mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-28 06:00:28 +00:00
a3d02c75b3
This splits out the intrinsic table such that generic intrinsics come first and target specific intrinsics are grouped by target. From here we can find out which target an intrinsic is for or differentiate between generic and target intrinsics. The motivation here is to make it easier to move target specific intrinsic handling out of generic code. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275575 91177308-0d34-0410-b5e6-96231b3b80d8
777 lines
25 KiB
C++
777 lines
25 KiB
C++
//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits information about intrinsic functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenIntrinsics.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "SequenceToOffsetTable.h"
|
|
#include "TableGenBackends.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/StringMatcher.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include "llvm/TableGen/StringToOffsetTable.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class IntrinsicEmitter {
|
|
RecordKeeper &Records;
|
|
bool TargetOnly;
|
|
std::string TargetPrefix;
|
|
|
|
public:
|
|
IntrinsicEmitter(RecordKeeper &R, bool T)
|
|
: Records(R), TargetOnly(T) {}
|
|
|
|
void run(raw_ostream &OS);
|
|
|
|
void EmitPrefix(raw_ostream &OS);
|
|
|
|
void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
|
|
void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
|
|
void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS);
|
|
void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS);
|
|
void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
|
|
void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
|
|
void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
|
|
raw_ostream &OS);
|
|
void EmitSuffix(raw_ostream &OS);
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntrinsicEmitter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void IntrinsicEmitter::run(raw_ostream &OS) {
|
|
emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
|
|
|
|
CodeGenIntrinsicTable Ints(Records, TargetOnly);
|
|
|
|
if (TargetOnly && !Ints.empty())
|
|
TargetPrefix = Ints[0].TargetPrefix;
|
|
|
|
EmitPrefix(OS);
|
|
|
|
// Emit the enum information.
|
|
EmitEnumInfo(Ints, OS);
|
|
|
|
// Emit the target metadata.
|
|
EmitTargetInfo(Ints, OS);
|
|
|
|
// Emit the intrinsic ID -> name table.
|
|
EmitIntrinsicToNameTable(Ints, OS);
|
|
|
|
// Emit the intrinsic ID -> overload table.
|
|
EmitIntrinsicToOverloadTable(Ints, OS);
|
|
|
|
// Emit the intrinsic declaration generator.
|
|
EmitGenerator(Ints, OS);
|
|
|
|
// Emit the intrinsic parameter attributes.
|
|
EmitAttributes(Ints, OS);
|
|
|
|
// Individual targets don't need GCC builtin name mappings.
|
|
if (!TargetOnly) {
|
|
// Emit code to translate GCC builtins into LLVM intrinsics.
|
|
EmitIntrinsicToBuiltinMap(Ints, true, OS);
|
|
|
|
// Emit code to translate MS builtins into LLVM intrinsics.
|
|
EmitIntrinsicToBuiltinMap(Ints, false, OS);
|
|
}
|
|
|
|
EmitSuffix(OS);
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
|
|
OS << "// VisualStudio defines setjmp as _setjmp\n"
|
|
"#if defined(_MSC_VER) && defined(setjmp) && \\\n"
|
|
" !defined(setjmp_undefined_for_msvc)\n"
|
|
"# pragma push_macro(\"setjmp\")\n"
|
|
"# undef setjmp\n"
|
|
"# define setjmp_undefined_for_msvc\n"
|
|
"#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
|
|
OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
|
|
"// let's return it to _setjmp state\n"
|
|
"# pragma pop_macro(\"setjmp\")\n"
|
|
"# undef setjmp_undefined_for_msvc\n"
|
|
"#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS) {
|
|
OS << "// Enum values for Intrinsics.h\n";
|
|
OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
OS << " " << Ints[i].EnumName;
|
|
OS << ((i != e-1) ? ", " : " ");
|
|
if (Ints[i].EnumName.size() < 40)
|
|
OS << std::string(40-Ints[i].EnumName.size(), ' ');
|
|
OS << " // " << Ints[i].Name << "\n";
|
|
}
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS) {
|
|
OS << "// Target mapping\n";
|
|
OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
|
|
OS << "struct IntrinsicTargetInfo {\n"
|
|
<< " StringRef Name;\n"
|
|
<< " size_t Offset;\n"
|
|
<< " size_t Count;\n"
|
|
<< "};\n";
|
|
OS << "static const IntrinsicTargetInfo TargetInfos[] = {\n";
|
|
for (auto Target : Ints.Targets)
|
|
OS << " {\"" << Target.Name << "\", " << Target.Offset << ", "
|
|
<< Target.Count << "},\n";
|
|
OS << "};\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitIntrinsicToNameTable(
|
|
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
|
|
OS << "// Intrinsic ID to name table\n";
|
|
OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
|
|
OS << " // Note that entry #0 is the invalid intrinsic!\n";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
|
|
OS << " \"" << Ints[i].Name << "\",\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
|
|
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
|
|
OS << "// Intrinsic ID to overload bitset\n";
|
|
OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
|
|
OS << "static const uint8_t OTable[] = {\n";
|
|
OS << " 0";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
// Add one to the index so we emit a null bit for the invalid #0 intrinsic.
