0) {
|
|
Contents.Reg.Prev = 0;
|
|
Contents.Reg.Next = 0;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, add this operand to the head of the registers use/def list.
|
|
MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
|
|
|
|
// For SSA values, we prefer to keep the definition at the start of the list.
|
|
// we do this by skipping over the definition if it is at the head of the
|
|
// list.
|
|
if (*Head && (*Head)->isDef())
|
|
Head = &(*Head)->Contents.Reg.Next;
|
|
|
|
Contents.Reg.Next = *Head;
|
|
if (Contents.Reg.Next) {
|
|
assert(getReg() == Contents.Reg.Next->getReg() &&
|
|
"Different regs on the same list!");
|
|
Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
|
|
}
|
|
|
|
Contents.Reg.Prev = Head;
|
|
*Head = this;
|
|
}
|
|
|
|
/// RemoveRegOperandFromRegInfo - Remove this register operand from the
|
|
/// MachineRegisterInfo it is linked with.
|
|
void MachineOperand::RemoveRegOperandFromRegInfo() {
|
|
assert(isOnRegUseList() && "Reg operand is not on a use list");
|
|
// Unlink this from the doubly linked list of operands.
|
|
MachineOperand *NextOp = Contents.Reg.Next;
|
|
*Contents.Reg.Prev = NextOp;
|
|
if (NextOp) {
|
|
assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
|
|
NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
|
|
}
|
|
Contents.Reg.Prev = 0;
|
|
Contents.Reg.Next = 0;
|
|
}
|
|
|
|
void MachineOperand::setReg(unsigned Reg) {
|
|
if (getReg() == Reg) return; // No change.
|
|
|
|
// Otherwise, we have to change the register. If this operand is embedded
|
|
// into a machine function, we need to update the old and new register's
|
|
// use/def lists.
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent()) {
|
|
RemoveRegOperandFromRegInfo();
|
|
Contents.Reg.RegNo = Reg;
|
|
AddRegOperandToRegInfo(&MF->getRegInfo());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, just change the register, no problem. :)
|
|
Contents.Reg.RegNo = Reg;
|
|
}
|
|
|
|
/// ChangeToImmediate - Replace this operand with a new immediate operand of
|
|
/// the specified value. If an operand is known to be an immediate already,
|
|
/// the setImm method should be used.
|
|
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
|
|
// If this operand is currently a register operand, and if this is in a
|
|
// function, deregister the operand from the register's use/def list.
|
|
if (isReg() && getParent() && getParent()->getParent() &&
|
|
getParent()->getParent()->getParent())
|
|
RemoveRegOperandFromRegInfo();
|
|
|
|
OpKind = MO_Immediate;
|
|
Contents.ImmVal = ImmVal;
|
|
}
|
|
|
|
/// ChangeToRegister - Replace this operand with a new register operand of
|
|
/// the specified value. If an operand is known to be an register already,
|
|
/// the setReg method should be used.
|
|
void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
|
|
bool isKill, bool isDead, bool isUndef) {
|
|
// If this operand is already a register operand, use setReg to update the
|
|
// register's use/def lists.
|
|
if (isReg()) {
|
|
assert(!isEarlyClobber());
|
|
setReg(Reg);
|
|
} else {
|
|
// Otherwise, change this to a register and set the reg#.
|
|
OpKind = MO_Register;
|
|
Contents.Reg.RegNo = Reg;
|
|
|
|
// If this operand is embedded in a function, add the operand to the
|
|
// register's use/def list.
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent())
|
|
AddRegOperandToRegInfo(&MF->getRegInfo());
|
|
}
|
|
|
|
IsDef = isDef;
|
|
IsImp = isImp;
|
|
IsKill = isKill;
|
|
IsDead = isDead;
|
|
IsUndef = isUndef;
|
|
IsEarlyClobber = false;
|
|
SubReg = 0;
|
|
}
|
|
|
|
/// isIdenticalTo - Return true if this operand is identical to the specified
|
|
/// operand.
