mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-25 13:45:34 +00:00
b11b3529ce
Coincidentally this function maps to the C++17 try_emplace. Rename it for consistentcy with C++17 std::map. NFC. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276276 91177308-0d34-0410-b5e6-96231b3b80d8
1456 lines
44 KiB
C++
1456 lines
44 KiB
C++
//===- Metadata.cpp - Implement Metadata classes --------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Metadata classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "MetadataImpl.h"
|
|
#include "SymbolTableListTraitsImpl.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
|
|
using namespace llvm;
|
|
|
|
MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
|
|
: Value(Ty, MetadataAsValueVal), MD(MD) {
|
|
track();
|
|
}
|
|
|
|
MetadataAsValue::~MetadataAsValue() {
|
|
getType()->getContext().pImpl->MetadataAsValues.erase(MD);
|
|
untrack();
|
|
}
|
|
|
|
/// Canonicalize metadata arguments to intrinsics.
|
|
///
|
|
/// To support bitcode upgrades (and assembly semantic sugar) for \a
|
|
/// MetadataAsValue, we need to canonicalize certain metadata.
|
|
///
|
|
/// - nullptr is replaced by an empty MDNode.
|
|
/// - An MDNode with a single null operand is replaced by an empty MDNode.
|
|
/// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
|
|
///
|
|
/// This maintains readability of bitcode from when metadata was a type of
|
|
/// value, and these bridges were unnecessary.
|
|
static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
|
|
Metadata *MD) {
|
|
if (!MD)
|
|
// !{}
|
|
return MDNode::get(Context, None);
|
|
|
|
// Return early if this isn't a single-operand MDNode.
|
|
auto *N = dyn_cast<MDNode>(MD);
|
|
if (!N || N->getNumOperands() != 1)
|
|
return MD;
|
|
|
|
if (!N->getOperand(0))
|
|
// !{}
|
|
return MDNode::get(Context, None);
|
|
|
|
if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
|
|
// Look through the MDNode.
|
|
return C;
|
|
|
|
return MD;
|
|
}
|
|
|
|
MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
|
|
MD = canonicalizeMetadataForValue(Context, MD);
|
|
auto *&Entry = Context.pImpl->MetadataAsValues[MD];
|
|
if (!Entry)
|
|
Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
|
|
return Entry;
|
|
}
|
|
|
|
MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
|
|
Metadata *MD) {
|
|
MD = canonicalizeMetadataForValue(Context, MD);
|
|
auto &Store = Context.pImpl->MetadataAsValues;
|
|
return Store.lookup(MD);
|
|
}
|
|
|
|
void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
|
|
LLVMContext &Context = getContext();
|
|
MD = canonicalizeMetadataForValue(Context, MD);
|
|
auto &Store = Context.pImpl->MetadataAsValues;
|
|
|
|
// Stop tracking the old metadata.
|
|
Store.erase(this->MD);
|
|
untrack();
|
|
this->MD = nullptr;
|
|
|
|
// Start tracking MD, or RAUW if necessary.
|
|
auto *&Entry = Store[MD];
|
|
if (Entry) {
|
|
replaceAllUsesWith(Entry);
|
|
delete this;
|
|
return;
|
|
}
|
|
|
|
this->MD = MD;
|
|
track();
|
|
Entry = this;
|
|
}
|
|
|
|
void MetadataAsValue::track() {
|
|
if (MD)
|
|
MetadataTracking::track(&MD, *MD, *this);
|
|
}
|
|
|
|
void MetadataAsValue::untrack() {
|
|
if (MD)
|
|
MetadataTracking::untrack(MD);
|
|
}
|
|
|
|
bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
|
|
assert(Ref && "Expected live reference");
|
|
assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
|
|
"Reference without owner must be direct");
|
|
if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
|
|
R->addRef(Ref, Owner);
|
|
return true;
|
|
}
|
|
if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
|
|
assert(!PH->Use && "Placeholders can only be used once");
|
|
assert(!Owner && "Unexpected callback to owner");
|
|
PH->Use = static_cast<Metadata **>(Ref);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void MetadataTracking::untrack(void *Ref, Metadata &MD) {
|
|
assert(Ref && "Expected live reference");
|
|
if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
|
|
R->dropRef(Ref);
|
|
else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
|
|
PH->Use = nullptr;
|
|
}
|
|
|
|
bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
|
|
assert(Ref && "Expected live reference");
|
|
assert(New && "Expected live reference");
|
|
assert(Ref != New && "Expected change");
|
|
if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
|
|
R->moveRef(Ref, New, MD);
|
|
return true;
|
|
}
|
|
assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
|
|
"Unexpected move of an MDOperand");
|
|
assert(!isReplaceable(MD) &&
|
|
"Expected un-replaceable metadata, since we didn't move a reference");
|
|
return false;
|
|
}
|
|
|
|
bool MetadataTracking::isReplaceable(const Metadata &MD) {
|
|
return ReplaceableMetadataImpl::isReplaceable(MD);
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
|
|
bool WasInserted =
|
|
UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
|
|
.second;
|
|
(void)WasInserted;
|
|
assert(WasInserted && "Expected to add a reference");
|
|
|
|
++NextIndex;
|
|
assert(NextIndex != 0 && "Unexpected overflow");
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::dropRef(void *Ref) {
|
|
bool WasErased = UseMap.erase(Ref);
|
|
(void)WasErased;
|
|
assert(WasErased && "Expected to drop a reference");
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
|
|
const Metadata &MD) {
|
|
auto I = UseMap.find(Ref);
|
|
assert(I != UseMap.end() && "Expected to move a reference");
|
|
auto OwnerAndIndex = I->second;
|
|
UseMap.erase(I);
|
|
bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
|
|
(void)WasInserted;
|
|
assert(WasInserted && "Expected to add a reference");
|
|
|
|
// Check that the references are direct if there's no owner.
