mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-04 01:43:06 +00:00
c29df3cac7
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105220 91177308-0d34-0410-b5e6-96231b3b80d8
549 lines
21 KiB
C++
549 lines
21 KiB
C++
//===- Inliner.cpp - Code common to all inliners --------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the mechanics required to implement inlining without
|
|
// missing any calls and updating the call graph. The decisions of which calls
|
|
// are profitable to inline are implemented elsewhere.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "inline"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Transforms/IPO/InlinerPass.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumInlined, "Number of functions inlined");
|
|
STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
|
|
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
|
|
STATISTIC(NumMergedAllocas, "Number of allocas merged together");
|
|
|
|
static cl::opt<int>
|
|
InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
|
|
cl::desc("Control the amount of inlining to perform (default = 225)"));
|
|
|
|
static cl::opt<int>
|
|
HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
|
|
cl::desc("Threshold for inlining functions with inline hint"));
|
|
|
|
// Threshold to use when optsize is specified (and there is no -inline-limit).
|
|
const int OptSizeThreshold = 75;
|
|
|
|
Inliner::Inliner(void *ID)
|
|
: CallGraphSCCPass(ID), InlineThreshold(InlineLimit) {}
|
|
|
|
Inliner::Inliner(void *ID, int Threshold)
|
|
: CallGraphSCCPass(ID), InlineThreshold(Threshold) {}
|
|
|
|
/// getAnalysisUsage - For this class, we declare that we require and preserve
|
|
/// the call graph. If the derived class implements this method, it should
|
|
/// always explicitly call the implementation here.
|
|
void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
|
|
CallGraphSCCPass::getAnalysisUsage(Info);
|
|
}
|
|
|
|
|
|
typedef DenseMap<const ArrayType*, std::vector<AllocaInst*> >
|
|
InlinedArrayAllocasTy;
|
|
|
|
/// InlineCallIfPossible - If it is possible to inline the specified call site,
|
|
/// do so and update the CallGraph for this operation.
|
|
///
|
|
/// This function also does some basic book-keeping to update the IR. The
|
|
/// InlinedArrayAllocas map keeps track of any allocas that are already
|
|
/// available from other functions inlined into the caller. If we are able to
|
|
/// inline this call site we attempt to reuse already available allocas or add
|
|
/// any new allocas to the set if not possible.
|
|
static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
|
|
InlinedArrayAllocasTy &InlinedArrayAllocas) {
|
|
Function *Callee = CS.getCalledFunction();
|
|
Function *Caller = CS.getCaller();
|
|
|
|
// Try to inline the function. Get the list of static allocas that were
|
|
// inlined.
|
|
if (!InlineFunction(CS, IFI))
|
|
return false;
|
|
|
|
// If the inlined function had a higher stack protection level than the
|
|
// calling function, then bump up the caller's stack protection level.
|
|
if (Callee->hasFnAttr(Attribute::StackProtectReq))
|
|
Caller->addFnAttr(Attribute::StackProtectReq);
|
|
else if (Callee->hasFnAttr(Attribute::StackProtect) &&
|
|
!Caller->hasFnAttr(Attribute::StackProtectReq))
|
|
Caller->addFnAttr(Attribute::StackProtect);
|
|
|
|
|
|
// Look at all of the allocas that we inlined through this call site. If we
|
|
// have already inlined other allocas through other calls into this function,
|
|
// then we know that they have disjoint lifetimes and that we can merge them.
|
|
//
|
|
// There are many heuristics possible for merging these allocas, and the
|
|
// different options have different tradeoffs. One thing that we *really*
|
|
// don't want to hurt is SRoA: once inlining happens, often allocas are no
|
|
// longer address taken and so they can be promoted.
|
|
//
|
|
// Our "solution" for that is to only merge allocas whose outermost type is an
|
|
// array type. These are usually not promoted because someone is using a
|
|
// variable index into them. These are also often the most important ones to
|
|
// merge.
|
|
//
|
|
// A better solution would be to have real memory lifetime markers in the IR
|
|
// and not have the inliner do any merging of allocas at all. This would
|
|
// allow the backend to do proper stack slot coloring of all allocas that
|
|
// *actually make it to the backend*, which is really what we want.
|
|
//
|
|
// Because we don't have this information, we do this simple and useful hack.
|
|
//
|
|
SmallPtrSet<AllocaInst*, 16> UsedAllocas;
|
|
|
|
// Loop over all the allocas we have so far and see if they can be merged with
|
|
// a previously inlined alloca. If not, remember that we had it.