|
|
bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
|
|
if (getType() != Other.getType() ||
|
|
getTargetFlags() != Other.getTargetFlags())
|
|
return false;
|
|
|
|
switch (getType()) {
|
|
default: llvm_unreachable("Unrecognized operand type");
|
|
case MachineOperand::MO_Register:
|
|
return getReg() == Other.getReg() && isDef() == Other.isDef() &&
|
|
getSubReg() == Other.getSubReg();
|
|
case MachineOperand::MO_Immediate:
|
|
return getImm() == Other.getImm();
|
|
case MachineOperand::MO_FPImmediate:
|
|
return getFPImm() == Other.getFPImm();
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
return getMBB() == Other.getMBB();
|
|
case MachineOperand::MO_FrameIndex:
|
|
return getIndex() == Other.getIndex();
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
return getIndex() == Other.getIndex();
|
|
case MachineOperand::MO_GlobalAddress:
|
|
return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
return !strcmp(getSymbolName(), Other.getSymbolName()) &&
|
|
getOffset() == Other.getOffset();
|
|
}
|
|
}
|
|
|
|
/// print - Print the specified machine operand.
|
|
///
|
|
void MachineOperand::print(std::ostream &OS, const TargetMachine *TM) const {
|
|
raw_os_ostream RawOS(OS);
|
|
print(RawOS, TM);
|
|
}
|
|
|
|
void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
|
|
switch (getType()) {
|
|
case MachineOperand::MO_Register:
|
|
if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
|
|
OS << "%reg" << getReg();
|
|
} else {
|
|
// If the instruction is embedded into a basic block, we can find the
|
|
// target info for the instruction.
|
|
if (TM == 0)
|
|
if (const MachineInstr *MI = getParent())
|
|
if (const MachineBasicBlock *MBB = MI->getParent())
|
|
if (const MachineFunction *MF = MBB->getParent())
|
|
TM = &MF->getTarget();
|
|
|
|
if (TM)
|
|
OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
|
|
else
|
|
OS << "%mreg" << getReg();
|
|
}
|
|
|
|
if (getSubReg() != 0)
|
|
OS << ':' << getSubReg();
|
|
|
|
if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
|
|
isEarlyClobber()) {
|
|
OS << '<';
|
|
bool NeedComma = false;
|
|
if (isImplicit()) {
|
|
if (NeedComma) OS << ',';
|
|
OS << (isDef() ? "imp-def" : "imp-use");
|
|
NeedComma = true;
|
|
} else if (isDef()) {
|
|
if (NeedComma) OS << ',';
|
|
if (isEarlyClobber())
|
|
OS << "earlyclobber,";
|
|
OS << "def";
|
|
NeedComma = true;
|
|
}
|
|
if (isKill() || isDead() || isUndef()) {
|
|
if (NeedComma) OS << ',';
|
|
if (isKill()) OS << "kill";
|
|
if (isDead()) OS << "dead";
|
|
if (isUndef()) {
|
|
if (isKill() || isDead())
|
|
OS << ',';
|
|
OS << "undef";
|
|
}
|
|
}
|
|
OS << '>';
|
|
}
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
OS << getImm();
|
|
break;
|
|
case MachineOperand::MO_FPImmediate:
|
|
if (getFPImm()->getType() == Type::FloatTy)
|
|
OS << getFPImm()->getValueAPF().convertToFloat();
|
|
else
|
|
OS << getFPImm()->getValueAPF().convertToDouble();
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
OS << "mbb<"
|
|
<< ((Value*)getMBB()->getBasicBlock())->getName()
|
|
<< "," << (void*)getMBB() << '>';
|
|
break;
|
|
case MachineOperand::MO_FrameIndex:
|
|
OS << "<fi#" << getIndex() << '>';
|
|
break;
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
OS << "<cp#" << getIndex();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
OS << "<jt#" << getIndex() << '>';
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
OS << "<ga:" << ((Value*)getGlobal())->getName();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
OS << "<es:" << getSymbolName();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unrecognized operand type");
|
|
}
|
|
|
|
if (unsigned TF = getTargetFlags())
|
|
OS << "[TF=" << TF << ']';
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineMemOperand Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
|
|
int64_t o, uint64_t s, unsigned int a)
|
|
: Offset(o), Size(s), V(v),
|
|
Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
|
|
assert(isPowerOf2_32(a) && "Alignment is not a power of 2!");
|
|
assert((isLoad() || isStore()) && "Not a load/store!");
|
|
}
|
|
|
|
/// Profile - Gather unique data for the object.
|
|
///
|
|
void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(Offset);
|
|
ID.AddInteger(Size);
|
|
ID.AddPointer(V);
|
|
ID.AddInteger(Flags);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineInstr Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
|
|
/// TID NULL and no operands.