|
|
(void)MD;
|
|
assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
|
|
"Reference without owner must be direct");
|
|
assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
|
|
"Reference without owner must be direct");
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
|
|
if (UseMap.empty())
|
|
return;
|
|
|
|
// Copy out uses since UseMap will get touched below.
|
|
typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
|
|
SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
|
|
std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
|
|
return L.second.second < R.second.second;
|
|
});
|
|
for (const auto &Pair : Uses) {
|
|
// Check that this Ref hasn't disappeared after RAUW (when updating a
|
|
// previous Ref).
|
|
if (!UseMap.count(Pair.first))
|
|
continue;
|
|
|
|
OwnerTy Owner = Pair.second.first;
|
|
if (!Owner) {
|
|
// Update unowned tracking references directly.
|
|
Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
|
|
Ref = MD;
|
|
if (MD)
|
|
MetadataTracking::track(Ref);
|
|
UseMap.erase(Pair.first);
|
|
continue;
|
|
}
|
|
|
|
// Check for MetadataAsValue.
|
|
if (Owner.is<MetadataAsValue *>()) {
|
|
Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
|
|
continue;
|
|
}
|
|
|
|
// There's a Metadata owner -- dispatch.
|
|
Metadata *OwnerMD = Owner.get<Metadata *>();
|
|
switch (OwnerMD->getMetadataID()) {
|
|
#define HANDLE_METADATA_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
|
|
continue;
|
|
#include "llvm/IR/Metadata.def"
|
|
default:
|
|
llvm_unreachable("Invalid metadata subclass");
|
|
}
|
|
}
|
|
assert(UseMap.empty() && "Expected all uses to be replaced");
|
|
}
|
|
|
|
void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
|
|
if (UseMap.empty())
|
|
return;
|
|
|
|
if (!ResolveUsers) {
|
|
UseMap.clear();
|
|
return;
|
|
}
|
|
|
|
// Copy out uses since UseMap could get touched below.
|
|
typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
|
|
SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
|
|
std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
|
|
return L.second.second < R.second.second;
|
|
});
|
|
UseMap.clear();
|
|
for (const auto &Pair : Uses) {
|
|
auto Owner = Pair.second.first;
|
|
if (!Owner)
|
|
continue;
|
|
if (Owner.is<MetadataAsValue *>())
|
|
continue;
|
|
|
|
// Resolve MDNodes that point at this.
|
|
auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
|
|
if (!OwnerMD)
|
|
continue;
|
|
if (OwnerMD->isResolved())
|
|
continue;
|
|
OwnerMD->decrementUnresolvedOperandCount();
|
|
}
|
|
}
|
|
|
|
ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
|
|
if (auto *N = dyn_cast<MDNode>(&MD))
|
|
return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses();
|
|
return dyn_cast<ValueAsMetadata>(&MD);
|
|
}
|
|
|
|
ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
|
|
if (auto *N = dyn_cast<MDNode>(&MD))
|
|
return N->isResolved() ? nullptr : N->Context.getReplaceableUses();
|
|
return dyn_cast<ValueAsMetadata>(&MD);
|
|
}
|
|
|
|
bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
|
|
if (auto *N = dyn_cast<MDNode>(&MD))
|
|
return !N->isResolved();
|
|
return dyn_cast<ValueAsMetadata>(&MD);
|
|
}
|
|
|
|
static Function *getLocalFunction(Value *V) {
|
|
assert(V && "Expected value");
|
|
if (auto *A = dyn_cast<Argument>(V))
|
|
return A->getParent();
|
|
if (BasicBlock *BB = cast<Instruction>(V)->getParent())
|
|
return BB->getParent();
|
|
return nullptr;
|
|
}
|
|
|
|
ValueAsMetadata *ValueAsMetadata::get(Value *V) {
|
|
assert(V && "Unexpected null Value");
|
|
|
|
auto &Context = V->getContext();
|
|
auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
|
|
if (!Entry) {
|
|
assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
|
|
"Expected constant or function-local value");
|
|
assert(!V->IsUsedByMD &&
|
|
"Expected this to be the only metadata use");
|
|
V->IsUsedByMD = true;
|
|
if (auto *C = dyn_cast<Constant>(V))
|
|
Entry = new ConstantAsMetadata(C);
|
|
else
|
|
Entry = new LocalAsMetadata(V);
|
|
}
|
|
|
|
return Entry;
|
|
}
|
|
|
|
ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
|
|
assert(V && "Unexpected null Value");
|
|
return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
|
|
}
|
|
|
|
void ValueAsMetadata::handleDeletion(Value *V) {
|
|
assert(V && "Expected valid value");
|
|
|
|
auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
|
|
auto I = Store.find(V);
|
|
if (I == Store.end())
|
|
return;
|
|
|
|
// Remove old entry from the map.
|
|
ValueAsMetadata *MD = I->second;
|
|
assert(MD && "Expected valid metadata");
|
|
assert(MD->getValue() == V && "Expected valid mapping");
|
|
Store.erase(I);
|
|
|
|
// Delete the metadata.
|
|
MD->replaceAllUsesWith(nullptr);
|
|
delete MD;
|
|
}
|
|
|
|
void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
|
|
assert(From && "Expected valid value");
|
|
assert(To && "Expected valid value");
|
|
assert(From != To && "Expected changed value");
|
|
assert(From->getType() == To->getType() && "Unexpected type change");
|
|
|
|
LLVMContext &Context = From->getType()->getContext();
|
|
auto &Store = Context.pImpl->ValuesAsMetadata;
|
|
auto I = Store.find(From);
|
|
if (I == Store.end()) {
|
|
assert(!From->IsUsedByMD &&
|
|
"Expected From not to be used by metadata");
|
|
return;
|
|
}
|
|
|
|
// Remove old entry from the map.
