mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-02 16:56:50 +00:00
aae13371be
This patch reverts region's scheduling to the original untouched state in case if we have have decreased occupancy. In addition it switches to use TargetRegisterInfo occupancy callback for pressure limits instead of gradually increasing limits which were just passed by. We are going to stay with the best schedule so we do not need to tolerate worsened scheduling anymore. Differential Revision: https://reviews.llvm.org/D29971 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295206 91177308-0d34-0410-b5e6-96231b3b80d8
373 lines
14 KiB
C++
373 lines
14 KiB
C++
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This contains a MachineSchedStrategy implementation for maximizing wave
|
|
/// occupancy on GCN hardware.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GCNSchedStrategy.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
|
|
#define DEBUG_TYPE "misched"
|
|
|
|
using namespace llvm;
|
|
|
|
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
|
|
const MachineSchedContext *C) :
|
|
GenericScheduler(C) { }
|
|
|
|
static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
|
|
const MachineFunction &MF) {
|
|
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
|
|
ST.getOccupancyWithNumVGPRs(VGPRs));
|
|
return std::min(MinRegOccupancy,
|
|
ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
|
|
*MF.getFunction()));
|
|
}
|
|
|
|
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
|
|
GenericScheduler::initialize(DAG);
|
|
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
|
|
// FIXME: This is also necessary, because some passes that run after
|
|
// scheduling and before regalloc increase register pressure.
|
|
const int ErrorMargin = 3;
|
|
|
|
SGPRExcessLimit = Context->RegClassInfo
|
|
->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
|
|
VGPRExcessLimit = Context->RegClassInfo
|
|
->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
|
|
SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
|
|
SRI->getSGPRPressureSet()) - ErrorMargin;
|
|
VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
|
|
SRI->getVGPRPressureSet()) - ErrorMargin;
|
|
}
|
|
|
|
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
|
|
bool AtTop, const RegPressureTracker &RPTracker,
|
|
const SIRegisterInfo *SRI,
|
|
unsigned SGPRPressure,
|
|
unsigned VGPRPressure) {
|
|
|
|
Cand.SU = SU;
|
|
Cand.AtTop = AtTop;
|
|
|
|
// getDownwardPressure() and getUpwardPressure() make temporary changes to
|
|
// the the tracker, so we need to pass those function a non-const copy.
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
std::vector<unsigned> Pressure;
|
|
std::vector<unsigned> MaxPressure;
|
|
|
|
if (AtTop)
|
|
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
else {
|
|
// FIXME: I think for bottom up scheduling, the register pressure is cached
|
|
// and can be retrieved by DAG->getPressureDif(SU).
|
|
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
}
|
|
|
|
unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
|
|
unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
|
|
|
|
// If two instructions increase the pressure of different register sets
|
|
// by the same amount, the generic scheduler will prefer to schedule the
|
|
// instruction that increases the set with the least amount of registers,
|
|
// which in our case would be SGPRs. This is rarely what we want, so
|
|
// when we report excess/critical register pressure, we do it either
|
|
// only for VGPRs or only for SGPRs.
|
|
|
|
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
|
|
const unsigned MaxVGPRPressureInc = 16;
|
|
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
|
|
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
|
|
|
|
|
|
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
|
|
// to increase the likelihood we don't go over the limits. We should improve
|
|
// the analysis to look through dependencies to find the path with the least
|
|
// register pressure.
|
|
|
|
// We only need to update the RPDelata for instructions that increase
|
|
// register pressure. Instructions that decrease or keep reg pressure
|
|
// the same will be marked as RegExcess in tryCandidate() when they
|
|
// are compared with instructions that increase the register pressure.
|
|
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
|
|
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
|
|
}
|
|
|
|
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
|
|
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
|
|
}
|
|
|
|
// Register pressure is considered 'CRITICAL' if it is approaching a value
|
|
// that would reduce the wave occupancy for the execution unit. When
|
|
// register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
|
|
// has the same cost, so we don't need to prefer one over the other.