|
|
MachineInstr::MachineInstr()
|
|
: TID(0), NumImplicitOps(0), Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
void MachineInstr::addImplicitDefUseOperands() {
|
|
if (TID->ImplicitDefs)
|
|
for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
|
|
addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
|
|
if (TID->ImplicitUses)
|
|
for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
|
|
addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
|
|
}
|
|
|
|
/// MachineInstr ctor - This constructor create a MachineInstr and add the
|
|
/// implicit operands. It reserves space for number of operands specified by
|
|
/// TargetInstrDesc or the numOperands if it is not zero. (for
|
|
/// instructions with variable number of operands).
|
|
MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
|
|
: TID(&tid), NumImplicitOps(0), Parent(0),
|
|
debugLoc(DebugLoc::getUnknownLoc()) {
|
|
if (!NoImp && TID->getImplicitDefs())
|
|
for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
|
|
NumImplicitOps++;
|
|
if (!NoImp && TID->getImplicitUses())
|
|
for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
|
|
NumImplicitOps++;
|
|
Operands.reserve(NumImplicitOps + TID->getNumOperands());
|
|
if (!NoImp)
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
/// MachineInstr ctor - As above, but with a DebugLoc.
|
|
MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
|
|
bool NoImp)
|
|
: TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
|
|
if (!NoImp && TID->getImplicitDefs())
|
|
for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
|
|
NumImplicitOps++;
|
|
if (!NoImp && TID->getImplicitUses())
|
|
for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
|
|
NumImplicitOps++;
|
|
Operands.reserve(NumImplicitOps + TID->getNumOperands());
|
|
if (!NoImp)
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
/// MachineInstr ctor - Work exactly the same as the ctor two above, except
|
|
/// that the MachineInstr is created and added to the end of the specified
|
|
/// basic block.
|
|
///
|
|
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
|
|
: TID(&tid), NumImplicitOps(0), Parent(0),
|
|
debugLoc(DebugLoc::getUnknownLoc()) {
|
|
assert(MBB && "Cannot use inserting ctor with null basic block!");
|
|
if (TID->ImplicitDefs)
|
|
for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
|
|
NumImplicitOps++;
|
|
if (TID->ImplicitUses)
|
|
for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
|
|
NumImplicitOps++;
|
|
Operands.reserve(NumImplicitOps + TID->getNumOperands());
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
MBB->push_back(this); // Add instruction to end of basic block!
|
|
}
|
|
|
|
/// MachineInstr ctor - As above, but with a DebugLoc.
|
|
///
|
|
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
|
|
const TargetInstrDesc &tid)
|
|
: TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
|
|
assert(MBB && "Cannot use inserting ctor with null basic block!");
|
|
if (TID->ImplicitDefs)
|
|
for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
|
|
NumImplicitOps++;
|
|
if (TID->ImplicitUses)
|
|
for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
|
|
NumImplicitOps++;
|
|
Operands.reserve(NumImplicitOps + TID->getNumOperands());
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
MBB->push_back(this); // Add instruction to end of basic block!
|
|
}
|
|
|
|
/// MachineInstr ctor - Copies MachineInstr arg exactly
|
|
///
|
|
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
|
|
: TID(&MI.getDesc()), NumImplicitOps(0), Parent(0),
|
|
debugLoc(MI.getDebugLoc()) {
|
|
Operands.reserve(MI.getNumOperands());
|
|
|
|
// Add operands
|
|
for (unsigned i = 0; i != MI.getNumOperands(); ++i)
|
|
addOperand(MI.getOperand(i));
|
|
NumImplicitOps = MI.NumImplicitOps;
|
|
|
|
// Add memory operands.
|
|
for (std::list<MachineMemOperand>::const_iterator i = MI.memoperands_begin(),
|
|
j = MI.memoperands_end(); i != j; ++i)
|
|
addMemOperand(MF, *i);
|
|
|
|
// Set parent to null.
|
|
Parent = 0;
|
|
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
MachineInstr::~MachineInstr() {
|
|
LeakDetector::removeGarbageObject(this);
|
|
assert(MemOperands.empty() &&
|
|
"MachineInstr being deleted with live memoperands!");
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
|
|
assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
|
|
"Reg operand def/use list corrupted");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// getRegInfo - If this instruction is embedded into a MachineFunction,
|
|
/// return the MachineRegisterInfo object for the current function, otherwise
|
|
/// return null.