|
|
assert(From->IsUsedByMD &&
|
|
"Expected From to be used by metadata");
|
|
From->IsUsedByMD = false;
|
|
ValueAsMetadata *MD = I->second;
|
|
assert(MD && "Expected valid metadata");
|
|
assert(MD->getValue() == From && "Expected valid mapping");
|
|
Store.erase(I);
|
|
|
|
if (isa<LocalAsMetadata>(MD)) {
|
|
if (auto *C = dyn_cast<Constant>(To)) {
|
|
// Local became a constant.
|
|
MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
|
|
delete MD;
|
|
return;
|
|
}
|
|
if (getLocalFunction(From) && getLocalFunction(To) &&
|
|
getLocalFunction(From) != getLocalFunction(To)) {
|
|
// Function changed.
|
|
MD->replaceAllUsesWith(nullptr);
|
|
delete MD;
|
|
return;
|
|
}
|
|
} else if (!isa<Constant>(To)) {
|
|
// Changed to function-local value.
|
|
MD->replaceAllUsesWith(nullptr);
|
|
delete MD;
|
|
return;
|
|
}
|
|
|
|
auto *&Entry = Store[To];
|
|
if (Entry) {
|
|
// The target already exists.
|
|
MD->replaceAllUsesWith(Entry);
|
|
delete MD;
|
|
return;
|
|
}
|
|
|
|
// Update MD in place (and update the map entry).
|
|
assert(!To->IsUsedByMD &&
|
|
"Expected this to be the only metadata use");
|
|
To->IsUsedByMD = true;
|
|
MD->V = To;
|
|
Entry = MD;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MDString implementation.
|
|
//
|
|
|
|
MDString *MDString::get(LLVMContext &Context, StringRef Str) {
|
|
auto &Store = Context.pImpl->MDStringCache;
|
|
auto I = Store.try_emplace(Str);
|
|
auto &MapEntry = I.first->getValue();
|
|
if (!I.second)
|
|
return &MapEntry;
|
|
MapEntry.Entry = &*I.first;
|
|
return &MapEntry;
|
|
}
|
|
|
|
StringRef MDString::getString() const {
|
|
assert(Entry && "Expected to find string map entry");
|
|
return Entry->first();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MDNode implementation.
|
|
//
|
|
|
|
// Assert that the MDNode types will not be unaligned by the objects
|
|
// prepended to them.
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
static_assert( \
|
|
llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \
|
|
"Alignment is insufficient after objects prepended to " #CLASS);
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
void *MDNode::operator new(size_t Size, unsigned NumOps) {
|
|
size_t OpSize = NumOps * sizeof(MDOperand);
|
|
// uint64_t is the most aligned type we need support (ensured by static_assert
|
|
// above)
|
|
OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>());
|
|
void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
|
|
MDOperand *O = static_cast<MDOperand *>(Ptr);
|
|
for (MDOperand *E = O - NumOps; O != E; --O)
|
|
(void)new (O - 1) MDOperand;
|
|
return Ptr;
|
|
}
|
|
|
|
void MDNode::operator delete(void *Mem) {
|
|
MDNode *N = static_cast<MDNode *>(Mem);
|
|
size_t OpSize = N->NumOperands * sizeof(MDOperand);
|
|
OpSize = alignTo(OpSize, llvm::alignOf<uint64_t>());
|
|
|
|
MDOperand *O = static_cast<MDOperand *>(Mem);
|
|
for (MDOperand *E = O - N->NumOperands; O != E; --O)
|
|
(O - 1)->~MDOperand();
|
|
::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
|
|
}
|
|
|
|
MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
|
|
ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
|
|
: Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
|
|
NumUnresolved(0), Context(Context) {
|
|
unsigned Op = 0;
|
|
for (Metadata *MD : Ops1)
|
|
setOperand(Op++, MD);
|
|
for (Metadata *MD : Ops2)
|
|
setOperand(Op++, MD);
|
|
|
|
if (!isUniqued())
|
|
return;
|
|
|
|
// Count the unresolved operands. If there are any, RAUW support will be
|
|
// added lazily on first reference.
|
|
countUnresolvedOperands();
|
|
}
|
|
|
|
TempMDNode MDNode::clone() const {
|
|
switch (getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid MDNode subclass");
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
case CLASS##Kind: \
|
|
return cast<CLASS>(this)->cloneImpl();
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
|
|
static bool isOperandUnresolved(Metadata *Op) {
|
|
if (auto *N = dyn_cast_or_null<MDNode>(Op))
|
|
return !N->isResolved();
|
|
return false;
|
|
}
|
|
|
|
void MDNode::countUnresolvedOperands() {
|
|
assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
|
|
assert(isUniqued() && "Expected this to be uniqued");
|
|
NumUnresolved = count_if(operands(), isOperandUnresolved);
|
|
}
|
|
|
|
void MDNode::makeUniqued() {
|
|
assert(isTemporary() && "Expected this to be temporary");
|
|
assert(!isResolved() && "Expected this to be unresolved");
|
|
|
|
// Enable uniquing callbacks.
|
|
for (auto &Op : mutable_operands())
|
|
Op.reset(Op.get(), this);
|
|
|
|
// Make this 'uniqued'.
|
|
Storage = Uniqued;
|
|
countUnresolvedOperands();
|
|
if (!NumUnresolved) {
|
|
dropReplaceableUses();
|
|
assert(isResolved() && "Expected this to be resolved");
|
|
}
|
|
|
|
assert(isUniqued() && "Expected this to be uniqued");
|
|
}
|
|
|
|
void MDNode::makeDistinct() {
|
|
assert(isTemporary() && "Expected this to be temporary");
|
|
assert(!isResolved() && "Expected this to be unresolved");
|
|
|
|
// Drop RAUW support and store as a distinct node.