|
|
for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
|
|
AllocaNo != e; ++AllocaNo) {
|
|
AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
|
|
|
|
// Don't bother trying to merge array allocations (they will usually be
|
|
// canonicalized to be an allocation *of* an array), or allocations whose
|
|
// type is not itself an array (because we're afraid of pessimizing SRoA).
|
|
const ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
|
|
if (ATy == 0 || AI->isArrayAllocation())
|
|
continue;
|
|
|
|
// Get the list of all available allocas for this array type.
|
|
std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
|
|
|
|
// Loop over the allocas in AllocasForType to see if we can reuse one. Note
|
|
// that we have to be careful not to reuse the same "available" alloca for
|
|
// multiple different allocas that we just inlined, we use the 'UsedAllocas'
|
|
// set to keep track of which "available" allocas are being used by this
|
|
// function. Also, AllocasForType can be empty of course!
|
|
bool MergedAwayAlloca = false;
|
|
for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
|
|
AllocaInst *AvailableAlloca = AllocasForType[i];
|
|
|
|
// The available alloca has to be in the right function, not in some other
|
|
// function in this SCC.
|
|
if (AvailableAlloca->getParent() != AI->getParent())
|
|
continue;
|
|
|
|
// If the inlined function already uses this alloca then we can't reuse
|
|
// it.
|
|
if (!UsedAllocas.insert(AvailableAlloca))
|
|
continue;
|
|
|
|
// Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
|
|
// success!
|
|
DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI);
|
|
|
|
AI->replaceAllUsesWith(AvailableAlloca);
|
|
AI->eraseFromParent();
|
|
MergedAwayAlloca = true;
|
|
++NumMergedAllocas;
|
|
break;
|
|
}
|
|
|
|
// If we already nuked the alloca, we're done with it.
|
|
if (MergedAwayAlloca)
|
|
continue;
|
|
|
|
// If we were unable to merge away the alloca either because there are no
|
|
// allocas of the right type available or because we reused them all
|
|
// already, remember that this alloca came from an inlined function and mark
|
|
// it used so we don't reuse it for other allocas from this inline
|
|
// operation.
|
|
AllocasForType.push_back(AI);
|
|
UsedAllocas.insert(AI);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned Inliner::getInlineThreshold(CallSite CS) const {
|
|
int thres = InlineThreshold;
|
|
|
|
// Listen to optsize when -inline-limit is not given.
|
|
Function *Caller = CS.getCaller();
|
|
if (Caller && !Caller->isDeclaration() &&
|
|
Caller->hasFnAttr(Attribute::OptimizeForSize) &&
|
|
InlineLimit.getNumOccurrences() == 0)
|
|
thres = OptSizeThreshold;
|
|
|
|
// Listen to inlinehint when it would increase the threshold.
|
|
Function *Callee = CS.getCalledFunction();
|
|
if (HintThreshold > thres && Callee && !Callee->isDeclaration() &&
|
|
Callee->hasFnAttr(Attribute::InlineHint))
|
|
thres = HintThreshold;
|
|
|
|
return thres;
|
|
}
|
|
|
|
/// shouldInline - Return true if the inliner should attempt to inline
|
|
/// at the given CallSite.
|
|
bool Inliner::shouldInline(CallSite CS) {
|
|
InlineCost IC = getInlineCost(CS);
|
|
|
|
if (IC.isAlways()) {
|
|
DEBUG(dbgs() << " Inlining: cost=always"
|
|
<< ", Call: " << *CS.getInstruction() << "\n");
|
|
return true;
|
|
}
|
|
|
|
if (IC.isNever()) {
|
|
DEBUG(dbgs() << " NOT Inlining: cost=never"
|
|
<< ", Call: " << *CS.getInstruction() << "\n");
|
|
return false;
|
|
}
|
|
|
|
int Cost = IC.getValue();
|
|
Function *Caller = CS.getCaller();
|
|
int CurrentThreshold = getInlineThreshold(CS);
|
|
float FudgeFactor = getInlineFudgeFactor(CS);
|
|
int AdjThreshold = (int)(CurrentThreshold * FudgeFactor);
|
|
if (Cost >= AdjThreshold) {
|
|
DEBUG(dbgs() << " NOT Inlining: cost=" << Cost
|
|
<< ", thres=" << AdjThreshold
|
|
<< ", Call: " << *CS.getInstruction() << "\n");
|
|
return false;
|
|
}
|
|
|
|
// Try to detect the case where the current inlining candidate caller
|
|
// (call it B) is a static function and is an inlining candidate elsewhere,
|
|
// and the current candidate callee (call it C) is large enough that
|
|
// inlining it into B would make B too big to inline later. In these
|
|
// circumstances it may be best not to inline C into B, but to inline B
|
|
// into its callers.