|
|
MachineRegisterInfo *MachineInstr::getRegInfo() {
|
|
if (MachineBasicBlock *MBB = getParent())
|
|
return &MBB->getParent()->getRegInfo();
|
|
return 0;
|
|
}
|
|
|
|
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands already be on their use lists.
|
|
void MachineInstr::RemoveRegOperandsFromUseLists() {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
}
|
|
}
|
|
|
|
/// AddRegOperandsToUseLists - Add all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands not be on their use lists yet.
|
|
void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].AddRegOperandToRegInfo(&RegInfo);
|
|
}
|
|
}
|
|
|
|
|
|
/// addOperand - Add the specified operand to the instruction. If it is an
|
|
/// implicit operand, it is added to the end of the operand list. If it is
|
|
/// an explicit operand it is added at the end of the explicit operand list
|
|
/// (before the first implicit operand).
|
|
void MachineInstr::addOperand(const MachineOperand &Op) {
|
|
bool isImpReg = Op.isReg() && Op.isImplicit();
|
|
assert((isImpReg || !OperandsComplete()) &&
|
|
"Trying to add an operand to a machine instr that is already done!");
|
|
|
|
MachineRegisterInfo *RegInfo = getRegInfo();
|
|
|
|
// If we are adding the operand to the end of the list, our job is simpler.
|
|
// This is true most of the time, so this is a reasonable optimization.
|
|
if (isImpReg || NumImplicitOps == 0) {
|
|
// We can only do this optimization if we know that the operand list won't
|
|
// reallocate.
|
|
if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
|
|
Operands.push_back(Op);
|
|
|
|
// Set the parent of the operand.
|
|
Operands.back().ParentMI = this;
|
|
|
|
// If the operand is a register, update the operand's use list.
|
|
if (Op.isReg())
|
|
Operands.back().AddRegOperandToRegInfo(RegInfo);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we have to insert a real operand before any implicit ones.
|
|
unsigned OpNo = Operands.size()-NumImplicitOps;
|
|
|
|
// If this instruction isn't embedded into a function, then we don't need to
|
|
// update any operand lists.
|
|
if (RegInfo == 0) {
|
|
// Simple insertion, no reginfo update needed for other register operands.
|
|
Operands.insert(Operands.begin()+OpNo, Op);
|
|
Operands[OpNo].ParentMI = this;
|
|
|
|
// Do explicitly set the reginfo for this operand though, to ensure the
|
|
// next/prev fields are properly nulled out.
|
|
if (Operands[OpNo].isReg())
|
|
Operands[OpNo].AddRegOperandToRegInfo(0);
|
|
|
|
} else if (Operands.size()+1 <= Operands.capacity()) {
|
|
// Otherwise, we have to remove register operands from their register use
|
|
// list, add the operand, then add the register operands back to their use
|
|
// list. This also must handle the case when the operand list reallocates
|
|
// to somewhere else.
|
|
|
|
// If insertion of this operand won't cause reallocation of the operand
|
|
// list, just remove the implicit operands, add the operand, then re-add all
|
|
// the rest of the operands.
|
|
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
|
|
assert(Operands[i].isReg() && "Should only be an implicit reg!");
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
}
|
|
|
|
// Add the operand. If it is a register, add it to the reg list.
|
|
Operands.insert(Operands.begin()+OpNo, Op);
|
|
Operands[OpNo].ParentMI = this;
|
|
|
|
if (Operands[OpNo].isReg())
|
|
Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
|
|
|
|
// Re-add all the implicit ops.
|
|
for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
|
|
assert(Operands[i].isReg() && "Should only be an implicit reg!");
|
|
Operands[i].AddRegOperandToRegInfo(RegInfo);
|
|
}
|
|
} else {
|
|
// Otherwise, we will be reallocating the operand list. Remove all reg
|
|
// operands from their list, then readd them after the operand list is
|
|
// reallocated.
|
|
RemoveRegOperandsFromUseLists();
|
|
|
|
Operands.insert(Operands.begin()+OpNo, Op);
|
|
Operands[OpNo].ParentMI = this;
|
|
|
|
// Re-add all the operands.
|
|
AddRegOperandsToUseLists(*RegInfo);
|
|
}
|
|
}
|
|
|
|
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
|
|
/// fewer operand than it started with.
|
|
///
|
|
void MachineInstr::RemoveOperand(unsigned OpNo) {
|
|
assert(OpNo < Operands.size() && "Invalid operand number");
|
|
|
|
// Special case removing the last one.