|
|
if ((i+1)%8 == 0)
|
|
OS << ",\n 0";
|
|
if (Ints[i].isOverloaded)
|
|
OS << " | (1<<" << (i+1)%8 << ')';
|
|
}
|
|
OS << "\n};\n\n";
|
|
// OTable contains a true bit at the position if the intrinsic is overloaded.
|
|
OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
|
|
// NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp!
|
|
enum IIT_Info {
|
|
// Common values should be encoded with 0-15.
|
|
IIT_Done = 0,
|
|
IIT_I1 = 1,
|
|
IIT_I8 = 2,
|
|
IIT_I16 = 3,
|
|
IIT_I32 = 4,
|
|
IIT_I64 = 5,
|
|
IIT_F16 = 6,
|
|
IIT_F32 = 7,
|
|
IIT_F64 = 8,
|
|
IIT_V2 = 9,
|
|
IIT_V4 = 10,
|
|
IIT_V8 = 11,
|
|
IIT_V16 = 12,
|
|
IIT_V32 = 13,
|
|
IIT_PTR = 14,
|
|
IIT_ARG = 15,
|
|
|
|
// Values from 16+ are only encodable with the inefficient encoding.
|
|
IIT_V64 = 16,
|
|
IIT_MMX = 17,
|
|
IIT_TOKEN = 18,
|
|
IIT_METADATA = 19,
|
|
IIT_EMPTYSTRUCT = 20,
|
|
IIT_STRUCT2 = 21,
|
|
IIT_STRUCT3 = 22,
|
|
IIT_STRUCT4 = 23,
|
|
IIT_STRUCT5 = 24,
|
|
IIT_EXTEND_ARG = 25,
|
|
IIT_TRUNC_ARG = 26,
|
|
IIT_ANYPTR = 27,
|
|
IIT_V1 = 28,
|
|
IIT_VARARG = 29,
|
|
IIT_HALF_VEC_ARG = 30,
|
|
IIT_SAME_VEC_WIDTH_ARG = 31,
|
|
IIT_PTR_TO_ARG = 32,
|
|
IIT_VEC_OF_PTRS_TO_ELT = 33,
|
|
IIT_I128 = 34,
|
|
IIT_V512 = 35,
|
|
IIT_V1024 = 36
|
|
};
|
|
|
|
|
|
static void EncodeFixedValueType(MVT::SimpleValueType VT,
|
|
std::vector<unsigned char> &Sig) {
|
|
if (MVT(VT).isInteger()) {
|
|
unsigned BitWidth = MVT(VT).getSizeInBits();
|
|
switch (BitWidth) {
|
|
default: PrintFatalError("unhandled integer type width in intrinsic!");
|
|
case 1: return Sig.push_back(IIT_I1);
|
|
case 8: return Sig.push_back(IIT_I8);
|
|
case 16: return Sig.push_back(IIT_I16);
|
|
case 32: return Sig.push_back(IIT_I32);
|
|
case 64: return Sig.push_back(IIT_I64);
|
|
case 128: return Sig.push_back(IIT_I128);
|
|
}
|
|
}
|
|
|
|
switch (VT) {
|
|
default: PrintFatalError("unhandled MVT in intrinsic!");
|
|
case MVT::f16: return Sig.push_back(IIT_F16);
|
|
case MVT::f32: return Sig.push_back(IIT_F32);
|
|
case MVT::f64: return Sig.push_back(IIT_F64);
|
|
case MVT::token: return Sig.push_back(IIT_TOKEN);
|
|
case MVT::Metadata: return Sig.push_back(IIT_METADATA);
|
|
case MVT::x86mmx: return Sig.push_back(IIT_MMX);
|
|
// MVT::OtherVT is used to mean the empty struct type here.
|
|
case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
|
|
// MVT::isVoid is used to represent varargs here.