|
|
dropReplaceableUses();
|
|
storeDistinctInContext();
|
|
|
|
assert(isDistinct() && "Expected this to be distinct");
|
|
assert(isResolved() && "Expected this to be resolved");
|
|
}
|
|
|
|
void MDNode::resolve() {
|
|
assert(isUniqued() && "Expected this to be uniqued");
|
|
assert(!isResolved() && "Expected this to be unresolved");
|
|
|
|
NumUnresolved = 0;
|
|
dropReplaceableUses();
|
|
|
|
assert(isResolved() && "Expected this to be resolved");
|
|
}
|
|
|
|
void MDNode::dropReplaceableUses() {
|
|
assert(!NumUnresolved && "Unexpected unresolved operand");
|
|
|
|
// Drop any RAUW support.
|
|
if (Context.hasReplaceableUses())
|
|
Context.takeReplaceableUses()->resolveAllUses();
|
|
}
|
|
|
|
void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
|
|
assert(isUniqued() && "Expected this to be uniqued");
|
|
assert(NumUnresolved != 0 && "Expected unresolved operands");
|
|
|
|
// Check if an operand was resolved.
|
|
if (!isOperandUnresolved(Old)) {
|
|
if (isOperandUnresolved(New))
|
|
// An operand was un-resolved!
|
|
++NumUnresolved;
|
|
} else if (!isOperandUnresolved(New))
|
|
decrementUnresolvedOperandCount();
|
|
}
|
|
|
|
void MDNode::decrementUnresolvedOperandCount() {
|
|
assert(!isResolved() && "Expected this to be unresolved");
|
|
if (isTemporary())
|
|
return;
|
|
|
|
assert(isUniqued() && "Expected this to be uniqued");
|
|
if (--NumUnresolved)
|
|
return;
|
|
|
|
// Last unresolved operand has just been resolved.
|
|
dropReplaceableUses();
|
|
assert(isResolved() && "Expected this to become resolved");
|
|
}
|
|
|
|
void MDNode::resolveCycles() {
|
|
if (isResolved())
|
|
return;
|
|
|
|
// Resolve this node immediately.
|
|
resolve();
|
|
|
|
// Resolve all operands.
|
|
for (const auto &Op : operands()) {
|
|
auto *N = dyn_cast_or_null<MDNode>(Op);
|
|
if (!N)
|
|
continue;
|
|
|
|
assert(!N->isTemporary() &&
|
|
"Expected all forward declarations to be resolved");
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
}
|
|
}
|
|
|
|
static bool hasSelfReference(MDNode *N) {
|
|
for (Metadata *MD : N->operands())
|
|
if (MD == N)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
MDNode *MDNode::replaceWithPermanentImpl() {
|
|
switch (getMetadataID()) {
|
|
default:
|
|
// If this type isn't uniquable, replace with a distinct node.
|
|
return replaceWithDistinctImpl();
|
|
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
|
case CLASS##Kind: \
|
|
break;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
|
|
// Even if this type is uniquable, self-references have to be distinct.
|
|
if (hasSelfReference(this))
|
|
return replaceWithDistinctImpl();
|
|
return replaceWithUniquedImpl();
|
|
}
|
|
|
|
MDNode *MDNode::replaceWithUniquedImpl() {
|
|
// Try to uniquify in place.
|
|
MDNode *UniquedNode = uniquify();
|
|
|
|
if (UniquedNode == this) {
|
|
makeUniqued();
|
|
return this;
|
|
}
|
|
|
|
// Collision, so RAUW instead.
|
|
replaceAllUsesWith(UniquedNode);
|
|
deleteAsSubclass();
|
|
return UniquedNode;
|
|
}
|
|
|
|
MDNode *MDNode::replaceWithDistinctImpl() {
|
|
makeDistinct();
|
|
return this;
|
|
}
|
|
|
|
void MDTuple::recalculateHash() {
|
|
setHash(MDTupleInfo::KeyTy::calculateHash(this));
|
|
}
|
|
|
|
void MDNode::dropAllReferences() {
|
|
for (unsigned I = 0, E = NumOperands; I != E; ++I)
|
|
setOperand(I, nullptr);
|
|
if (Context.hasReplaceableUses()) {
|
|
Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
|
|
(void)Context.takeReplaceableUses();
|
|
}
|
|
}
|
|
|
|
void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
|
|
unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
|
|
assert(Op < getNumOperands() && "Expected valid operand");
|
|
|
|
if (!isUniqued()) {
|
|
// This node is not uniqued. Just set the operand and be done with it.
|
|
setOperand(Op, New);
|
|
return;
|
|
}
|
|
|
|
// This node is uniqued.
|
|
eraseFromStore();
|
|
|
|
Metadata *Old = getOperand(Op);
|
|
setOperand(Op, New);
|
|
|
|
// Drop uniquing for self-reference cycles.
|
|
if (New == this) {
|
|
if (!isResolved())
|
|
resolve();
|
|
storeDistinctInContext();
|
|
return;
|
|
}
|
|
|
|
// Re-unique the node.
|
|
auto *Uniqued = uniquify();
|
|
if (Uniqued == this) {
|
|
if (!isResolved())
|
|
resolveAfterOperandChange(Old, New);
|
|
return;
|
|
}
|
|
|
|
// Collision.
|
|
if (!isResolved()) {
|
|
// Still unresolved, so RAUW.
|
|
//
|
|
// First, clear out all operands to prevent any recursion (similar to
|
|
// dropAllReferences(), but we still need the use-list).
|
|
for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
|
|
setOperand(O, nullptr);
|
|
if (Context.hasReplaceableUses())
|
|
Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
|
|
deleteAsSubclass();
|
|
return;
|
|
}
|
|
|
|
// Store in non-uniqued form if RAUW isn't possible.
|
|
storeDistinctInContext();
|
|
}
|
|
|
|
void MDNode::deleteAsSubclass() {
|
|
switch (getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid subclass of MDNode");
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
case CLASS##Kind: \
|
|
delete cast<CLASS>(this); \
|
|
break;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
|
|
template <class T, class InfoT>
|
|
static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
|
|
if (T *U = getUniqued(Store, N))
|
|
return U;
|
|
|
|
Store.insert(N);
|
|
return N;
|
|
}
|
|
|
|
template <class NodeTy> struct MDNode::HasCachedHash {
|
|
typedef char Yes[1];
|
|
typedef char No[2];
|
|
template <class U, U Val> struct SFINAE {};
|
|
|
|
template <class U>
|
|
static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
|
|
template <class U> static No &check(...);
|
|
|
|
static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
|
|
};
|
|
|
|
MDNode *MDNode::uniquify() {
|
|
assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
|
|
|
|
// Try to insert into uniquing store.