|
|
if (OpNo == Operands.size()-1) {
|
|
// If needed, remove from the reg def/use list.
|
|
if (Operands.back().isReg() && Operands.back().isOnRegUseList())
|
|
Operands.back().RemoveRegOperandFromRegInfo();
|
|
|
|
Operands.pop_back();
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are removing an interior operand. If we have reginfo to
|
|
// update, remove all operands that will be shifted down from their reg lists,
|
|
// move everything down, then re-add them.
|
|
MachineRegisterInfo *RegInfo = getRegInfo();
|
|
if (RegInfo) {
|
|
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
}
|
|
}
|
|
|
|
Operands.erase(Operands.begin()+OpNo);
|
|
|
|
if (RegInfo) {
|
|
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].AddRegOperandToRegInfo(RegInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// addMemOperand - Add a MachineMemOperand to the machine instruction,
|
|
/// referencing arbitrary storage.
|
|
void MachineInstr::addMemOperand(MachineFunction &MF,
|
|
const MachineMemOperand &MO) {
|
|
MemOperands.push_back(MO);
|
|
}
|
|
|
|
/// clearMemOperands - Erase all of this MachineInstr's MachineMemOperands.
|
|
void MachineInstr::clearMemOperands(MachineFunction &MF) {
|
|
MemOperands.clear();
|
|
}
|
|
|
|
|
|
/// removeFromParent - This method unlinks 'this' from the containing basic
|
|
/// block, and returns it, but does not delete it.
|
|
MachineInstr *MachineInstr::removeFromParent() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
getParent()->remove(this);
|
|
return this;
|
|
}
|
|
|
|
|
|
/// eraseFromParent - This method unlinks 'this' from the containing basic
|
|
/// block, and deletes it.
|
|
void MachineInstr::eraseFromParent() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
getParent()->erase(this);
|
|
}
|
|
|
|
|
|
/// OperandComplete - Return true if it's illegal to add a new operand
|
|
///
|
|
bool MachineInstr::OperandsComplete() const {
|
|
unsigned short NumOperands = TID->getNumOperands();
|
|
if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
|
|
return true; // Broken: we have all the operands of this instruction!
|
|
return false;
|
|
}
|
|
|
|
/// getNumExplicitOperands - Returns the number of non-implicit operands.
|
|
///
|
|
unsigned MachineInstr::getNumExplicitOperands() const {
|
|
unsigned NumOperands = TID->getNumOperands();
|
|
if (!TID->isVariadic())
|
|
return NumOperands;
|
|
|
|
for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isImplicit())
|
|
NumOperands++;
|
|
}
|
|
return NumOperands;
|
|
}
|
|
|
|
|
|
/// isLabel - Returns true if the MachineInstr represents a label.
|
|
///
|
|
bool MachineInstr::isLabel() const {
|
|
return getOpcode() == TargetInstrInfo::DBG_LABEL ||
|
|
getOpcode() == TargetInstrInfo::EH_LABEL ||
|
|
getOpcode() == TargetInstrInfo::GC_LABEL;
|
|
}
|
|
|
|
/// isDebugLabel - Returns true if the MachineInstr represents a debug label.
|
|
///
|
|
bool MachineInstr::isDebugLabel() const {
|
|
return getOpcode() == TargetInstrInfo::DBG_LABEL;
|
|
}
|
|
|
|
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
|
|
/// the specific register or -1 if it is not found. It further tightening
|
|
/// the search criteria to a use that kills the register if isKill is true.
|
|
int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
|
|
const TargetRegisterInfo *TRI) const {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
if (MOReg == Reg ||
|
|
(TRI &&
|
|
TargetRegisterInfo::isPhysicalRegister(MOReg) &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg) &&
|
|
TRI->isSubRegister(MOReg, Reg)))
|
|
if (!isKill || MO.isKill())
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
|
|
/// the specified register or -1 if it is not found. If isDead is true, defs
|
|
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
|
|
/// also checks if there is a def of a super-register.
