llvm/lib/Target/AMDGPU/AMDGPUAnnotateUniformValues.cpp
Alexander Timofeev 9ae2b48b84 [AMDGPU] Scalarization of global uniform loads.
Summary:
LC can currently select scalar load for uniform memory access
basing on readonly memory address space only. This restriction
originated from the fact that in HW prior to VI vector and scalar caches
are not coherent. With MemoryDependenceAnalysis we can check that the
memory location corresponding to the memory operand of the LOAD is not
clobbered along the all paths from the function entry.

Reviewers: rampitec, tstellarAMD, arsenm

Subscribers: wdng, arsenm, nhaehnle

Differential Revision: https://reviews.llvm.org/D26917

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289076 91177308-0d34-0410-b5e6-96231b3b80d8
2016-12-08 17:28:47 +00:00

190 lines
5.9 KiB
C++

//===-- AMDGPUAnnotateUniformValues.cpp - ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass adds amdgpu.uniform metadata to IR values so this information
/// can be used during instruction selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "amdgpu-annotate-uniform"
using namespace llvm;
namespace {
class AMDGPUAnnotateUniformValues : public FunctionPass,
public InstVisitor<AMDGPUAnnotateUniformValues> {
DivergenceAnalysis *DA;
MemoryDependenceResults *MDR;
LoopInfo *LI;
DenseMap<Value*, GetElementPtrInst*> noClobberClones;
bool isKernelFunc;
public:
static char ID;
AMDGPUAnnotateUniformValues() :
FunctionPass(ID) { }
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
StringRef getPassName() const override {
return "AMDGPU Annotate Uniform Values";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DivergenceAnalysis>();
AU.addRequired<MemoryDependenceWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.setPreservesAll();
}
void visitBranchInst(BranchInst &I);
void visitLoadInst(LoadInst &I);
bool isClobberedInFunction(LoadInst * Load);
};
} // End anonymous namespace
INITIALIZE_PASS_BEGIN(AMDGPUAnnotateUniformValues, DEBUG_TYPE,
"Add AMDGPU uniform metadata", false, false)
INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(AMDGPUAnnotateUniformValues, DEBUG_TYPE,
"Add AMDGPU uniform metadata", false, false)
char AMDGPUAnnotateUniformValues::ID = 0;
static void setUniformMetadata(Instruction *I) {
I->setMetadata("amdgpu.uniform", MDNode::get(I->getContext(), {}));
}
static void setNoClobberMetadata(Instruction *I) {
I->setMetadata("amdgpu.noclobber", MDNode::get(I->getContext(), {}));
}
static void DFS(BasicBlock *Root, SetVector<BasicBlock*> & Set) {
for (auto I : predecessors(Root))
if (Set.insert(I))
DFS(I, Set);
}
bool AMDGPUAnnotateUniformValues::isClobberedInFunction(LoadInst * Load) {
// 1. get Loop for the Load->getparent();
// 2. if it exists, collect all the BBs from the most outer
// loop and check for the writes. If NOT - start DFS over all preds.
// 3. Start DFS over all preds from the most outer loop header.
SetVector<BasicBlock *> Checklist;
BasicBlock *Start = Load->getParent();
Checklist.insert(Start);
const Value *Ptr = Load->getPointerOperand();
const Loop *L = LI->getLoopFor(Start);
if (L) {
const Loop *P = L;
do {
L = P;
P = P->getParentLoop();
} while (P);
Checklist.insert(L->block_begin(), L->block_end());
Start = L->getHeader();
}
DFS(Start, Checklist);
for (auto &BB : Checklist) {
BasicBlock::iterator StartIt = (BB == Load->getParent()) ?
BasicBlock::iterator(Load) : BB->end();
if (MDR->getPointerDependencyFrom(MemoryLocation(Ptr),
true, StartIt, BB, Load).isClobber())
return true;
}
return false;
}
void AMDGPUAnnotateUniformValues::visitBranchInst(BranchInst &I) {
if (I.isUnconditional())
return;
Value *Cond = I.getCondition();
if (!DA->isUniform(Cond))
return;
setUniformMetadata(I.getParent()->getTerminator());
}
void AMDGPUAnnotateUniformValues::visitLoadInst(LoadInst &I) {
Value *Ptr = I.getPointerOperand();
if (!DA->isUniform(Ptr))
return;
auto isGlobalLoad = [](LoadInst &Load)->bool {
return Load.getPointerAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
};
// We're tracking up to the Function boundaries
// We cannot go beyond because of FunctionPass restrictions
// Thus we can ensure that memory not clobbered for memory
// operations that live in kernel only.
bool NotClobbered = isKernelFunc && !isClobberedInFunction(&I);
Instruction *PtrI = dyn_cast<Instruction>(Ptr);
if (!PtrI && NotClobbered && isGlobalLoad(I)) {
if (isa<Argument>(Ptr) || isa<GlobalValue>(Ptr)) {
// Lookup for the existing GEP
if (noClobberClones.count(Ptr)) {
PtrI = noClobberClones[Ptr];
} else {
// Create GEP of the Value
Function *F = I.getParent()->getParent();
Value *Idx = Constant::getIntegerValue(
Type::getInt32Ty(Ptr->getContext()), APInt(64, 0));
// Insert GEP at the entry to make it dominate all uses
PtrI = GetElementPtrInst::Create(
Ptr->getType()->getPointerElementType(), Ptr,
ArrayRef<Value*>(Idx), Twine(""), F->getEntryBlock().getFirstNonPHI());
}
I.replaceUsesOfWith(Ptr, PtrI);
}
}
if (PtrI) {
setUniformMetadata(PtrI);
if (NotClobbered)
setNoClobberMetadata(PtrI);
}
}
bool AMDGPUAnnotateUniformValues::doInitialization(Module &M) {
return false;
}
bool AMDGPUAnnotateUniformValues::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
DA = &getAnalysis<DivergenceAnalysis>();
MDR = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
isKernelFunc = F.getCallingConv() == CallingConv::AMDGPU_KERNEL;
visit(F);
noClobberClones.clear();
return true;
}
FunctionPass *
llvm::createAMDGPUAnnotateUniformValues() {
return new AMDGPUAnnotateUniformValues();
}