|
|
|
|
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
|
|
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
|
|
|
|
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
|
|
if (SGPRDelta > VGPRDelta) {
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
|
|
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
|
|
} else {
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
|
|
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeFromQueue()
|
|
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
|
|
const CandPolicy &ZonePolicy,
|
|
const RegPressureTracker &RPTracker,
|
|
SchedCandidate &Cand) {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
|
|
unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
|
|
unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
|
|
ReadyQueue &Q = Zone.Available;
|
|
for (SUnit *SU : Q) {
|
|
|
|
SchedCandidate TryCand(ZonePolicy);
|
|
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
|
|
SGPRPressure, VGPRPressure);
|
|
// Pass SchedBoundary only when comparing nodes from the same boundary.
|
|
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
|
|
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
|
|
if (TryCand.Reason != NoCand) {
|
|
// Initialize resource delta if needed in case future heuristics query it.
|
|
if (TryCand.ResDelta == SchedResourceDelta())
|
|
TryCand.initResourceDelta(Zone.DAG, SchedModel);
|
|
Cand.setBest(TryCand);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) {
|
|
switch (Reason) {
|
|
default:
|
|
return Reason;
|
|
case GenericSchedulerBase::RegCritical:
|
|
case GenericSchedulerBase::RegExcess:
|
|
return -Reason;
|
|
}
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNodeBidirectional()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
IsTopNode = false;
|
|
return SU;
|
|
}
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
IsTopNode = true;
|
|
return SU;
|
|
}
|
|
// Set the bottom-up policy based on the state of the current bottom zone and
|
|
// the instructions outside the zone, including the top zone.
|
|
CandPolicy BotPolicy;
|
|
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
|
|
// Set the top-down policy based on the state of the current top zone and
|
|
// the instructions outside the zone, including the bottom zone.
|
|
CandPolicy TopPolicy;
|
|
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
|
|
|
|
// See if BotCand is still valid (because we previously scheduled from Top).
|
|
DEBUG(dbgs() << "Picking from Bot:\n");
|
|
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
|
|
BotCand.Policy != BotPolicy) {
|
|
BotCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
DEBUG(traceCandidate(BotCand));
|
|
}
|
|
|
|
// Check if the top Q has a better candidate.
|
|
DEBUG(dbgs() << "Picking from Top:\n");
|
|
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
|
|
TopCand.Policy != TopPolicy) {
|
|
TopCand.reset(CandPolicy());
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
|
|
} else {
|
|
DEBUG(traceCandidate(TopCand));
|
|
}
|
|
|
|
// Pick best from BotCand and TopCand.
|
|
DEBUG(
|
|
dbgs() << "Top Cand: ";
|
|
traceCandidate(TopCand);
|
|
dbgs() << "Bot Cand: ";
|
|
traceCandidate(BotCand);
|
|
);
|
|
SchedCandidate Cand;
|
|
if (TopCand.Reason == BotCand.Reason) {
|
|
Cand = BotCand;
|
|
GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
|
|
TopCand.Reason = NoCand;
|
|
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
|
|
if (TopCand.Reason != NoCand) {
|
|
Cand.setBest(TopCand);
|
|
} else {
|
|
TopCand.Reason = TopReason;
|
|
}
|
|
} else {
|
|
if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
|
|
Cand = TopCand;
|
|
} else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
|
|
Cand = BotCand;
|
|
} else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
|
|
Cand = TopCand;
|
|
} else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
|