|
|
switch (getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
|
case CLASS##Kind: { \
|
|
CLASS *SubclassThis = cast<CLASS>(this); \
|
|
std::integral_constant<bool, HasCachedHash<CLASS>::value> \
|
|
ShouldRecalculateHash; \
|
|
dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
|
|
return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
|
|
}
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
|
|
void MDNode::eraseFromStore() {
|
|
switch (getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
|
case CLASS##Kind: \
|
|
getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
|
|
break;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
|
|
MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
|
|
StorageType Storage, bool ShouldCreate) {
|
|
unsigned Hash = 0;
|
|
if (Storage == Uniqued) {
|
|
MDTupleInfo::KeyTy Key(MDs);
|
|
if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
|
|
return N;
|
|
if (!ShouldCreate)
|
|
return nullptr;
|
|
Hash = Key.getHash();
|
|
} else {
|
|
assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
|
|
}
|
|
|
|
return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
|
|
Storage, Context.pImpl->MDTuples);
|
|
}
|
|
|
|
void MDNode::deleteTemporary(MDNode *N) {
|
|
assert(N->isTemporary() && "Expected temporary node");
|
|
N->replaceAllUsesWith(nullptr);
|
|
N->deleteAsSubclass();
|
|
}
|
|
|
|
void MDNode::storeDistinctInContext() {
|
|
assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
|
|
assert(!NumUnresolved && "Unexpected unresolved nodes");
|
|
Storage = Distinct;
|
|
assert(isResolved() && "Expected this to be resolved");
|
|
|
|
// Reset the hash.
|
|
switch (getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid subclass of MDNode");
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
case CLASS##Kind: { \
|
|
std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
|
|
dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
|
|
break; \
|
|
}
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
|
|
getContext().pImpl->DistinctMDNodes.push_back(this);
|
|
}
|
|
|
|
void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
|
|
if (getOperand(I) == New)
|
|
return;
|
|
|
|
if (!isUniqued()) {
|
|
setOperand(I, New);
|
|
return;
|
|
}
|
|
|
|
handleChangedOperand(mutable_begin() + I, New);
|
|
}
|
|
|
|
void MDNode::setOperand(unsigned I, Metadata *New) {
|
|
assert(I < NumOperands);
|
|
mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
|
|
}
|
|
|
|
/// Get a node or a self-reference that looks like it.
|
|
///
|
|
/// Special handling for finding self-references, for use by \a
|
|
/// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
|
|
/// when self-referencing nodes were still uniqued. If the first operand has
|
|
/// the same operands as \c Ops, return the first operand instead.
|
|
static MDNode *getOrSelfReference(LLVMContext &Context,
|
|
ArrayRef<Metadata *> Ops) {
|
|
if (!Ops.empty())
|
|
if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
|
|
if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
|
|
for (unsigned I = 1, E = Ops.size(); I != E; ++I)
|
|
if (Ops[I] != N->getOperand(I))
|
|
return MDNode::get(Context, Ops);
|
|
return N;
|
|
}
|
|
|
|
return MDNode::get(Context, Ops);
|
|
}
|
|
|
|
MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
|
|
if (!A)
|
|
return B;
|
|
if (!B)
|
|
return A;
|
|
|
|
SmallVector<Metadata *, 4> MDs;
|
|
MDs.reserve(A->getNumOperands() + B->getNumOperands());
|
|
MDs.append(A->op_begin(), A->op_end());
|
|
MDs.append(B->op_begin(), B->op_end());
|
|
|
|
// FIXME: This preserves long-standing behaviour, but is it really the right
|
|
// behaviour? Or was that an unintended side-effect of node uniquing?
|
|
return getOrSelfReference(A->getContext(), MDs);
|
|
}
|
|
|
|
MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
SmallVector<Metadata *, 4> MDs;
|
|
for (Metadata *MD : A->operands())
|
|
if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
|
|
MDs.push_back(MD);
|
|
|
|
// FIXME: This preserves long-standing behaviour, but is it really the right
|
|
// behaviour? Or was that an unintended side-effect of node uniquing?
|
|
return getOrSelfReference(A->getContext(), MDs);
|
|
}
|
|
|
|
MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
|
|
for (Metadata *MD : A->operands())
|
|
if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
|
|
MDs.push_back(MD);
|
|
|
|
// FIXME: This preserves long-standing behaviour, but is it really the right
|
|
// behaviour? Or was that an unintended side-effect of node uniquing?
|
|
return getOrSelfReference(A->getContext(), MDs);
|
|
}
|
|
|
|
MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
|
|
APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
|
|
if (AVal.compare(BVal) == APFloat::cmpLessThan)
|
|
return A;
|
|
return B;
|
|
}
|
|
|
|
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
|
|
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
|
|
}
|
|
|
|
static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
|
|
return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
|
|
}
|
|
|
|
static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
|
|
ConstantInt *Low, ConstantInt *High) {
|
|
ConstantRange NewRange(Low->getValue(), High->getValue());
|
|
unsigned Size = EndPoints.size();
|
|
APInt LB = EndPoints[Size - 2]->getValue();
|
|
APInt LE = EndPoints[Size - 1]->getValue();
|
|
ConstantRange LastRange(LB, LE);
|
|
if (canBeMerged(NewRange, LastRange)) {
|
|
ConstantRange Union = LastRange.unionWith(NewRange);
|
|
Type *Ty = High->getType();
|
|
EndPoints[Size - 2] =
|
|
cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
|
|
EndPoints[Size - 1] =
|
|
cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
|
|
ConstantInt *Low, ConstantInt *High) {
|
|
if (!EndPoints.empty())
|
|
if (tryMergeRange(EndPoints, Low, High))
|
|
return;
|
|
|
|
EndPoints.push_back(Low);
|
|
EndPoints.push_back(High);
|
|
}
|
|
|
|
MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
|
|
// Given two ranges, we want to compute the union of the ranges. This
|
|
// is slightly complitade by having to combine the intervals and merge
|
|
// the ones that overlap.