|
|
int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
|
|
const TargetRegisterInfo *TRI) const {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (MOReg == Reg ||
|
|
(TRI &&
|
|
TargetRegisterInfo::isPhysicalRegister(MOReg) &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg) &&
|
|
TRI->isSubRegister(MOReg, Reg)))
|
|
if (!isDead || MO.isDead())
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// findFirstPredOperandIdx() - Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int MachineInstr::findFirstPredOperandIdx() const {
|
|
const TargetInstrDesc &TID = getDesc();
|
|
if (TID.isPredicable()) {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (TID.OpInfo[i].isPredicate())
|
|
return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/// isRegTiedToUseOperand - Given the index of a register def operand,
|
|
/// check if the register def is tied to a source operand, due to either
|
|
/// two-address elimination or inline assembly constraints. Returns the
|
|
/// first tied use operand index by reference is UseOpIdx is not null.
|
|
bool MachineInstr::
|
|
isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
|
|
if (getOpcode() == TargetInstrInfo::INLINEASM) {
|
|
assert(DefOpIdx >= 2);
|
|
const MachineOperand &MO = getOperand(DefOpIdx);
|
|
if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
|
|
return false;
|
|
// Determine the actual operand index that corresponds to this index.
|
|
unsigned DefNo = 0;
|
|
unsigned DefPart = 0;
|
|
for (unsigned i = 1, e = getNumOperands(); i < e; ) {
|
|
const MachineOperand &FMO = getOperand(i);
|
|
// After the normal asm operands there may be additional imp-def regs.
|
|
if (!FMO.isImm())
|
|
return false;
|
|
// Skip over this def.
|
|
unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
|
|
unsigned PrevDef = i + 1;
|
|
i = PrevDef + NumOps;
|
|
if (i > DefOpIdx) {
|
|
DefPart = DefOpIdx - PrevDef;
|
|
break;
|
|
}
|
|
++DefNo;
|
|
}
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &FMO = getOperand(i);
|
|
if (!FMO.isImm())
|
|
continue;
|
|
if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
|
|
continue;
|
|
unsigned Idx;
|
|
if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
|
|
Idx == DefNo) {
|
|
if (UseOpIdx)
|
|
*UseOpIdx = (unsigned)i + 1 + DefPart;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
|
|
const TargetInstrDesc &TID = getDesc();
|
|
for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (MO.isReg() && MO.isUse() &&
|
|
TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
|
|
if (UseOpIdx)
|
|
*UseOpIdx = (unsigned)i;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isRegTiedToDefOperand - Return true if the operand of the specified index
|
|
/// is a register use and it is tied to an def operand. It also returns the def
|
|
/// operand index by reference.
|
|
bool MachineInstr::
|
|
isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
|
|
if (getOpcode() == TargetInstrInfo::INLINEASM) {
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
|
|
return false;
|
|
|
|
// Find the flag operand corresponding to UseOpIdx
|
|
unsigned FlagIdx, NumOps=0;
|
|
for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
|
|
const MachineOperand &UFMO = getOperand(FlagIdx);
|
|
// After the normal asm operands there may be additional imp-def regs.
|
|
if (!UFMO.isImm())
|
|
return false;
|
|
NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
|
|
assert(NumOps < getNumOperands() && "Invalid inline asm flag");
|
|
if (UseOpIdx < FlagIdx+NumOps+1)
|
|
break;
|
|
}
|
|
if (FlagIdx >= UseOpIdx)
|
|
return false;
|
|
const MachineOperand &UFMO = getOperand(FlagIdx);
|
|
unsigned DefNo;
|
|
if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
|
|
if (!DefOpIdx)
|
|
return true;
|
|
|
|
unsigned DefIdx = 1;
|
|
// Remember to adjust the index. First operand is asm string, then there
|
|
// is a flag for each.
|
|
while (DefNo) {
|
|
const MachineOperand &FMO = getOperand(DefIdx);
|
|
assert(FMO.isImm());
|
|
// Skip over this def.
|
|
DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
|
|
--DefNo;
|
|
}
|
|
*DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const TargetInstrDesc &TID = getDesc();
|
|
if (UseOpIdx >= TID.getNumOperands())
|
|
return false;
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
return false;
|
|
int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
|
|
if (DefIdx == -1)
|
|
return false;
|
|
if (DefOpIdx)
|
|
*DefOpIdx = (unsigned)DefIdx;
|
|
return true;
|
|
}
|
|
|
|
/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
|
|
///
|
|
void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
|
|
continue;
|
|
for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
|
|
MachineOperand &MOp = getOperand(j);
|
|
if (!MOp.isIdenticalTo(MO))
|
|
continue;
|
|
if (MO.isKill())
|
|
MOp.setIsKill();
|
|
else
|
|
MOp.setIsDead();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// copyPredicates - Copies predicate operand(s) from MI.
