Nirav Dave a6d3e00dff In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Simplify Consecutive Merge Store Candidate Search

  Now that address aliasing is much less conservative, push through
  simplified store merging search which only checks for parallel stores
  through the chain subgraph. This is cleaner as the separation of
  non-interfering loads/stores from the store-merging logic.

  Whem merging stores, search up the chain through a single load, and
  finds all possible stores by looking down from through a load and a
  TokenFactor to all stores visited. This improves the quality of the
  output SelectionDAG and generally the output CodeGen (with some
  exceptions).

  Additional Minor Changes:

    1. Finishes removing unused AliasLoad code
    2. Unifies the the chain aggregation in the merged stores across
       code paths
    3. Re-add the Store node to the worklist after calling
       SimplifyDemandedBits.
    4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
       arbitrary, but seemed sufficient to not cause regressions in
       tests.

  This finishes the change Matt Arsenault started in r246307 and
  jyknight's original patch.

  Many tests required some changes as memory operations are now
  reorderable. Some tests relying on the order were changed to use
  volatile memory operations

  Noteworthy tests:

    CodeGen/AArch64/argument-blocks.ll -
      It's not entirely clear what the test_varargs_stackalign test is
      supposed to be asserting, but the new code looks right.

    CodeGen/AArch64/arm64-memset-inline.lli -
    CodeGen/AArch64/arm64-stur.ll -
    CodeGen/ARM/memset-inline.ll -
      The backend now generates *worse* code due to store merging
      succeeding, as we do do a 16-byte constant-zero store efficiently.

    CodeGen/AArch64/merge-store.ll -
      Improved, but there still seems to be an extraneous vector insert
      from an element to itself?

    CodeGen/PowerPC/ppc64-align-long-double.ll -
      Worse code emitted in this case, due to the improved store->load
      forwarding.

    CodeGen/X86/dag-merge-fast-accesses.ll -
    CodeGen/X86/MergeConsecutiveStores.ll -
    CodeGen/X86/stores-merging.ll -
    CodeGen/Mips/load-store-left-right.ll -
      Restored correct merging of non-aligned stores

    CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
      Improved. Correctly merges buffer_store_dword calls

    CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
      Improved. Sidesteps loading a stored value and merges two stores

    CodeGen/X86/pr18023.ll -
      This test has been removed, as it was asserting incorrect
      behavior. Non-volatile stores *CAN* be moved past volatile loads,
      and now are.

    CodeGen/X86/vector-idiv.ll -
    CodeGen/X86/vector-lzcnt-128.ll -
      It's basically impossible to tell what these tests are actually
      testing. But, looks like the code got better due to the memory
      operations being recognized as non-aliasing.

    CodeGen/X86/win32-eh.ll -
      Both loads of the securitycookie are now merged.

    CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
      This test appears to work but no longer exhibits the spill
      behavior.

Reviewers: arsenm, hfinkel, tstellarAMD, nhaehnle, jyknight

Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, resistor, tstellarAMD, t.p.northover, spatel

Differential Revision: https://reviews.llvm.org/D14834

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282600 91177308-0d34-0410-b5e6-96231b3b80d8
2016-09-28 15:50:43 +00:00
..
2016-04-18 09:17:29 +00:00
2016-04-18 09:17:29 +00:00
2016-04-18 09:17:29 +00:00
2016-04-18 09:17:29 +00:00
2016-04-18 09:17:29 +00:00
2016-06-29 20:37:43 +00:00
2016-04-18 09:17:29 +00:00

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str r4, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelihood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvements:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.