|
|
case MVT::isVoid: return Sig.push_back(IIT_VARARG);
|
|
}
|
|
}
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function.
|
|
#endif
|
|
|
|
static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
|
|
std::vector<unsigned char> &Sig) {
|
|
|
|
if (R->isSubClassOf("LLVMMatchType")) {
|
|
unsigned Number = R->getValueAsInt("Number");
|
|
assert(Number < ArgCodes.size() && "Invalid matching number!");
|
|
if (R->isSubClassOf("LLVMExtendedType"))
|
|
Sig.push_back(IIT_EXTEND_ARG);
|
|
else if (R->isSubClassOf("LLVMTruncatedType"))
|
|
Sig.push_back(IIT_TRUNC_ARG);
|
|
else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
|
|
Sig.push_back(IIT_HALF_VEC_ARG);
|
|
else if (R->isSubClassOf("LLVMVectorSameWidth")) {
|
|
Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
|
|
Sig.push_back((Number << 3) | ArgCodes[Number]);
|
|
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
|
|
EncodeFixedValueType(VT, Sig);
|
|
return;
|
|
}
|
|
else if (R->isSubClassOf("LLVMPointerTo"))
|
|
Sig.push_back(IIT_PTR_TO_ARG);
|
|
else if (R->isSubClassOf("LLVMVectorOfPointersToElt"))
|
|
Sig.push_back(IIT_VEC_OF_PTRS_TO_ELT);
|
|
else
|
|
Sig.push_back(IIT_ARG);
|
|
return Sig.push_back((Number << 3) | ArgCodes[Number]);
|
|
}
|
|
|
|
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
|
|
|
|
unsigned Tmp = 0;
|
|
switch (VT) {
|
|
default: break;
|
|
case MVT::iPTRAny: ++Tmp; // FALL THROUGH.
|
|
case MVT::vAny: ++Tmp; // FALL THROUGH.
|
|
case MVT::fAny: ++Tmp; // FALL THROUGH.
|
|
case MVT::iAny: ++Tmp; // FALL THROUGH.
|
|
case MVT::Any: {
|
|
// If this is an "any" valuetype, then the type is the type of the next
|
|
// type in the list specified to getIntrinsic().
|
|
Sig.push_back(IIT_ARG);
|
|
|
|
// Figure out what arg # this is consuming, and remember what kind it was.
|
|
unsigned ArgNo = ArgCodes.size();
|
|
ArgCodes.push_back(Tmp);
|
|
|
|
// Encode what sort of argument it must be in the low 3 bits of the ArgNo.
|
|
return Sig.push_back((ArgNo << 3) | Tmp);
|
|
}
|
|
|
|
case MVT::iPTR: {
|
|
unsigned AddrSpace = 0;
|
|
if (R->isSubClassOf("LLVMQualPointerType")) {
|
|
AddrSpace = R->getValueAsInt("AddrSpace");
|
|
assert(AddrSpace < 256 && "Address space exceeds 255");
|
|
}
|
|
if (AddrSpace) {
|
|
Sig.push_back(IIT_ANYPTR);
|
|
Sig.push_back(AddrSpace);
|
|
} else {
|
|
Sig.push_back(IIT_PTR);
|
|
}
|
|
return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig);
|
|
}
|
|
}
|
|
|
|
if (MVT(VT).isVector()) {
|
|
MVT VVT = VT;
|
|
switch (VVT.getVectorNumElements()) {
|
|
default: PrintFatalError("unhandled vector type width in intrinsic!");
|
|
case 1: Sig.push_back(IIT_V1); break;
|
|
case 2: Sig.push_back(IIT_V2); break;
|
|
case 4: Sig.push_back(IIT_V4); break;
|
|
case 8: Sig.push_back(IIT_V8); break;
|
|
case 16: Sig.push_back(IIT_V16); break;
|
|
case 32: Sig.push_back(IIT_V32); break;
|
|
case 64: Sig.push_back(IIT_V64); break;
|
|
case 512: Sig.push_back(IIT_V512); break;
|
|
case 1024: Sig.push_back(IIT_V1024); break;
|
|
}
|
|
|
|
return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
|
|
}
|
|
|
|
EncodeFixedValueType(VT, Sig);
|
|
}
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#pragma optimize("",on)
|
|
#endif
|
|
|
|
/// ComputeFixedEncoding - If we can encode the type signature for this
|
|
/// intrinsic into 32 bits, return it. If not, return ~0U.