|
|
void MachineInstr::copyPredicates(const MachineInstr *MI) {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isPredicable())
|
|
return;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
if (TID.OpInfo[i].isPredicate()) {
|
|
// Predicated operands must be last operands.
|
|
addOperand(MI->getOperand(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isSafeToMove - Return true if it is safe to move this instruction. If
|
|
/// SawStore is set to true, it means that there is a store (or call) between
|
|
/// the instruction's location and its intended destination.
|
|
bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
|
|
bool &SawStore) const {
|
|
// Ignore stuff that we obviously can't move.
|
|
if (TID->mayStore() || TID->isCall()) {
|
|
SawStore = true;
|
|
return false;
|
|
}
|
|
if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// See if this instruction does a load. If so, we have to guarantee that the
|
|
// loaded value doesn't change between the load and the its intended
|
|
// destination. The check for isInvariantLoad gives the targe the chance to
|
|
// classify the load as always returning a constant, e.g. a constant pool
|
|
// load.
|
|
if (TID->mayLoad() && !TII->isInvariantLoad(this))
|
|
// Otherwise, this is a real load. If there is a store between the load and
|
|
// end of block, or if the load is volatile, we can't move it.
|
|
return !SawStore && !hasVolatileMemoryRef();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isSafeToReMat - Return true if it's safe to rematerialize the specified
|
|
/// instruction which defined the specified register instead of copying it.
|
|
bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
|
|
unsigned DstReg) const {
|
|
bool SawStore = false;
|
|
if (!getDesc().isRematerializable() ||
|
|
!TII->isTriviallyReMaterializable(this) ||
|
|
!isSafeToMove(TII, SawStore))
|
|
return false;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
// FIXME: For now, do not remat any instruction with register operands.
|
|
// Later on, we can loosen the restriction is the register operands have
|
|
// not been modified between the def and use. Note, this is different from
|
|
// MachineSink because the code is no longer in two-address form (at least
|
|
// partially).
|
|
if (MO.isUse())
|
|
return false;
|
|
else if (!MO.isDead() && MO.getReg() != DstReg)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// hasVolatileMemoryRef - Return true if this instruction may have a
|
|
/// volatile memory reference, or if the information describing the
|
|
/// memory reference is not available. Return false if it is known to
|
|
/// have no volatile memory references.
|
|
bool MachineInstr::hasVolatileMemoryRef() const {
|
|
// An instruction known never to access memory won't have a volatile access.
|
|
if (!TID->mayStore() &&
|
|
!TID->mayLoad() &&
|
|
!TID->isCall() &&
|
|
!TID->hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// Otherwise, if the instruction has no memory reference information,
|
|
// conservatively assume it wasn't preserved.
|
|
if (memoperands_empty())
|
|
return true;
|
|
|
|
// Check the memory reference information for volatile references.
|
|
for (std::list<MachineMemOperand>::const_iterator I = memoperands_begin(),
|
|
E = memoperands_end(); I != E; ++I)
|
|
if (I->isVolatile())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void MachineInstr::dump() const {
|
|
cerr << " " << *this;
|
|
}
|
|
|
|
void MachineInstr::print(std::ostream &OS, const TargetMachine *TM) const {
|
|
raw_os_ostream RawOS(OS);
|
|
print(RawOS, TM);
|
|
}
|
|
|
|
void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
|
|
// Specialize printing if op#0 is definition
|
|
unsigned StartOp = 0;
|
|
if (getNumOperands() && getOperand(0).isReg() && getOperand(0).isDef()) {
|
|
getOperand(0).print(OS, TM);
|
|
OS << " = ";
|
|
++StartOp; // Don't print this operand again!
