llvm/lib/Transforms/Scalar/EarlyCSE.cpp
Chris Lattner 10b883b13f stength reduce my previous patch a bit. The only instructions
that are allowed to have metadata operands are intrinsic calls,
and the only ones that take metadata currently return void.
Just reject all void instructions, which should not be value
numbered anyway.  To future proof things, add an assert to the
getHashValue impl for calls to check that metadata operands 
aren't present.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122759 91177308-0d34-0410-b5e6-96231b3b80d8
2011-01-03 18:43:03 +00:00

467 lines
17 KiB
C++

//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs a simple dominator tree walk that eliminates trivially
// redundant instructions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "early-cse"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
STATISTIC(NumCSE, "Number of instructions CSE'd");
STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
STATISTIC(NumCSECall, "Number of call instructions CSE'd");
STATISTIC(NumDSE, "Number of trivial dead stores removed");
static unsigned getHash(const void *V) {
return DenseMapInfo<const void*>::getHashValue(V);
}
//===----------------------------------------------------------------------===//
// SimpleValue
//===----------------------------------------------------------------------===//
namespace {
/// SimpleValue - Instances of this struct represent available values in the
/// scoped hash table.
struct SimpleValue {
Instruction *Inst;
SimpleValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
}
static bool canHandle(Instruction *Inst) {
return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
}
};
}
namespace llvm {
// SimpleValue is POD.
template<> struct isPodLike<SimpleValue> {
static const bool value = true;
};
template<> struct DenseMapInfo<SimpleValue> {
static inline SimpleValue getEmptyKey() {
return DenseMapInfo<Instruction*>::getEmptyKey();
}
static inline SimpleValue getTombstoneKey() {
return DenseMapInfo<Instruction*>::getTombstoneKey();
}
static unsigned getHashValue(SimpleValue Val);
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
};
}
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers.
unsigned Res = 0;
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
Res ^= getHash(Inst->getOperand(i)) << i;
if (CastInst *CI = dyn_cast<CastInst>(Inst))
Res ^= getHash(CI->getType());
else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
Res ^= CI->getPredicate();
else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
E = EVI->idx_end(); I != E; ++I)
Res ^= *I;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
E = IVI->idx_end(); I != E; ++I)
Res ^= *I;
} else {
// nothing extra to hash in.
assert((isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
"Invalid/unknown instruction");
}
// Mix in the opcode.
return (Res << 1) ^ Inst->getOpcode();
}
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
return LHSI->isIdenticalTo(RHSI);
}
//===----------------------------------------------------------------------===//
// CallValue
//===----------------------------------------------------------------------===//
namespace {
/// CallValue - Instances of this struct represent available call values in
/// the scoped hash table.
struct CallValue {
Instruction *Inst;
CallValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
}
static bool canHandle(Instruction *Inst) {
// Don't value number anything that returns void.
if (Inst->getType()->isVoidTy())
return false;
CallInst *CI = dyn_cast<CallInst>(Inst);
if (CI == 0 || !CI->onlyReadsMemory())
return false;
return true;
}
};
}
namespace llvm {
// CallValue is POD.
template<> struct isPodLike<CallValue> {
static const bool value = true;
};
template<> struct DenseMapInfo<CallValue> {
static inline CallValue getEmptyKey() {
return DenseMapInfo<Instruction*>::getEmptyKey();
}
static inline CallValue getTombstoneKey() {
return DenseMapInfo<Instruction*>::getTombstoneKey();
}
static unsigned getHashValue(CallValue Val);
static bool isEqual(CallValue LHS, CallValue RHS);
};
}
unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers.
unsigned Res = 0;
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
"Cannot value number calls with metadata operands");
Res ^= getHash(Inst->getOperand(i)) << i;
}
// Mix in the opcode.
return (Res << 1) ^ Inst->getOpcode();
}
bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
return LHSI->isIdenticalTo(RHSI);
}
//===----------------------------------------------------------------------===//
// EarlyCSE pass.
//===----------------------------------------------------------------------===//
namespace {
/// EarlyCSE - This pass does a simple depth-first walk over the dominator
/// tree, eliminating trivially redundant instructions and using instsimplify
/// to canonicalize things as it goes. It is intended to be fast and catch
/// obvious cases so that instcombine and other passes are more effective. It
/// is expected that a later pass of GVN will catch the interesting/hard
/// cases.
class EarlyCSE : public FunctionPass {
public:
const TargetData *TD;
DominatorTree *DT;
typedef RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
AllocatorTy> ScopedHTType;
/// AvailableValues - This scoped hash table contains the current values of
/// all of our simple scalar expressions. As we walk down the domtree, we
/// look to see if instructions are in this: if so, we replace them with what
/// we find, otherwise we insert them so that dominated values can succeed in
/// their lookup.
ScopedHTType *AvailableValues;
/// AvailableLoads - This scoped hash table contains the current values
/// of loads. This allows us to get efficient access to dominating loads when
/// we have a fully redundant load. In addition to the most recent load, we
/// keep track of a generation count of the read, which is compared against
/// the current generation count. The current generation count is
/// incremented after every possibly writing memory operation, which ensures
/// that we only CSE loads with other loads that have no intervening store.
typedef RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
LoadHTType *AvailableLoads;
/// AvailableCalls - This scoped hash table contains the current values
/// of read-only call values. It uses the same generation count as loads.
typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
CallHTType *AvailableCalls;
/// CurrentGeneration - This is the current generation of the memory value.
unsigned CurrentGeneration;
static char ID;
explicit EarlyCSE() : FunctionPass(ID) {
initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F);
private:
bool processNode(DomTreeNode *Node);
// This transformation requires dominator postdominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.setPreservesCFG();
}
};
}
char EarlyCSE::ID = 0;
// createEarlyCSEPass - The public interface to this file.