|
|
static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
|
|
std::vector<unsigned char> &TypeSig) {
|
|
std::vector<unsigned char> ArgCodes;
|
|
|
|
if (Int.IS.RetVTs.empty())
|
|
TypeSig.push_back(IIT_Done);
|
|
else if (Int.IS.RetVTs.size() == 1 &&
|
|
Int.IS.RetVTs[0] == MVT::isVoid)
|
|
TypeSig.push_back(IIT_Done);
|
|
else {
|
|
switch (Int.IS.RetVTs.size()) {
|
|
case 1: break;
|
|
case 2: TypeSig.push_back(IIT_STRUCT2); break;
|
|
case 3: TypeSig.push_back(IIT_STRUCT3); break;
|
|
case 4: TypeSig.push_back(IIT_STRUCT4); break;
|
|
case 5: TypeSig.push_back(IIT_STRUCT5); break;
|
|
default: llvm_unreachable("Unhandled case in struct");
|
|
}
|
|
|
|
for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
|
|
EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig);
|
|
}
|
|
|
|
for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
|
|
EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig);
|
|
}
|
|
|
|
static void printIITEntry(raw_ostream &OS, unsigned char X) {
|
|
OS << (unsigned)X;
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS) {
|
|
// If we can compute a 32-bit fixed encoding for this intrinsic, do so and
|
|
// capture it in this vector, otherwise store a ~0U.
|
|
std::vector<unsigned> FixedEncodings;
|
|
|
|
SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
|
|
|
|
std::vector<unsigned char> TypeSig;
|
|
|
|
// Compute the unique argument type info.
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
// Get the signature for the intrinsic.
|
|
TypeSig.clear();
|
|
ComputeFixedEncoding(Ints[i], TypeSig);
|
|
|
|
// Check to see if we can encode it into a 32-bit word. We can only encode
|
|
// 8 nibbles into a 32-bit word.
|
|
if (TypeSig.size() <= 8) {
|
|
bool Failed = false;
|
|
unsigned Result = 0;
|
|
for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
|
|
// If we had an unencodable argument, bail out.
|
|
if (TypeSig[i] > 15) {
|
|
Failed = true;
|
|
break;
|
|
}
|
|
Result = (Result << 4) | TypeSig[e-i-1];
|
|
}
|
|
|
|
// If this could be encoded into a 31-bit word, return it.
|
|
if (!Failed && (Result >> 31) == 0) {
|
|
FixedEncodings.push_back(Result);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we're going to unique the sequence into the
|
|
// LongEncodingTable, and use its offset in the 32-bit table instead.
|
|
LongEncodingTable.add(TypeSig);
|
|
|
|
// This is a placehold that we'll replace after the table is laid out.
|
|
FixedEncodings.push_back(~0U);
|
|
}
|
|
|
|
LongEncodingTable.layout();
|
|
|
|
OS << "// Global intrinsic function declaration type table.\n";
|
|
OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
|
|
|
|
OS << "static const unsigned IIT_Table[] = {\n ";
|
|
|
|
for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
|
|
if ((i & 7) == 7)
|
|
OS << "\n ";
|
|
|
|
// If the entry fit in the table, just emit it.
|
|
if (FixedEncodings[i] != ~0U) {
|
|
OS << "0x" << utohexstr(FixedEncodings[i]) << ", ";
|
|
continue;
|
|
}
|
|
|
|
TypeSig.clear();
|
|
ComputeFixedEncoding(Ints[i], TypeSig);
|
|
|
|
|
|
// Otherwise, emit the offset into the long encoding table. We emit it this
|
|
// way so that it is easier to read the offset in the .def file.
|
|
OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
|
|
}
|
|
|
|
OS << "0\n};\n\n";
|
|
|
|
// Emit the shared table of register lists.
|
|
OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
|
|
if (!LongEncodingTable.empty())
|
|
LongEncodingTable.emit(OS, printIITEntry);
|
|
OS << " 255\n};\n\n";
|
|
|
|
OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
|
|
}
|
|
|
|
namespace {
|
|
struct AttributeComparator {
|
|
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
|
|
// Sort throwing intrinsics after non-throwing intrinsics.
|
|
if (L->canThrow != R->canThrow)
|
|
return R->canThrow;
|
|
|
|
if (L->isNoDuplicate != R->isNoDuplicate)
|
|
return R->isNoDuplicate;
|
|
|
|
if (L->isNoReturn != R->isNoReturn)
|
|
return R->isNoReturn;
|
|
|
|
if (L->isConvergent != R->isConvergent)
|
|
return R->isConvergent;
|
|
|
|
// Try to order by readonly/readnone attribute.