|
Cand = BotCand;
|
|
} else {
|
|
int TopRank = getBidirectionalReasonRank(TopCand.Reason);
|
|
int BotRank = getBidirectionalReasonRank(BotCand.Reason);
|
|
if (TopRank > BotRank) {
|
|
Cand = TopCand;
|
|
} else {
|
|
Cand = BotCand;
|
|
}
|
|
}
|
|
}
|
|
DEBUG(
|
|
dbgs() << "Picking: ";
|
|
traceCandidate(Cand);
|
|
);
|
|
|
|
IsTopNode = Cand.AtTop;
|
|
return Cand.SU;
|
|
}
|
|
|
|
// This function is mostly cut and pasted from
|
|
// GenericScheduler::pickNode()
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
|
|
if (DAG->top() == DAG->bottom()) {
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
return nullptr;
|
|
}
|
|
SUnit *SU;
|
|
do {
|
|
if (RegionPolicy.OnlyTopDown) {
|
|
SU = Top.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
TopCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
|
|
assert(TopCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = TopCand.SU;
|
|
}
|
|
IsTopNode = true;
|
|
} else if (RegionPolicy.OnlyBottomUp) {
|
|
SU = Bot.pickOnlyChoice();
|
|
if (!SU) {
|
|
CandPolicy NoPolicy;
|
|
BotCand.reset(NoPolicy);
|
|
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
|
|
assert(BotCand.Reason != NoCand && "failed to find a candidate");
|
|
SU = BotCand.SU;
|
|
}
|
|
IsTopNode = false;
|
|
} else {
|
|
SU = pickNodeBidirectional(IsTopNode);
|
|
}
|
|
} while (SU->isScheduled);
|
|
|
|
if (SU->isTopReady())
|
|
Top.removeReady(SU);
|
|
if (SU->isBottomReady())
|
|
Bot.removeReady(SU);
|
|
|
|
DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
|
|
return SU;
|
|
}
|
|
|
|
void GCNScheduleDAGMILive::schedule() {
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
|
|
std::vector<MachineInstr*> Unsched;
|
|
Unsched.reserve(NumRegionInstrs);
|
|
for (auto &I : *this)
|
|
Unsched.push_back(&I);
|
|
|
|
ScheduleDAGMILive::schedule();
|
|
|
|
// Check the results of scheduling.
|
|
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
|
|
std::vector<unsigned> UnschedPressure = getRegPressure().MaxSetPressure;
|
|
unsigned MaxSGPRs = std::max(
|
|
getTopRPTracker().getPressure().MaxSetPressure[SRI->getSGPRPressureSet()],
|
|
getBotRPTracker().getPressure().MaxSetPressure[SRI->getSGPRPressureSet()]);
|
|
unsigned MaxVGPRs = std::max(
|
|
getTopRPTracker().getPressure().MaxSetPressure[SRI->getVGPRPressureSet()],
|
|
getBotRPTracker().getPressure().MaxSetPressure[SRI->getVGPRPressureSet()]);
|
|
DEBUG(dbgs() << "Pressure after scheduling:\nSGPR = " << MaxSGPRs
|
|
<< "\nVGPR = " << MaxVGPRs << '\n');
|
|
if (MaxSGPRs <= S.SGPRCriticalLimit &&
|
|
MaxVGPRs <= S.VGPRCriticalLimit) {
|
|
DEBUG(dbgs() << "Pressure in desired limits, done.\n");
|
|
return;
|
|
}
|
|
unsigned WavesAfter = getMaxWaves(MaxSGPRs, MaxVGPRs, MF);
|
|
unsigned WavesUnsched = getMaxWaves(UnschedPressure[SRI->getSGPRPressureSet()],
|
|
UnschedPressure[SRI->getVGPRPressureSet()], MF);
|
|
DEBUG(dbgs() << "Occupancy before scheduling: " << WavesUnsched <<
|
|
", after " << WavesAfter << ".\n");
|
|
if (WavesAfter >= WavesUnsched)
|
|
return;
|
|
|
|
DEBUG(dbgs() << "Attempting to revert scheduling.\n");
|
|
RegionEnd = RegionBegin;
|
|
for (MachineInstr *MI : Unsched) {
|
|
if (MI->getIterator() != RegionEnd) {
|
|
BB->remove(MI);
|
|
BB->insert(RegionEnd, MI);
|
|
if (LIS) {
|
|
LIS->handleMove(*MI, true);
|
|
RegisterOperands RegOpers;
|
|
RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
|
|
if (ShouldTrackLaneMasks) {
|
|
// Adjust liveness and add missing dead+read-undef flags.
|
|
SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
|
|
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
|
|
} else {
|
|
// Adjust for missing dead-def flags.
|
|
RegOpers.detectDeadDefs(*MI, *LIS);
|
|
}
|
|
}
|
|
}
|
|
RegionEnd = MI->getIterator();
|
|
++RegionEnd;
|
|
DEBUG(dbgs() << "Scheduling " << *MI);
|
|
}
|
|
RegionBegin = Unsched.front()->getIterator();
|
|
|
|
placeDebugValues();
|
|
}
|