|
|
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
if (A == B)
|
|
return A;
|
|
|
|
// First, walk both lists in older of the lower boundary of each interval.
|
|
// At each step, try to merge the new interval to the last one we adedd.
|
|
SmallVector<ConstantInt *, 4> EndPoints;
|
|
int AI = 0;
|
|
int BI = 0;
|
|
int AN = A->getNumOperands() / 2;
|
|
int BN = B->getNumOperands() / 2;
|
|
while (AI < AN && BI < BN) {
|
|
ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
|
|
ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
|
|
|
|
if (ALow->getValue().slt(BLow->getValue())) {
|
|
addRange(EndPoints, ALow,
|
|
mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
|
|
++AI;
|
|
} else {
|
|
addRange(EndPoints, BLow,
|
|
mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
|
|
++BI;
|
|
}
|
|
}
|
|
while (AI < AN) {
|
|
addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
|
|
mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
|
|
++AI;
|
|
}
|
|
while (BI < BN) {
|
|
addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
|
|
mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
|
|
++BI;
|
|
}
|
|
|
|
// If we have more than 2 ranges (4 endpoints) we have to try to merge
|
|
// the last and first ones.
|
|
unsigned Size = EndPoints.size();
|
|
if (Size > 4) {
|
|
ConstantInt *FB = EndPoints[0];
|
|
ConstantInt *FE = EndPoints[1];
|
|
if (tryMergeRange(EndPoints, FB, FE)) {
|
|
for (unsigned i = 0; i < Size - 2; ++i) {
|
|
EndPoints[i] = EndPoints[i + 2];
|
|
}
|
|
EndPoints.resize(Size - 2);
|
|
}
|
|
}
|
|
|
|
// If in the end we have a single range, it is possible that it is now the
|
|
// full range. Just drop the metadata in that case.
|
|
if (EndPoints.size() == 2) {
|
|
ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
|
|
if (Range.isFullSet())
|
|
return nullptr;
|
|
}
|
|
|
|
SmallVector<Metadata *, 4> MDs;
|
|
MDs.reserve(EndPoints.size());
|
|
for (auto *I : EndPoints)
|
|
MDs.push_back(ConstantAsMetadata::get(I));
|
|
return MDNode::get(A->getContext(), MDs);
|
|
}
|
|
|
|
MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
|
|
ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
|
|
if (AVal->getZExtValue() < BVal->getZExtValue())
|
|
return A;
|
|
return B;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NamedMDNode implementation.
|
|
//
|
|
|
|
static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
|
|
return *(SmallVector<TrackingMDRef, 4> *)Operands;
|
|
}
|
|
|
|
NamedMDNode::NamedMDNode(const Twine &N)
|
|
: Name(N.str()), Parent(nullptr),
|
|
Operands(new SmallVector<TrackingMDRef, 4>()) {}
|
|
|
|
NamedMDNode::~NamedMDNode() {
|
|
dropAllReferences();
|
|
delete &getNMDOps(Operands);
|
|
}
|
|
|
|
unsigned NamedMDNode::getNumOperands() const {
|
|
return (unsigned)getNMDOps(Operands).size();
|
|
}
|
|
|
|
MDNode *NamedMDNode::getOperand(unsigned i) const {
|
|
assert(i < getNumOperands() && "Invalid Operand number!");
|
|
auto *N = getNMDOps(Operands)[i].get();
|
|
return cast_or_null<MDNode>(N);
|
|
}
|
|
|
|
void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
|
|
|
|
void NamedMDNode::setOperand(unsigned I, MDNode *New) {
|
|
assert(I < getNumOperands() && "Invalid operand number");
|
|
getNMDOps(Operands)[I].reset(New);
|
|
}
|
|
|
|
void NamedMDNode::eraseFromParent() {
|
|
getParent()->eraseNamedMetadata(this);
|
|
}
|
|
|
|
void NamedMDNode::dropAllReferences() {
|
|
getNMDOps(Operands).clear();
|
|
}
|
|
|
|
StringRef NamedMDNode::getName() const {
|
|
return StringRef(Name);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Metadata method implementations.
|
|
//
|
|
void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
|
|
for (auto &I : Attachments)
|
|
if (I.first == ID) {
|
|
I.second.reset(&MD);
|
|
return;
|
|
}
|
|
Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
|
|
std::make_tuple(&MD));
|
|
}
|
|
|
|
void MDAttachmentMap::erase(unsigned ID) {
|
|
if (empty())
|
|
return;
|
|
|
|
// Common case is one/last value.
|
|
if (Attachments.back().first == ID) {
|
|
Attachments.pop_back();
|
|
return;
|
|
}
|
|
|
|
for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
|
|
++I)
|
|
if (I->first == ID) {
|
|
*I = std::move(Attachments.back());
|
|
Attachments.pop_back();
|
|
return;
|
|
}
|
|
}
|
|
|
|
MDNode *MDAttachmentMap::lookup(unsigned ID) const {
|
|
for (const auto &I : Attachments)
|
|
if (I.first == ID)
|
|
return I.second;
|
|
return nullptr;
|
|
}
|
|
|
|
void MDAttachmentMap::getAll(
|
|
SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
|
|
Result.append(Attachments.begin(), Attachments.end());
|
|
|
|
// Sort the resulting array so it is stable.