|
|
if (Caller->hasLocalLinkage()) {
|
|
int TotalSecondaryCost = 0;
|
|
bool outerCallsFound = false;
|
|
bool allOuterCallsWillBeInlined = true;
|
|
bool someOuterCallWouldNotBeInlined = false;
|
|
for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
|
|
I != E; ++I) {
|
|
CallSite CS2 = CallSite::get(*I);
|
|
|
|
// If this isn't a call to Caller (it could be some other sort
|
|
// of reference) skip it.
|
|
if (CS2.getInstruction() == 0 || CS2.getCalledFunction() != Caller)
|
|
continue;
|
|
|
|
InlineCost IC2 = getInlineCost(CS2);
|
|
if (IC2.isNever())
|
|
allOuterCallsWillBeInlined = false;
|
|
if (IC2.isAlways() || IC2.isNever())
|
|
continue;
|
|
|
|
outerCallsFound = true;
|
|
int Cost2 = IC2.getValue();
|
|
int CurrentThreshold2 = getInlineThreshold(CS2);
|
|
float FudgeFactor2 = getInlineFudgeFactor(CS2);
|
|
|
|
if (Cost2 >= (int)(CurrentThreshold2 * FudgeFactor2))
|
|
allOuterCallsWillBeInlined = false;
|
|
|
|
// See if we have this case. We subtract off the penalty
|
|
// for the call instruction, which we would be deleting.
|
|
if (Cost2 < (int)(CurrentThreshold2 * FudgeFactor2) &&
|
|
Cost2 + Cost - (InlineConstants::CallPenalty + 1) >=
|
|
(int)(CurrentThreshold2 * FudgeFactor2)) {
|
|
someOuterCallWouldNotBeInlined = true;
|
|
TotalSecondaryCost += Cost2;
|
|
}
|
|
}
|
|
// If all outer calls to Caller would get inlined, the cost for the last
|
|
// one is set very low by getInlineCost, in anticipation that Caller will
|
|
// be removed entirely. We did not account for this above unless there
|
|
// is only one caller of Caller.
|
|
if (allOuterCallsWillBeInlined && Caller->use_begin() != Caller->use_end())
|
|
TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
|
|
|
|
if (outerCallsFound && someOuterCallWouldNotBeInlined &&
|
|
TotalSecondaryCost < Cost) {
|
|
DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() <<
|
|
" Cost = " << Cost <<
|
|
", outer Cost = " << TotalSecondaryCost << '\n');
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << " Inlining: cost=" << Cost
|
|
<< ", thres=" << AdjThreshold
|
|
<< ", Call: " << *CS.getInstruction() << '\n');
|
|
return true;
|
|
}
|
|
|
|
/// InlineHistoryIncludes - Return true if the specified inline history ID
|
|
/// indicates an inline history that includes the specified function.
|
|
static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
|
|
const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
|
|
while (InlineHistoryID != -1) {
|
|
assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
|
|
"Invalid inline history ID");
|
|
if (InlineHistory[InlineHistoryID].first == F)
|
|
return true;
|
|
InlineHistoryID = InlineHistory[InlineHistoryID].second;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Inliner::runOnSCC(CallGraphSCC &SCC) {
|
|
CallGraph &CG = getAnalysis<CallGraph>();
|
|
const TargetData *TD = getAnalysisIfAvailable<TargetData>();
|
|
|
|
SmallPtrSet<Function*, 8> SCCFunctions;
|
|
DEBUG(dbgs() << "Inliner visiting SCC:");
|
|
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
|
|
Function *F = (*I)->getFunction();
|
|
if (F) SCCFunctions.insert(F);
|
|
DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
|
|
}
|
|
|
|
// Scan through and identify all call sites ahead of time so that we only
|
|
// inline call sites in the original functions, not call sites that result
|
|
// from inlining other functions.
