mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-25 05:34:59 +00:00
14def55736
Reality is that we're never going to copy one of these. Supporting this was becoming a nightmare because nothing even causes it to compile most of the time. Lots of subtle errors built up that wouldn't have been caught by any "normal" testing. Also, make the move assignment actually work rather than the bogus swap implementation that would just infloop if used. As part of that, factor out the graph pointer updates into a helper to share between move construction and move assignment. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206583 91177308-0d34-0410-b5e6-96231b3b80d8
261 lines
9.4 KiB
C++
261 lines
9.4 KiB
C++
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static void findCallees(
|
|
SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
|
|
SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
|
|
SmallPtrSetImpl<Function *> &CalleeSet) {
|
|
while (!Worklist.empty()) {
|
|
Constant *C = Worklist.pop_back_val();
|
|
|
|
if (Function *F = dyn_cast<Function>(C)) {
|
|
// Note that we consider *any* function with a definition to be a viable
|
|
// edge. Even if the function's definition is subject to replacement by
|
|
// some other module (say, a weak definition) there may still be
|
|
// optimizations which essentially speculate based on the definition and
|
|
// a way to check that the specific definition is in fact the one being
|
|
// used. For example, this could be done by moving the weak definition to
|
|
// a strong (internal) definition and making the weak definition be an
|
|
// alias. Then a test of the address of the weak function against the new
|
|
// strong definition's address would be an effective way to determine the
|
|
// safety of optimizing a direct call edge.
|
|
if (!F->isDeclaration() && CalleeSet.insert(F))
|
|
Callees.push_back(F);
|
|
continue;
|
|
}
|
|
|
|
for (Value *Op : C->operand_values())
|
|
if (Visited.insert(cast<Constant>(Op)))
|
|
Worklist.push_back(cast<Constant>(Op));
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
|
|
: G(&G), F(F), DFSNumber(0), LowLink(0) {
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
// Find all the potential callees in this function. First walk the
|
|
// instructions and add every operand which is a constant to the worklist.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB)
|
|
for (Value *Op : I.operand_values())
|
|
if (Constant *C = dyn_cast<Constant>(Op))
|
|
if (Visited.insert(C))
|
|
Worklist.push_back(C);
|
|
|
|
// We've collected all the constant (and thus potentially function or
|
|
// function containing) operands to all of the instructions in the function.
|
|
// Process them (recursively) collecting every function found.
|
|
findCallees(Worklist, Visited, Callees, CalleeSet);
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(Module &M) {
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !F.hasLocalLinkage())
|
|
if (EntryNodeSet.insert(&F))
|
|
EntryNodes.push_back(&F);
|
|
|
|
// Now add entry nodes for functions reachable via initializers to globals.
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (GV.hasInitializer())
|
|
if (Visited.insert(GV.getInitializer()))
|
|
Worklist.push_back(GV.getInitializer());
|
|
|
|
findCallees(Worklist, Visited, EntryNodes, EntryNodeSet);
|
|
|
|
for (auto &Entry : EntryNodes)
|
|
if (Function *F = Entry.dyn_cast<Function *>())
|
|
SCCEntryNodes.insert(F);
|
|
else
|
|
SCCEntryNodes.insert(&Entry.get<Node *>()->getFunction());
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
|
|
: BPA(std::move(G.BPA)), EntryNodes(std::move(G.EntryNodes)),
|
|
EntryNodeSet(std::move(G.EntryNodeSet)), SCCBPA(std::move(G.SCCBPA)),
|
|
SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
|
|
DFSStack(std::move(G.DFSStack)),
|
|
SCCEntryNodes(std::move(G.SCCEntryNodes)) {
|
|
updateGraphPtrs();
|
|
}
|
|
|
|
LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
|
|
BPA = std::move(G.BPA);
|
|
EntryNodes = std::move(G.EntryNodes);
|
|
EntryNodeSet = std::move(G.EntryNodeSet);
|
|
SCCBPA = std::move(G.SCCBPA);
|
|
SCCMap = std::move(G.SCCMap);
|
|
LeafSCCs = std::move(G.LeafSCCs);
|
|
DFSStack = std::move(G.DFSStack);
|
|
SCCEntryNodes = std::move(G.SCCEntryNodes);
|
|
updateGraphPtrs();
|
|
return *this;
|
|
}
|
|
|
|
LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
|
return new (MappedN = BPA.Allocate()) Node(*this, F);
|
|
}
|
|
|
|
void LazyCallGraph::updateGraphPtrs() {
|
|
// Process all nodes updating the graph pointers.
|
|
SmallVector<Node *, 16> Worklist;
|
|
for (auto &Entry : EntryNodes)
|
|
if (Node *EntryN = Entry.dyn_cast<Node *>())
|
|
Worklist.push_back(EntryN);
|
|
|
|
while (!Worklist.empty()) {
|
|
Node *N = Worklist.pop_back_val();
|
|
N->G = this;
|
|
for (auto &Callee : N->Callees)
|
|
if (Node *CalleeN = Callee.dyn_cast<Node *>())
|
|
Worklist.push_back(CalleeN);
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
|
|
// When the stack is empty, there are no more SCCs to walk in this graph.