|
|
if (Result.size() > 1)
|
|
array_pod_sort(Result.begin(), Result.end());
|
|
}
|
|
|
|
void MDGlobalAttachmentMap::insert(unsigned ID, MDNode &MD) {
|
|
Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
|
|
}
|
|
|
|
void MDGlobalAttachmentMap::get(unsigned ID,
|
|
SmallVectorImpl<MDNode *> &Result) {
|
|
for (auto A : Attachments)
|
|
if (A.MDKind == ID)
|
|
Result.push_back(A.Node);
|
|
}
|
|
|
|
void MDGlobalAttachmentMap::erase(unsigned ID) {
|
|
auto Follower = Attachments.begin();
|
|
for (auto Leader = Attachments.begin(), E = Attachments.end(); Leader != E;
|
|
++Leader) {
|
|
if (Leader->MDKind != ID) {
|
|
if (Follower != Leader)
|
|
*Follower = std::move(*Leader);
|
|
++Follower;
|
|
}
|
|
}
|
|
Attachments.resize(Follower - Attachments.begin());
|
|
}
|
|
|
|
void MDGlobalAttachmentMap::getAll(
|
|
SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
|
|
for (auto &A : Attachments)
|
|
Result.emplace_back(A.MDKind, A.Node);
|
|
|
|
// Sort the resulting array so it is stable with respect to metadata IDs. We
|
|
// need to preserve the original insertion order though.
|
|
std::stable_sort(
|
|
Result.begin(), Result.end(),
|
|
[](const std::pair<unsigned, MDNode *> &A,
|
|
const std::pair<unsigned, MDNode *> &B) { return A.first < B.first; });
|
|
}
|
|
|
|
void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
|
|
if (!Node && !hasMetadata())
|
|
return;
|
|
setMetadata(getContext().getMDKindID(Kind), Node);
|
|
}
|
|
|
|
MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
|
|
return getMetadataImpl(getContext().getMDKindID(Kind));
|
|
}
|
|
|
|
void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
|
|
SmallSet<unsigned, 5> KnownSet;
|
|
KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
|
|
|
|
if (!hasMetadataHashEntry())
|
|
return; // Nothing to remove!
|
|
|
|
auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
|
|
|
|
if (KnownSet.empty()) {
|
|
// Just drop our entry at the store.
|
|
InstructionMetadata.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
return;
|
|
}
|
|
|
|
auto &Info = InstructionMetadata[this];
|
|
Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
|
|
return !KnownSet.count(I.first);
|
|
});
|
|
|
|
if (Info.empty()) {
|
|
// Drop our entry at the store.
|
|
InstructionMetadata.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
}
|
|
}
|
|
|
|
void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
|
|
if (!Node && !hasMetadata())
|
|
return;
|
|
|
|
// Handle 'dbg' as a special case since it is not stored in the hash table.
|
|
if (KindID == LLVMContext::MD_dbg) {
|
|
DbgLoc = DebugLoc(Node);
|
|
return;
|
|
}
|
|
|
|
// Handle the case when we're adding/updating metadata on an instruction.
|
|
if (Node) {
|
|
auto &Info = getContext().pImpl->InstructionMetadata[this];
|
|
assert(!Info.empty() == hasMetadataHashEntry() &&
|
|
"HasMetadata bit is wonked");
|
|
if (Info.empty())
|
|
setHasMetadataHashEntry(true);
|
|
Info.set(KindID, *Node);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we're removing metadata from an instruction.
|
|
assert((hasMetadataHashEntry() ==
|
|
(getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
|
|
"HasMetadata bit out of date!");
|
|
if (!hasMetadataHashEntry())
|
|
return; // Nothing to remove!
|
|
auto &Info = getContext().pImpl->InstructionMetadata[this];
|
|
|
|
// Handle removal of an existing value.
|
|
Info.erase(KindID);
|
|
|
|
if (!Info.empty())
|
|
return;
|
|
|
|
getContext().pImpl->InstructionMetadata.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
}
|
|
|
|
void Instruction::setAAMetadata(const AAMDNodes &N) {
|
|
setMetadata(LLVMContext::MD_tbaa, N.TBAA);
|
|
setMetadata(LLVMContext::MD_alias_scope, N.Scope);
|
|
setMetadata(LLVMContext::MD_noalias, N.NoAlias);
|
|
}
|
|
|
|
MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
|
|
// Handle 'dbg' as a special case since it is not stored in the hash table.
|
|
if (KindID == LLVMContext::MD_dbg)
|
|
return DbgLoc.getAsMDNode();
|
|
|
|
if (!hasMetadataHashEntry())
|
|
return nullptr;
|
|
auto &Info = getContext().pImpl->InstructionMetadata[this];
|
|
assert(!Info.empty() && "bit out of sync with hash table");
|
|
|
|
return Info.lookup(KindID);
|
|
}
|
|
|
|
void Instruction::getAllMetadataImpl(
|
|
SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
|
|
Result.clear();
|
|
|
|
// Handle 'dbg' as a special case since it is not stored in the hash table.