|
|
SmallVector<std::pair<CallSite, int>, 16> CallSites;
|
|
|
|
// When inlining a callee produces new call sites, we want to keep track of
|
|
// the fact that they were inlined from the callee. This allows us to avoid
|
|
// infinite inlining in some obscure cases. To represent this, we use an
|
|
// index into the InlineHistory vector.
|
|
SmallVector<std::pair<Function*, int>, 8> InlineHistory;
|
|
|
|
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
|
|
Function *F = (*I)->getFunction();
|
|
if (!F) continue;
|
|
|
|
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
CallSite CS = CallSite::get(I);
|
|
// If this isn't a call, or it is a call to an intrinsic, it can
|
|
// never be inlined.
|
|
if (CS.getInstruction() == 0 || isa<IntrinsicInst>(I))
|
|
continue;
|
|
|
|
// If this is a direct call to an external function, we can never inline
|
|
// it. If it is an indirect call, inlining may resolve it to be a
|
|
// direct call, so we keep it.
|
|
if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
|
|
continue;
|
|
|
|
CallSites.push_back(std::make_pair(CS, -1));
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
|
|
|
|
// If there are no calls in this function, exit early.
|
|
if (CallSites.empty())
|
|
return false;
|
|
|
|
// Now that we have all of the call sites, move the ones to functions in the
|
|
// current SCC to the end of the list.
|
|
unsigned FirstCallInSCC = CallSites.size();
|
|
for (unsigned i = 0; i < FirstCallInSCC; ++i)
|
|
if (Function *F = CallSites[i].first.getCalledFunction())
|
|
if (SCCFunctions.count(F))
|
|
std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
|
|
|
|
|
|
InlinedArrayAllocasTy InlinedArrayAllocas;
|
|
InlineFunctionInfo InlineInfo(&CG, TD);
|
|
|
|
// Now that we have all of the call sites, loop over them and inline them if
|
|
// it looks profitable to do so.
|
|
bool Changed = false;
|
|
bool LocalChange;
|
|
do {
|
|
LocalChange = false;
|
|
// Iterate over the outer loop because inlining functions can cause indirect
|
|
// calls to become direct calls.
|
|
for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
|
|
CallSite CS = CallSites[CSi].first;
|
|
|
|
Function *Caller = CS.getCaller();
|
|
Function *Callee = CS.getCalledFunction();
|
|
|
|
// If this call site is dead and it is to a readonly function, we should
|
|
// just delete the call instead of trying to inline it, regardless of
|
|
// size. This happens because IPSCCP propagates the result out of the
|
|
// call and then we're left with the dead call.
|
|
if (isInstructionTriviallyDead(CS.getInstruction())) {
|
|
DEBUG(dbgs() << " -> Deleting dead call: "
|
|
<< *CS.getInstruction() << "\n");
|
|
// Update the call graph by deleting the edge from Callee to Caller.
|
|
CG[Caller]->removeCallEdgeFor(CS);
|
|
CS.getInstruction()->eraseFromParent();
|
|
++NumCallsDeleted;
|
|
// Update the cached cost info with the missing call
|
|
growCachedCostInfo(Caller, NULL);
|
|
} else {
|
|
// We can only inline direct calls to non-declarations.
|
|
if (Callee == 0 || Callee->isDeclaration()) continue;
|
|
|
|
// If this call sites was obtained by inlining another function, verify
|
|
// that the include path for the function did not include the callee
|
|
// itself. If so, we'd be recursively inlinling the same function,
|
|
// which would provide the same callsites, which would cause us to
|
|
// infinitely inline.
|
|
int InlineHistoryID = CallSites[CSi].second;
|
|
if (InlineHistoryID != -1 &&
|
|
InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
|
|
continue;
|
|
|
|
|
|
// If the policy determines that we should inline this function,
|
|
// try to do so.
|
|
if (!shouldInline(CS))
|
|
continue;
|
|
|
|
// Attempt to inline the function.
|
|
if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas))
|
|
continue;
|
|
++NumInlined;
|
|
|
|
// If inlining this function gave us any new call sites, throw them
|
|
// onto our worklist to process. They are useful inline candidates.
|
|
if (!InlineInfo.InlinedCalls.empty()) {
|
|
// Create a new inline history entry for this, so that we remember
|
|
// that these new callsites came about due to inlining Callee.
|
|
int NewHistoryID = InlineHistory.size();
|
|
InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
|
|
|
|
for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
|
|
i != e; ++i) {
|
|
Value *Ptr = InlineInfo.InlinedCalls[i];
|
|
CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
|
|
}
|
|
}
|
|
|
|
// Update the cached cost info with the inlined call.