|
|
CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
|
|
CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
|
|
if (LK != RK) return (LK > RK);
|
|
|
|
// Order by argument attributes.
|
|
// This is reliable because each side is already sorted internally.
|
|
return (L->ArgumentAttributes < R->ArgumentAttributes);
|
|
}
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
/// EmitAttributes - This emits the Intrinsic::getAttributes method.
|
|
void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
|
|
raw_ostream &OS) {
|
|
OS << "// Add parameter attributes that are not common to all intrinsics.\n";
|
|
OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
|
|
if (TargetOnly)
|
|
OS << "static AttributeSet getAttributes(LLVMContext &C, " << TargetPrefix
|
|
<< "Intrinsic::ID id) {\n";
|
|
else
|
|
OS << "AttributeSet Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
|
|
|
|
// Compute the maximum number of attribute arguments and the map
|
|
typedef std::map<const CodeGenIntrinsic*, unsigned,
|
|
AttributeComparator> UniqAttrMapTy;
|
|
UniqAttrMapTy UniqAttributes;
|
|
unsigned maxArgAttrs = 0;
|
|
unsigned AttrNum = 0;
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
const CodeGenIntrinsic &intrinsic = Ints[i];
|
|
maxArgAttrs =
|
|
std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
|
|
unsigned &N = UniqAttributes[&intrinsic];
|
|
if (N) continue;
|
|
assert(AttrNum < 256 && "Too many unique attributes for table!");
|
|
N = ++AttrNum;
|
|
}
|
|
|
|
// Emit an array of AttributeSet. Most intrinsics will have at least one
|
|
// entry, for the function itself (index ~1), which is usually nounwind.
|
|
OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n";
|
|
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
const CodeGenIntrinsic &intrinsic = Ints[i];
|
|
|
|
OS << " " << UniqAttributes[&intrinsic] << ", // "
|
|
<< intrinsic.Name << "\n";
|
|
}
|
|
OS << " };\n\n";
|
|
|
|
OS << " AttributeSet AS[" << maxArgAttrs+1 << "];\n";
|
|
OS << " unsigned NumAttrs = 0;\n";
|
|
OS << " if (id != 0) {\n";
|
|
OS << " switch(IntrinsicsToAttributesMap[id - ";
|
|
if (TargetOnly)
|
|
OS << "Intrinsic::num_intrinsics";
|
|
else
|
|
OS << "1";
|
|
OS << "]) {\n";
|
|
OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
|
|
for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
|
|
E = UniqAttributes.end(); I != E; ++I) {
|
|
OS << " case " << I->second << ": {\n";
|
|
|
|
const CodeGenIntrinsic &intrinsic = *(I->first);
|
|
|
|
// Keep track of the number of attributes we're writing out.
|
|
unsigned numAttrs = 0;
|
|
|
|
// The argument attributes are alreadys sorted by argument index.
|
|
unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
|
|
if (ae) {
|
|
while (ai != ae) {
|
|
unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
|
|
|
|
OS << " const Attribute::AttrKind AttrParam" << argNo + 1 <<"[]= {";
|
|
bool addComma = false;
|
|
|
|
do {
|
|
switch (intrinsic.ArgumentAttributes[ai].second) {
|
|
case CodeGenIntrinsic::NoCapture:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoCapture";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::Returned:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::Returned";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::ReadOnly:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::WriteOnly:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WriteOnly";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::ReadNone:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadNone";
|
|
addComma = true;
|
|
break;
|
|
}
|
|
|
|
++ai;
|
|
} while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
|
|
OS << "};\n";
|
|
OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, "
|
|
<< argNo+1 << ", AttrParam" << argNo +1 << ");\n";
|
|
}
|
|
}
|
|
|
|
if (!intrinsic.canThrow ||
|
|
intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem ||
|
|
intrinsic.isNoReturn || intrinsic.isNoDuplicate ||
|
|
intrinsic.isConvergent) {
|
|
OS << " const Attribute::AttrKind Atts[] = {";
|
|
bool addComma = false;
|
|
if (!intrinsic.canThrow) {
|
|
OS << "Attribute::NoUnwind";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isNoReturn) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoReturn";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isNoDuplicate) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoDuplicate";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isConvergent) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::Convergent";
|
|
addComma = true;
|
|
}
|
|
|
|
switch (intrinsic.ModRef) {
|
|