FunctionPass *llvm::createEarlyCSEPass() {
return new EarlyCSE();
}
INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
bool EarlyCSE::processNode(DomTreeNode *Node) {
// Define a scope in the scoped hash table. When we are done processing this
// domtree node and recurse back up to our parent domtree node, this will pop
// off all the values we install.
ScopedHTType::ScopeTy Scope(*AvailableValues);
// Define a scope for the load values so that anything we add will get
// popped when we recurse back up to our parent domtree node.
LoadHTType::ScopeTy LoadScope(*AvailableLoads);
// Define a scope for the call values so that anything we add will get
// popped when we recurse back up to our parent domtree node.
CallHTType::ScopeTy CallScope(*AvailableCalls);
BasicBlock *BB = Node->getBlock();
// If this block has a single predecessor, then the predecessor is the parent
// of the domtree node and all of the live out memory values are still current
// in this block. If this block has multiple predecessors, then they could
// have invalidated the live-out memory values of our parent value. For now,
// just be conservative and invalidate memory if this block has multiple
// predecessors.
if (BB->getSinglePredecessor() == 0)
++CurrentGeneration;
/// LastStore - Keep track of the last non-volatile store that we saw... for
/// as long as there in no instruction that reads memory. If we see a store
/// to the same location, we delete the dead store. This zaps trivial dead
/// stores which can occur in bitfield code among other things.
StoreInst *LastStore = 0;
bool Changed = false;
// See if any instructions in the block can be eliminated. If so, do it. If
// not, add them to AvailableValues.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
// Dead instructions should just be removed.
if (isInstructionTriviallyDead(Inst)) {
DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
// its simpler value.
if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// If this is a simple instruction that we can value number, process it.
if (SimpleValue::canHandle(Inst)) {
// See if the instruction has an available value. If so, use it.
if (Value *V = AvailableValues->lookup(Inst)) {
DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumCSE;
continue;
}
// Otherwise, just remember that this value is available.
AvailableValues->insert(Inst, Inst);
continue;
}
// If this is a non-volatile load, process it.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// Ignore volatile loads.
if (LI->isVolatile()) {
LastStore = 0;
continue;
}
// If we have an available version of this load, and if it is the right
// generation, replace this instruction.
std::pair<Value*, unsigned> InVal =
AvailableLoads->lookup(Inst->getOperand(0));
if (InVal.first != 0 && InVal.second == CurrentGeneration) {
DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
<< *InVal.first << '\n');
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSELoad;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableLoads->insert(Inst->getOperand(0),
std::pair<Value*, unsigned>(Inst, CurrentGeneration));
LastStore = 0;
continue;
}
// If this instruction may read from memory, forget LastStore.
if (Inst->mayReadFromMemory())
LastStore = 0;
// If this is a read-only call, process it.
if (CallValue::canHandle(Inst)) {
// If we have an available version of this call, and if it is the right
// generation, replace this instruction.
std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
if (InVal.first != 0 && InVal.second == CurrentGeneration) {
DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
<< *InVal.first << '\n');
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSECall;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableCalls->insert(Inst,
std::pair<Value*, unsigned>(Inst, CurrentGeneration));
continue;
}
// Okay, this isn't something we can CSE at all. Check to see if it is
// something that could modify memory. If so, our available memory values
// cannot be used so bump the generation count.
if (Inst->mayWriteToMemory()) {
++CurrentGeneration;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// We do a trivial form of DSE if there are two stores to the same
// location with no intervening loads. Delete the earlier store.
if (LastStore &&
LastStore->getPointerOperand() == SI->getPointerOperand()) {
DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: "
<< *Inst << '\n');
LastStore->eraseFromParent();
Changed = true;
++NumDSE;
LastStore = 0;
continue;
}
// Okay, we just invalidated anything we knew about loaded values. Try
// to salvage *something* by remembering that the stored value is a live
// version of the pointer. It is safe to forward from volatile stores
// to non-volatile loads, so we don't have to check for volatility of
// the store.
AvailableLoads->insert(SI->getPointerOperand(),
std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
// Remember that this was the last store we saw for DSE.
if (!SI->isVolatile())
LastStore = SI;
}
}
}
unsigned LiveOutGeneration = CurrentGeneration;
for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
Changed |= processNode(*I);
// Pop any generation changes off the stack from the recursive walk.
CurrentGeneration = LiveOutGeneration;
}
return Changed;
}
bool EarlyCSE::runOnFunction(Function &F) {
TD = getAnalysisIfAvailable<TargetData>();
DT = &getAnalysis<DominatorTree>();
// Tables that the pass uses when walking the domtree.
ScopedHTType AVTable;
AvailableValues = &AVTable;
LoadHTType LoadTable;
AvailableLoads = &LoadTable;
CallHTType CallTable;
AvailableCalls = &CallTable;
CurrentGeneration = 0;
return processNode(DT->getRootNode());
}