|
|
growCachedCostInfo(Caller, Callee);
|
|
}
|
|
|
|
// If we inlined or deleted the last possible call site to the function,
|
|
// delete the function body now.
|
|
if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
|
|
// TODO: Can remove if in SCC now.
|
|
!SCCFunctions.count(Callee) &&
|
|
|
|
// The function may be apparently dead, but if there are indirect
|
|
// callgraph references to the node, we cannot delete it yet, this
|
|
// could invalidate the CGSCC iterator.
|
|
CG[Callee]->getNumReferences() == 0) {
|
|
DEBUG(dbgs() << " -> Deleting dead function: "
|
|
<< Callee->getName() << "\n");
|
|
CallGraphNode *CalleeNode = CG[Callee];
|
|
|
|
// Remove any call graph edges from the callee to its callees.
|
|
CalleeNode->removeAllCalledFunctions();
|
|
|
|
resetCachedCostInfo(Callee);
|
|
|
|
// Removing the node for callee from the call graph and delete it.
|
|
delete CG.removeFunctionFromModule(CalleeNode);
|
|
++NumDeleted;
|
|
}
|
|
|
|
// Remove this call site from the list. If possible, use
|
|
// swap/pop_back for efficiency, but do not use it if doing so would
|
|
// move a call site to a function in this SCC before the
|
|
// 'FirstCallInSCC' barrier.
|
|
if (SCC.isSingular()) {
|
|
CallSites[CSi] = CallSites.back();
|
|
CallSites.pop_back();
|
|
} else {
|
|
CallSites.erase(CallSites.begin()+CSi);
|
|
}
|
|
--CSi;
|
|
|
|
Changed = true;
|
|
LocalChange = true;
|
|
}
|
|
} while (LocalChange);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// doFinalization - Remove now-dead linkonce functions at the end of
|
|
// processing to avoid breaking the SCC traversal.
|
|
bool Inliner::doFinalization(CallGraph &CG) {
|
|
return removeDeadFunctions(CG);
|
|
}
|
|
|
|
/// removeDeadFunctions - Remove dead functions that are not included in
|
|
/// DNR (Do Not Remove) list.
|
|
bool Inliner::removeDeadFunctions(CallGraph &CG,
|
|
SmallPtrSet<const Function *, 16> *DNR) {
|
|
SmallPtrSet<CallGraphNode*, 16> FunctionsToRemove;
|
|
|
|
// Scan for all of the functions, looking for ones that should now be removed
|
|
// from the program. Insert the dead ones in the FunctionsToRemove set.
|
|
for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
|
|
CallGraphNode *CGN = I->second;
|
|
if (CGN->getFunction() == 0)
|
|
continue;
|
|
|
|
Function *F = CGN->getFunction();
|
|
|
|
// If the only remaining users of the function are dead constants, remove
|
|
// them.
|
|
F->removeDeadConstantUsers();
|
|
|
|
if (DNR && DNR->count(F))
|
|
continue;
|
|
if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
|
|
!F->hasAvailableExternallyLinkage())
|
|
continue;
|
|
if (!F->use_empty())
|
|
continue;
|
|
|
|
// Remove any call graph edges from the function to its callees.
|
|
CGN->removeAllCalledFunctions();
|
|
|
|
// Remove any edges from the external node to the function's call graph
|
|
// node. These edges might have been made irrelegant due to
|
|
// optimization of the program.
|
|
CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
|
|
|
|
// Removing the node for callee from the call graph and delete it.
|
|
FunctionsToRemove.insert(CGN);
|
|
}
|
|
|
|
// Now that we know which functions to delete, do so. We didn't want to do
|
|
// this inline, because that would invalidate our CallGraph::iterator
|
|
// objects. :(
|
|
//
|
|
// Note that it doesn't matter that we are iterating over a non-stable set
|
|
// here to do this, it doesn't matter which order the functions are deleted
|
|
// in.
|
|
bool Changed = false;
|
|
for (SmallPtrSet<CallGraphNode*, 16>::iterator I = FunctionsToRemove.begin(),
|
|
E = FunctionsToRemove.end(); I != E; ++I) {
|
|
resetCachedCostInfo((*I)->getFunction());
|
|
delete CG.removeFunctionFromModule(*I);
|
|
++NumDeleted;
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|