|
|
if (DbgLoc) {
|
|
Result.push_back(
|
|
std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
|
|
if (!hasMetadataHashEntry()) return;
|
|
}
|
|
|
|
assert(hasMetadataHashEntry() &&
|
|
getContext().pImpl->InstructionMetadata.count(this) &&
|
|
"Shouldn't have called this");
|
|
const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
|
|
assert(!Info.empty() && "Shouldn't have called this");
|
|
Info.getAll(Result);
|
|
}
|
|
|
|
void Instruction::getAllMetadataOtherThanDebugLocImpl(
|
|
SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
|
|
Result.clear();
|
|
assert(hasMetadataHashEntry() &&
|
|
getContext().pImpl->InstructionMetadata.count(this) &&
|
|
"Shouldn't have called this");
|
|
const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
|
|
assert(!Info.empty() && "Shouldn't have called this");
|
|
Info.getAll(Result);
|
|
}
|
|
|
|
bool Instruction::extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) {
|
|
assert((getOpcode() == Instruction::Br ||
|
|
getOpcode() == Instruction::Select) &&
|
|
"Looking for branch weights on something besides branch or select");
|
|
|
|
auto *ProfileData = getMetadata(LLVMContext::MD_prof);
|
|
if (!ProfileData || ProfileData->getNumOperands() != 3)
|
|
return false;
|
|
|
|
auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
|
|
if (!ProfDataName || !ProfDataName->getString().equals("branch_weights"))
|
|
return false;
|
|
|
|
auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
|
|
auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
|
|
if (!CITrue || !CIFalse)
|
|
return false;
|
|
|
|
TrueVal = CITrue->getValue().getZExtValue();
|
|
FalseVal = CIFalse->getValue().getZExtValue();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) {
|
|
assert((getOpcode() == Instruction::Br ||
|
|
getOpcode() == Instruction::Select ||
|
|
getOpcode() == Instruction::Call ||
|
|
getOpcode() == Instruction::Invoke) &&
|
|
"Looking for branch weights on something besides branch");
|
|
|
|
TotalVal = 0;
|
|
auto *ProfileData = getMetadata(LLVMContext::MD_prof);
|
|
if (!ProfileData)
|
|
return false;
|
|
|
|
auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
|
|
if (!ProfDataName || !ProfDataName->getString().equals("branch_weights"))
|
|
return false;
|
|
|
|
TotalVal = 0;
|
|
for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
|
|
auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i));
|
|
if (!V)
|
|
return false;
|
|
TotalVal += V->getValue().getZExtValue();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Instruction::clearMetadataHashEntries() {
|
|
assert(hasMetadataHashEntry() && "Caller should check");
|
|
getContext().pImpl->InstructionMetadata.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
}
|
|
|
|
void GlobalObject::getMetadata(unsigned KindID,
|
|
SmallVectorImpl<MDNode *> &MDs) const {
|
|
if (hasMetadata())
|
|
getContext().pImpl->GlobalObjectMetadata[this].get(KindID, MDs);
|
|
}
|
|
|
|
void GlobalObject::getMetadata(StringRef Kind,
|
|
SmallVectorImpl<MDNode *> &MDs) const {
|
|
if (hasMetadata())
|
|
getMetadata(getContext().getMDKindID(Kind), MDs);
|
|
}
|
|
|
|
void GlobalObject::addMetadata(unsigned KindID, MDNode &MD) {
|
|
if (!hasMetadata())
|
|
setHasMetadataHashEntry(true);
|
|
|
|
getContext().pImpl->GlobalObjectMetadata[this].insert(KindID, MD);
|
|
}
|
|
|
|
void GlobalObject::addMetadata(StringRef Kind, MDNode &MD) {
|
|
addMetadata(getContext().getMDKindID(Kind), MD);
|
|
}
|
|
|
|
void GlobalObject::eraseMetadata(unsigned KindID) {
|
|
// Nothing to unset.
|
|
if (!hasMetadata())
|
|
return;
|
|
|
|
auto &Store = getContext().pImpl->GlobalObjectMetadata[this];
|
|
Store.erase(KindID);
|
|
if (Store.empty())
|
|
clearMetadata();
|
|
}
|
|
|
|
void GlobalObject::getAllMetadata(
|
|
SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
|
|
MDs.clear();
|
|
|
|
if (!hasMetadata())
|
|
return;
|
|
|
|
getContext().pImpl->GlobalObjectMetadata[this].getAll(MDs);
|
|
}
|
|
|
|
void GlobalObject::clearMetadata() {
|
|
if (!hasMetadata())
|
|
return;
|
|
getContext().pImpl->GlobalObjectMetadata.erase(this);
|
|
setHasMetadataHashEntry(false);
|
|
}
|
|
|
|
void GlobalObject::setMetadata(unsigned KindID, MDNode *N) {
|
|
eraseMetadata(KindID);
|
|
if (N)
|
|
addMetadata(KindID, *N);
|
|
}
|
|
|
|
void GlobalObject::setMetadata(StringRef Kind, MDNode *N) {
|
|
setMetadata(getContext().getMDKindID(Kind), N);
|
|
}
|
|
|
|
MDNode *GlobalObject::getMetadata(unsigned KindID) const {
|
|
SmallVector<MDNode *, 1> MDs;
|
|
getMetadata(KindID, MDs);
|
|
assert(MDs.size() <= 1 && "Expected at most one metadata attachment");
|
|
if (MDs.empty())
|
|
return nullptr;
|
|
return MDs[0];
|
|
}
|
|
|
|
MDNode *GlobalObject::getMetadata(StringRef Kind) const {
|
|
return getMetadata(getContext().getMDKindID(Kind));
|
|
}
|
|
|
|
void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
|
|
Other->getAllMetadata(MDs);
|
|
for (auto &MD : MDs) {
|
|
// We need to adjust the type metadata offset.
|
|
if (Offset != 0 && MD.first == LLVMContext::MD_type) {
|
|
auto *OffsetConst = cast<ConstantInt>(
|
|
cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
|
|
Metadata *TypeId = MD.second->getOperand(1);
|
|
auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
|
|
OffsetConst->getType(), OffsetConst->getValue() + Offset));
|
|
addMetadata(LLVMContext::MD_type,
|
|
*MDNode::get(getContext(), {NewOffsetMD, TypeId}));
|
|
continue;
|
|
}
|
|
addMetadata(MD.first, *MD.second);
|
|
}
|
|
}
|
|
|
|
void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
|
|
addMetadata(
|
|
LLVMContext::MD_type,
|
|
*MDTuple::get(getContext(),
|
|
{llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
|
|
Type::getInt64Ty(getContext()), Offset)),
|
|
TypeID}));
|
|
}
|
|
|
|
void Function::setSubprogram(DISubprogram *SP) {
|
|
setMetadata(LLVMContext::MD_dbg, SP);
|
|
}
|
|
|
|
DISubprogram *Function::getSubprogram() const {
|
|
return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
|
|
}
|