case CodeGenIntrinsic::NoMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadNone";
|
|
break;
|
|
case CodeGenIntrinsic::ReadArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly,";
|
|
OS << "Attribute::ArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly";
|
|
break;
|
|
case CodeGenIntrinsic::WriteArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WriteOnly,";
|
|
OS << "Attribute::ArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::WriteMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::WriteOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadWriteArgMem:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ArgMemOnly";
|
|
break;
|
|
case CodeGenIntrinsic::ReadWriteMem:
|
|
break;
|
|
}
|
|
OS << "};\n";
|
|
OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, "
|
|
<< "AttributeSet::FunctionIndex, Atts);\n";
|
|
}
|
|
|
|
if (numAttrs) {
|
|
OS << " NumAttrs = " << numAttrs << ";\n";
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
} else {
|
|
OS << " return AttributeSet();\n";
|
|
OS << " }\n";
|
|
}
|
|
}
|
|
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << " return AttributeSet::get(C, makeArrayRef(AS, NumAttrs));\n";
|
|
OS << "}\n";
|
|
OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
|
|
const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
|
|
StringRef CompilerName = (IsGCC ? "GCC" : "MS");
|
|
typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
|
|
BIMTy BuiltinMap;
|
|
StringToOffsetTable Table;
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
const std::string &BuiltinName =
|
|
IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
|
|
if (!BuiltinName.empty()) {
|
|
// Get the map for this target prefix.
|
|
std::map<std::string, std::string> &BIM =
|
|
BuiltinMap[Ints[i].TargetPrefix];
|
|
|
|
if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
|
|
PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() +
|
|
"': duplicate " + CompilerName + " builtin name!");
|
|
Table.GetOrAddStringOffset(BuiltinName);
|
|
}
|
|
}
|
|
|
|
OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
|
|
OS << "// This is used by the C front-end. The builtin name is passed\n";
|
|
OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
|
|
OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
|
|
OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
|
|
|
|
if (TargetOnly) {
|
|
OS << "static " << TargetPrefix << "Intrinsic::ID "
|
|
<< "getIntrinsicFor" << CompilerName << "Builtin(const char "
|
|
<< "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
|
|
} else {
|
|
OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
|
|
<< "Builtin(const char "
|
|
<< "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
|
|
}
|
|
OS << " static const char BuiltinNames[] = {\n";
|
|
Table.EmitCharArray(OS);
|
|
OS << " };\n\n";
|
|
|
|
OS << " struct BuiltinEntry {\n";
|
|
OS << " Intrinsic::ID IntrinID;\n";
|
|
OS << " unsigned StrTabOffset;\n";
|
|
OS << " const char *getName() const {\n";
|
|
OS << " return &BuiltinNames[StrTabOffset];\n";
|
|
OS << " }\n";
|
|
OS << " bool operator<(const char *RHS) const {\n";
|
|
OS << " return strcmp(getName(), RHS) < 0;\n";
|
|
OS << " }\n";
|
|
OS << " };\n";
|
|
|
|
|
|
OS << " StringRef BuiltinName(BuiltinNameStr);\n";
|
|
OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
|
|
|
|
// Note: this could emit significantly better code if we cared.
|
|
for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
|
|
OS << " ";
|
|
if (!I->first.empty())
|
|
OS << "if (TargetPrefix == \"" << I->first << "\") ";
|
|
else
|
|
OS << "/* Target Independent Builtins */ ";
|
|
OS << "{\n";
|
|
|
|
// Emit the comparisons for this target prefix.
|
|
OS << " static const BuiltinEntry " << I->first << "Names[] = {\n";
|
|
for (const auto &P : I->second) {
|
|
OS << " {Intrinsic::" << P.second << ", "
|
|
<< Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
|
|
}
|
|
OS << " };\n";
|
|
OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
|
|
OS << " std::end(" << I->first << "Names),\n";
|
|
OS << " BuiltinNameStr);\n";
|
|
OS << " if (I != std::end(" << I->first << "Names) &&\n";
|
|
OS << " strcmp(I->getName(), BuiltinNameStr) == 0)\n";
|
|
OS << " return I->IntrinID;\n";
|
|
OS << " }\n";
|
|
}
|
|
OS << " return ";
|
|
if (!TargetPrefix.empty())
|
|
OS << "(" << TargetPrefix << "Intrinsic::ID)";
|
|
OS << "Intrinsic::not_intrinsic;\n";
|
|
OS << "}\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void llvm::EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly) {
|
|
IntrinsicEmitter(RK, TargetOnly).run(OS);
|
|
}
|