mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-04 10:04:33 +00:00
f5be002fc9
Avoid implicit conversions from MachineInstrBundleIterator to MachineInstr* in the PowerPC backend, mainly by preferring MachineInstr& over MachineInstr* when a pointer isn't nullable and using range-based for loops. There was one piece of questionable code in PPCInstrInfo::AnalyzeBranch, where a condition checked a pointer converted from an iterator for nullptr. Since this case is impossible (moreover, the code above guarantees that the iterator is valid), I removed the check when I changed the pointer to a reference. Despite that case, there should be no functionality change here. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276864 91177308-0d34-0410-b5e6-96231b3b80d8
395 lines
15 KiB
C++
395 lines
15 KiB
C++
//===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass mutates the form of VSX FMA instructions to avoid unnecessary
|
|
// copies.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCInstrInfo.h"
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPC.h"
|
|
#include "PPCInstrBuilder.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// Temporarily disable FMA mutation by default, since it doesn't handle
|
|
// cross-basic-block intervals well.
|
|
// See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
|
|
// http://reviews.llvm.org/D17087
|
|
static cl::opt<bool> DisableVSXFMAMutate(
|
|
"disable-ppc-vsx-fma-mutation",
|
|
cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
|
|
cl::Hidden);
|
|
|
|
#define DEBUG_TYPE "ppc-vsx-fma-mutate"
|
|
|
|
namespace llvm { namespace PPC {
|
|
int getAltVSXFMAOpcode(uint16_t Opcode);
|
|
} }
|
|
|
|
namespace {
|
|
// PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
|
|
// (Altivec and scalar floating-point registers), we need to transform the
|
|
// copies into subregister copies with other restrictions.
|
|
struct PPCVSXFMAMutate : public MachineFunctionPass {
|
|
static char ID;
|
|
PPCVSXFMAMutate() : MachineFunctionPass(ID) {
|
|
initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
LiveIntervals *LIS;
|
|
const PPCInstrInfo *TII;
|
|
|
|
protected:
|
|
bool processBlock(MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
|
|
I != IE; ++I) {
|
|
MachineInstr &MI = *I;
|
|
|
|
// The default (A-type) VSX FMA form kills the addend (it is taken from
|
|
// the target register, which is then updated to reflect the result of
|
|
// the FMA). If the instruction, however, kills one of the registers
|
|
// used for the product, then we can use the M-form instruction (which
|
|
// will take that value from the to-be-defined register).
|
|
|
|
int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
|
|
if (AltOpc == -1)
|
|
continue;
|
|
|
|
// This pass is run after register coalescing, and so we're looking for
|
|
// a situation like this:
|
|
// ...
|
|
// %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
|
|
// %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
|
|
// %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
|
|
// ...
|
|
// %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
|
|
// %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
|
|
// ...
|
|
// Where we can eliminate the copy by changing from the A-type to the
|
|
// M-type instruction. Specifically, for this example, this means:
|
|
// %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
|
|
// %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
|
|
// is replaced by:
|
|
// %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
|
|
// %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
|
|
// and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
|
|
|
|
SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
|
|
|
|
VNInfo *AddendValNo =
|
|
LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn();
|
|
|
|
// This can be null if the register is undef.
|
|
if (!AddendValNo)
|
|
continue;
|
|
|
|
MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
|
|
|
|
// The addend and this instruction must be in the same block.
|
|
|
|
if (!AddendMI || AddendMI->getParent() != MI.getParent())
|
|
continue;
|
|
|
|
// The addend must be a full copy within the same register class.
|
|
|
|
if (!AddendMI->isFullCopy())
|
|
continue;
|
|
|
|
unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
|
|
if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
|
|
MRI.getRegClass(AddendSrcReg))
|
|
continue;
|
|
} else {
|
|
// If AddendSrcReg is a physical register, make sure the destination
|
|
// register class contains it.
|
|
if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
|
|
->contains(AddendSrcReg))
|
|
continue;
|
|
}
|
|
|
|
// In theory, there could be other uses of the addend copy before this
|
|
// fma. We could deal with this, but that would require additional
|
|
// logic below and I suspect it will not occur in any relevant
|
|
// situations. Additionally, check whether the copy source is killed
|
|
// prior to the fma. In order to replace the addend here with the
|
|
// source of the copy, it must still be live here. We can't use
|
|
// interval testing for a physical register, so as long as we're
|
|
// walking the MIs we may as well test liveness here.
|
|
//
|
|
// FIXME: There is a case that occurs in practice, like this:
|
|
// %vreg9<def> = COPY %F1; VSSRC:%vreg9
|
|
// ...