|
|
}
|
|
|
|
OS << getDesc().getName();
|
|
|
|
for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
|
|
if (i != StartOp)
|
|
OS << ",";
|
|
OS << " ";
|
|
getOperand(i).print(OS, TM);
|
|
}
|
|
|
|
if (!memoperands_empty()) {
|
|
OS << ", Mem:";
|
|
for (std::list<MachineMemOperand>::const_iterator i = memoperands_begin(),
|
|
e = memoperands_end(); i != e; ++i) {
|
|
const MachineMemOperand &MRO = *i;
|
|
const Value *V = MRO.getValue();
|
|
|
|
assert((MRO.isLoad() || MRO.isStore()) &&
|
|
"SV has to be a load, store or both.");
|
|
|
|
if (MRO.isVolatile())
|
|
OS << "Volatile ";
|
|
|
|
if (MRO.isLoad())
|
|
OS << "LD";
|
|
if (MRO.isStore())
|
|
OS << "ST";
|
|
|
|
OS << "(" << MRO.getSize() << "," << MRO.getAlignment() << ") [";
|
|
|
|
if (!V)
|
|
OS << "<unknown>";
|
|
else if (!V->getName().empty())
|
|
OS << V->getName();
|
|
else if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
|
|
PSV->print(OS);
|
|
} else
|
|
OS << V;
|
|
|
|
OS << " + " << MRO.getOffset() << "]";
|
|
}
|
|
}
|
|
|
|
if (!debugLoc.isUnknown()) {
|
|
const MachineFunction *MF = getParent()->getParent();
|
|
DebugLocTuple DLT = MF->getDebugLocTuple(debugLoc);
|
|
DICompileUnit CU(DLT.CompileUnit);
|
|
std::string Dir, Fn;
|
|
OS << " [dbg: "
|
|
<< CU.getDirectory(Dir) << '/' << CU.getFilename(Fn) << ","
|
|
<< DLT.Line << ","
|
|
<< DLT.Col << "]";
|
|
}
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound) {
|
|
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
|
|
bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
|
|
bool Found = false;
|
|
SmallVector<unsigned,4> DeadOps;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (Reg == IncomingReg) {
|
|
if (!Found) {
|
|
if (MO.isKill())
|
|
// The register is already marked kill.
|
|
return true;
|
|
if (isPhysReg && isRegTiedToDefOperand(i))
|
|
// Two-address uses of physregs must not be marked kill.
|
|
return true;
|
|
MO.setIsKill();
|
|
Found = true;
|
|
}
|
|
} else if (hasAliases && MO.isKill() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// A super-register kill already exists.
|
|
if (RegInfo->isSuperRegister(IncomingReg, Reg))
|
|
return true;
|
|
if (RegInfo->isSubRegister(IncomingReg, Reg))
|
|
DeadOps.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Trim unneeded kill operands.
|
|
while (!DeadOps.empty()) {
|
|
unsigned OpIdx = DeadOps.back();
|
|
if (getOperand(OpIdx).isImplicit())
|
|
RemoveOperand(OpIdx);
|
|
else
|
|
getOperand(OpIdx).setIsKill(false);
|
|
DeadOps.pop_back();
|
|
}
|
|
|
|
// If not found, this means an alias of one of the operands is killed. Add a
|
|
// new implicit operand if required.
|
|
if (!Found && AddIfNotFound) {
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
false /*IsDef*/,
|
|
true /*IsImp*/,
|
|
true /*IsKill*/));
|
|
return true;
|
|
}
|
|
return Found;
|
|
}
|
|
|
|
bool MachineInstr::addRegisterDead(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound) {
|
|
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
|
|
bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
|
|
bool Found = false;
|
|
SmallVector<unsigned,4> DeadOps;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (Reg == IncomingReg) {
|
|
if (!Found) {
|
|
if (MO.isDead())
|
|
// The register is already marked dead.
|
|
return true;
|
|
MO.setIsDead();
|
|
Found = true;
|
|
}
|
|
} else if (hasAliases && MO.isDead() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// There exists a super-register that's marked dead.
|
|
if (RegInfo->isSuperRegister(IncomingReg, Reg))
|
|
return true;
|
|
if (RegInfo->getSubRegisters(IncomingReg) &&
|
|
RegInfo->getSuperRegisters(Reg) &&
|
|
RegInfo->isSubRegister(IncomingReg, Reg))
|
|
DeadOps.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Trim unneeded dead operands.
|
|
while (!DeadOps.empty()) {
|
|
unsigned OpIdx = DeadOps.back();
|
|
if (getOperand(OpIdx).isImplicit())
|
|
RemoveOperand(OpIdx);
|
|
else
|
|
getOperand(OpIdx).setIsDead(false);
|
|
DeadOps.pop_back();
|
|
}
|
|
|
|
// If not found, this means an alias of one of the operands is dead. Add a
|
|
// new implicit operand if required.
|
|
if (Found || !AddIfNotFound)
|
|
return Found;
|
|
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
true /*IsDef*/,
|
|
true /*IsImp*/,
|
|
false /*IsKill*/,
|
|
true /*IsDead*/));
|
|
return true;
|
|
}
|