|
|
if (DFSStack.empty()) {
|
|
// If we've handled all candidate entry nodes to the SCC forest, we're done.
|
|
if (SCCEntryNodes.empty())
|
|
return nullptr;
|
|
|
|
Node *N = get(*SCCEntryNodes.pop_back_val());
|
|
DFSStack.push_back(std::make_pair(N, N->begin()));
|
|
}
|
|
|
|
Node *N = DFSStack.back().first;
|
|
if (N->DFSNumber == 0) {
|
|
// This node hasn't been visited before, assign it a DFS number and remove
|
|
// it from the entry set.
|
|
N->LowLink = N->DFSNumber = NextDFSNumber++;
|
|
SCCEntryNodes.remove(&N->getFunction());
|
|
}
|
|
|
|
for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) {
|
|
Node *ChildN = *I;
|
|
if (ChildN->DFSNumber == 0) {
|
|
// Mark that we should start at this child when next this node is the
|
|
// top of the stack. We don't start at the next child to ensure this
|
|
// child's lowlink is reflected.
|
|
// FIXME: I don't actually think this is required, and we could start
|
|
// at the next child.
|
|
DFSStack.back().second = I;
|
|
|
|
// Recurse onto this node via a tail call.
|
|
DFSStack.push_back(std::make_pair(ChildN, ChildN->begin()));
|
|
return LazyCallGraph::getNextSCCInPostOrder();
|
|
}
|
|
|
|
// Track the lowest link of the childen, if any are still in the stack.
|
|
if (ChildN->LowLink < N->LowLink && !SCCMap.count(&ChildN->getFunction()))
|
|
N->LowLink = ChildN->LowLink;
|
|
}
|
|
|
|
// The tail of the stack is the new SCC. Allocate the SCC and pop the stack
|
|
// into it.
|
|
SCC *NewSCC = new (SCCBPA.Allocate()) SCC();
|
|
|
|
// Because we don't follow the strict Tarjan recursive formulation, walk
|
|
// from the top of the stack down, propagating the lowest link and stopping
|
|
// when the DFS number is the lowest link.
|
|
int LowestLink = N->LowLink;
|
|
do {
|
|
Node *SCCN = DFSStack.pop_back_val().first;
|
|
SCCMap.insert(std::make_pair(&SCCN->getFunction(), NewSCC));
|
|
NewSCC->Nodes.push_back(SCCN);
|
|
LowestLink = std::min(LowestLink, SCCN->LowLink);
|
|
bool Inserted =
|
|
NewSCC->NodeSet.insert(&SCCN->getFunction());
|
|
(void)Inserted;
|
|
assert(Inserted && "Cannot have duplicates in the DFSStack!");
|
|
} while (!DFSStack.empty() && LowestLink <= DFSStack.back().first->DFSNumber);
|
|
assert(LowestLink == NewSCC->Nodes.back()->DFSNumber &&
|
|
"Cannot stop with a DFS number greater than the lowest link!");
|
|
|
|
// A final pass over all edges in the SCC (this remains linear as we only
|
|
// do this once when we build the SCC) to connect it to the parent sets of
|
|
// its children.
|
|
bool IsLeafSCC = true;
|
|
for (Node *SCCN : NewSCC->Nodes)
|
|
for (Node *SCCChildN : *SCCN) {
|
|
if (NewSCC->NodeSet.count(&SCCChildN->getFunction()))
|
|
continue;
|
|
SCC *ChildSCC = SCCMap.lookup(&SCCChildN->getFunction());
|
|
assert(ChildSCC &&
|
|
"Must have all child SCCs processed when building a new SCC!");
|
|
ChildSCC->ParentSCCs.insert(NewSCC);
|
|
IsLeafSCC = false;
|
|
}
|
|
|
|
// For the SCCs where we fine no child SCCs, add them to the leaf list.
|
|
if (IsLeafSCC)
|
|
LeafSCCs.push_back(NewSCC);
|
|
|
|
return NewSCC;
|
|
}
|
|
|
|
char LazyCallGraphAnalysis::PassID;
|
|
|
|
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
|
|
SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
|
|
// Recurse depth first through the nodes.
|
|
for (LazyCallGraph::Node *ChildN : N)
|
|
if (Printed.insert(ChildN))
|
|
printNodes(OS, *ChildN, Printed);
|
|
|
|
OS << " Call edges in function: " << N.getFunction().getName() << "\n";
|
|
for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
|
|
OS << " -> " << I->getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
|
|
ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
|
|
OS << " SCC with " << SCCSize << " functions:\n";
|
|
|
|
for (LazyCallGraph::Node *N : SCC)
|
|
OS << " " << N->getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
|
|
ModuleAnalysisManager *AM) {
|
|
LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
|
|
|
|
OS << "Printing the call graph for module: " << M->getModuleIdentifier()
|
|
<< "\n\n";
|
|
|
|
SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
|
|
for (LazyCallGraph::Node *N : G)
|
|
if (Printed.insert(N))
|
|
printNodes(OS, *N, Printed);
|
|
|
|
for (LazyCallGraph::SCC *SCC : G.postorder_sccs())
|
|
printSCC(OS, *SCC);
|
|
|
|
return PreservedAnalyses::all();
|
|
|
|
}
|