|
|
// %vreg6<def> = COPY %vreg9; VSSRC:%vreg6,%vreg9
|
|
// %vreg7<def> = COPY %vreg9; VSSRC:%vreg7,%vreg9
|
|
// %vreg9<def,tied1> = XSMADDASP %vreg9<tied0>, %vreg1, %vreg4; VSSRC:
|
|
// %vreg6<def,tied1> = XSMADDASP %vreg6<tied0>, %vreg1, %vreg2; VSSRC:
|
|
// %vreg7<def,tied1> = XSMADDASP %vreg7<tied0>, %vreg1, %vreg3; VSSRC:
|
|
// which prevents an otherwise-profitable transformation.
|
|
bool OtherUsers = false, KillsAddendSrc = false;
|
|
for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
|
|
J != JE; --J) {
|
|
if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
|
|
OtherUsers = true;
|
|
break;
|
|
}
|
|
if (J->modifiesRegister(AddendSrcReg, TRI) ||
|
|
J->killsRegister(AddendSrcReg, TRI)) {
|
|
KillsAddendSrc = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (OtherUsers || KillsAddendSrc)
|
|
continue;
|
|
|
|
|
|
// The transformation doesn't work well with things like:
|
|
// %vreg5 = A-form-op %vreg5, %vreg11, %vreg5;
|
|
// unless vreg11 is also a kill, so skip when it is not,
|
|
// and check operand 3 to see it is also a kill to handle the case:
|
|
// %vreg5 = A-form-op %vreg5, %vreg5, %vreg11;
|
|
// where vreg5 and vreg11 are both kills. This case would be skipped
|
|
// otherwise.
|
|
unsigned OldFMAReg = MI.getOperand(0).getReg();
|
|
|
|
// Find one of the product operands that is killed by this instruction.
|
|
unsigned KilledProdOp = 0, OtherProdOp = 0;
|
|
unsigned Reg2 = MI.getOperand(2).getReg();
|
|
unsigned Reg3 = MI.getOperand(3).getReg();
|
|
if (LIS->getInterval(Reg2).Query(FMAIdx).isKill()
|
|
&& Reg2 != OldFMAReg) {
|
|
KilledProdOp = 2;
|
|
OtherProdOp = 3;
|
|
} else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill()
|
|
&& Reg3 != OldFMAReg) {
|
|
KilledProdOp = 3;
|
|
OtherProdOp = 2;
|
|
}
|
|
|
|
// If there are no usable killed product operands, then this
|
|
// transformation is likely not profitable.
|
|
if (!KilledProdOp)
|
|
continue;
|
|
|
|
// If the addend copy is used only by this MI, then the addend source
|
|
// register is likely not live here. This could be fixed (based on the
|
|
// legality checks above, the live range for the addend source register
|
|
// could be extended), but it seems likely that such a trivial copy can
|
|
// be coalesced away later, and thus is not worth the effort.
|
|
if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg) &&
|
|
!LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
|
|
continue;
|
|
|
|
// Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
|
|
|
|
unsigned KilledProdReg = MI.getOperand(KilledProdOp).getReg();
|
|
unsigned OtherProdReg = MI.getOperand(OtherProdOp).getReg();
|
|
|
|
unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
|
|
unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg();
|
|
unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg();
|
|
|
|
bool AddRegKill = AddendMI->getOperand(1).isKill();
|
|
bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill();
|
|
bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill();
|
|
|
|
bool AddRegUndef = AddendMI->getOperand(1).isUndef();
|
|
bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef();
|
|
bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef();
|
|
|
|
// If there isn't a class that fits, we can't perform the transform.
|
|
// This is needed for correctness with a mixture of VSX and Altivec
|
|
// instructions to make sure that a low VSX register is not assigned to
|
|
// the Altivec instruction.
|
|
if (!MRI.constrainRegClass(KilledProdReg,
|
|
MRI.getRegClass(OldFMAReg)))
|
|
continue;
|
|
|
|
assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
|
|
"Addend copy not tied to old FMA output!");
|
|
|
|
DEBUG(dbgs() << "VSX FMA Mutation:\n " << MI);
|
|
|
|
MI.getOperand(0).setReg(KilledProdReg);
|
|
MI.getOperand(1).setReg(KilledProdReg);
|
|
MI.getOperand(3).setReg(AddendSrcReg);
|
|
|
|
MI.getOperand(0).setSubReg(KilledProdSubReg);
|
|
MI.getOperand(1).setSubReg(KilledProdSubReg);
|
|
MI.getOperand(3).setSubReg(AddSubReg);
|
|
|
|
MI.getOperand(1).setIsKill(KilledProdRegKill);
|
|
MI.getOperand(3).setIsKill(AddRegKill);
|
|
|
|
MI.getOperand(1).setIsUndef(KilledProdRegUndef);
|
|
MI.getOperand(3).setIsUndef(AddRegUndef);
|
|
|
|
MI.setDesc(TII->get(AltOpc));
|
|
|
|
// If the addend is also a multiplicand, replace it with the addend
|
|
// source in both places.
|
|
if (OtherProdReg == AddendMI->getOperand(0).getReg()) {
|
|
MI.getOperand(2).setReg(AddendSrcReg);
|
|
MI.getOperand(2).setSubReg(AddSubReg);
|
|
MI.getOperand(2).setIsKill(AddRegKill);
|
|
MI.getOperand(2).setIsUndef(AddRegUndef);
|
|
} else {
|
|
MI.getOperand(2).setReg(OtherProdReg);
|
|
MI.getOperand(2).setSubReg(OtherProdSubReg);
|
|
MI.getOperand(2).setIsKill(OtherProdRegKill);
|
|
MI.getOperand(2).setIsUndef(OtherProdRegUndef);
|
|
}
|
|
|
|
DEBUG(dbgs() << " -> " << MI);
|
|
|
|
// The killed product operand was killed here, so we can reuse it now
|
|
// for the result of the fma.
|
|
|
|
LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
|
|
VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
|
|
for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
|
|
UI != UE;) {
|
|
MachineOperand &UseMO = *UI;
|
|
MachineInstr *UseMI = UseMO.getParent();
|
|
++UI;
|
|
|
|
// Don't replace the result register of the copy we're about to erase.
|
|
if (UseMI == AddendMI)
|
|
continue;
|
|
|
|
UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
|
|
}
|
|
|
|
// Extend the live intervals of the killed product operand to hold the
|
|
// fma result.
|
|
|
|
LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
|
|
for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
|
|
AI != AE; ++AI) {
|
|
// Don't add the segment that corresponds to the original copy.
|
|
if (AI->valno == AddendValNo)
|
|
continue;
|
|
|
|
VNInfo *NewFMAValNo =
|
|
NewFMAInt.getNextValue(AI->start,
|
|
LIS->getVNInfoAllocator());
|
|
|
|
NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
|
|
NewFMAValNo));
|
|
}
|
|
DEBUG(dbgs() << " extended: " << NewFMAInt << '\n');
|
|
|
|
// Extend the live interval of the addend source (it might end at the
|
|
// copy to be removed, or somewhere in between there and here). This
|
|
// is necessary only if it is a physical register.
|
|
if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg))
|
|
for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid();
|
|
++Units) {
|
|
unsigned Unit = *Units;
|
|
|
|
LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
|
|
AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
|
|
FMAIdx.getRegSlot());
|
|
DEBUG(dbgs() << " extended: " << AddendSrcRange << '\n');
|
|
}
|
|
|
|
FMAInt.removeValNo(FMAValNo);
|
|
DEBUG(dbgs() << " trimmed: " << FMAInt << '\n');
|
|
|
|
// Remove the (now unused) copy.
|
|
|
|
DEBUG(dbgs() << " removing: " << *AddendMI << '\n');
|
|
LIS->RemoveMachineInstrFromMaps(*AddendMI);
|
|
AddendMI->eraseFromParent();
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
public:
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
if (skipFunction(*MF.getFunction()))
|
|
return false;
|
|
|
|
// If we don't have VSX then go ahead and return without doing
|
|
// anything.
|
|
const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
|
|
if (!STI.hasVSX())
|
|
return false;
|
|
|
|
LIS = &getAnalysis<LiveIntervals>();
|
|
|
|
TII = STI.getInstrInfo();
|
|
|
|
bool Changed = false;
|
|
|
|
if (DisableVSXFMAMutate)
|
|
return Changed;
|
|
|
|
for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
|
|
MachineBasicBlock &B = *I++;
|
|
if (processBlock(B))
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addRequired<SlotIndexes>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
|
|
"PowerPC VSX FMA Mutation", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
|
|
"PowerPC VSX FMA Mutation", false, false)
|
|
|
|
char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
|
|
|
|
char PPCVSXFMAMutate::ID = 0;
|
|
FunctionPass *llvm::createPPCVSXFMAMutatePass() {
|
|
return new PPCVSXFMAMutate();
|
|
}
|