mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-27 14:45:24 +00:00
c16fc54851
The patch is generated using clang-tidy misc-use-override check. This command was used: tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \ -checks='-*,misc-use-override' -header-filter='llvm|clang' \ -j=32 -fix -format http://reviews.llvm.org/D8925 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234679 91177308-0d34-0410-b5e6-96231b3b80d8
165 lines
6.5 KiB
C++
165 lines
6.5 KiB
C++
//===-- SpillPlacement.h - Optimal Spill Code Placement --------*- C++ -*--===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This analysis computes the optimal spill code placement between basic blocks.
|
|
//
|
|
// The runOnMachineFunction() method only precomputes some profiling information
|
|
// about the CFG. The real work is done by prepare(), addConstraints(), and
|
|
// finish() which are called by the register allocator.
|
|
//
|
|
// Given a variable that is live across multiple basic blocks, and given
|
|
// constraints on the basic blocks where the variable is live, determine which
|
|
// edge bundles should have the variable in a register and which edge bundles
|
|
// should have the variable in a stack slot.
|
|
//
|
|
// The returned bit vector can be used to place optimal spill code at basic
|
|
// block entries and exits. Spill code placement inside a basic block is not
|
|
// considered.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_CODEGEN_SPILLPLACEMENT_H
|
|
#define LLVM_LIB_CODEGEN_SPILLPLACEMENT_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
|
|
namespace llvm {
|
|
|
|
class BitVector;
|
|
class EdgeBundles;
|
|
class MachineBasicBlock;
|
|
class MachineLoopInfo;
|
|
class MachineBlockFrequencyInfo;
|
|
|
|
class SpillPlacement : public MachineFunctionPass {
|
|
struct Node;
|
|
const MachineFunction *MF;
|
|
const EdgeBundles *bundles;
|
|
const MachineLoopInfo *loops;
|
|
const MachineBlockFrequencyInfo *MBFI;
|
|
Node *nodes;
|
|
|
|
// Nodes that are active in the current computation. Owned by the prepare()
|
|
// caller.
|
|
BitVector *ActiveNodes;
|
|
|
|
// Nodes with active links. Populated by scanActiveBundles.
|
|
SmallVector<unsigned, 8> Linked;
|
|
|
|
// Nodes that went positive during the last call to scanActiveBundles or
|
|
// iterate.
|
|
SmallVector<unsigned, 8> RecentPositive;
|
|
|
|
// Block frequencies are computed once. Indexed by block number.
|
|
SmallVector<BlockFrequency, 8> BlockFrequencies;
|
|
|
|
/// Decision threshold. A node gets the output value 0 if the weighted sum of
|
|
/// its inputs falls in the open interval (-Threshold;Threshold).
|
|
BlockFrequency Threshold;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
|
|
SpillPlacement() : MachineFunctionPass(ID), nodes(nullptr) {}
|
|
~SpillPlacement() override { releaseMemory(); }
|
|
|
|
/// BorderConstraint - A basic block has separate constraints for entry and
|
|
/// exit.
|
|
enum BorderConstraint {
|
|
DontCare, ///< Block doesn't care / variable not live.
|
|
PrefReg, ///< Block entry/exit prefers a register.
|
|
PrefSpill, ///< Block entry/exit prefers a stack slot.
|
|
PrefBoth, ///< Block entry prefers both register and stack.
|
|
MustSpill ///< A register is impossible, variable must be spilled.
|
|
};
|
|
|
|
/// BlockConstraint - Entry and exit constraints for a basic block.
|
|
struct BlockConstraint {
|
|
unsigned Number; ///< Basic block number (from MBB::getNumber()).
|
|
BorderConstraint Entry : 8; ///< Constraint on block entry.
|
|
BorderConstraint Exit : 8; ///< Constraint on block exit.
|
|
|
|
/// True when this block changes the value of the live range. This means
|
|
/// the block has a non-PHI def. When this is false, a live-in value on
|
|
/// the stack can be live-out on the stack without inserting a spill.
|
|
bool ChangesValue;
|
|
};
|
|
|
|
/// prepare - Reset state and prepare for a new spill placement computation.
|
|
/// @param RegBundles Bit vector to receive the edge bundles where the
|
|
/// variable should be kept in a register. Each bit
|
|
/// corresponds to an edge bundle, a set bit means the
|
|
/// variable should be kept in a register through the
|
|
/// bundle. A clear bit means the variable should be
|
|
/// spilled. This vector is retained.
|
|
void prepare(BitVector &RegBundles);
|
|
|
|
/// addConstraints - Add constraints and biases. This method may be called
|
|
/// more than once to accumulate constraints.
|
|
/// @param LiveBlocks Constraints for blocks that have the variable live in or
|
|
/// live out.
|
|
void addConstraints(ArrayRef<BlockConstraint> LiveBlocks);
|
|
|
|
/// addPrefSpill - Add PrefSpill constraints to all blocks listed. This is
|
|
/// equivalent to calling addConstraint with identical BlockConstraints with
|
|
/// Entry = Exit = PrefSpill, and ChangesValue = false.
|
|
///
|
|
/// @param Blocks Array of block numbers that prefer to spill in and out.
|
|
/// @param Strong When true, double the negative bias for these blocks.
|
|
void addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong);
|
|
|
|
/// addLinks - Add transparent blocks with the given numbers.
|
|
void addLinks(ArrayRef<unsigned> Links);
|
|
|
|
/// scanActiveBundles - Perform an initial scan of all bundles activated by
|
|
/// addConstraints and addLinks, updating their state. Add all the bundles
|
|
/// that now prefer a register to RecentPositive.
|
|
/// Prepare internal data structures for iterate.
|
|
/// Return true is there are any positive nodes.
|
|
bool scanActiveBundles();
|
|
|
|
/// iterate - Update the network iteratively until convergence, or new bundles
|
|
/// are found.
|
|
void iterate();
|
|
|
|
/// getRecentPositive - Return an array of bundles that became positive during
|
|
/// the previous call to scanActiveBundles or iterate.
|
|
ArrayRef<unsigned> getRecentPositive() { return RecentPositive; }
|
|
|
|
/// finish - Compute the optimal spill code placement given the
|
|
/// constraints. No MustSpill constraints will be violated, and the smallest
|
|
/// possible number of PrefX constraints will be violated, weighted by
|
|
/// expected execution frequencies.
|
|
/// The selected bundles are returned in the bitvector passed to prepare().
|
|
/// @return True if a perfect solution was found, allowing the variable to be
|
|
/// in a register through all relevant bundles.
|
|
bool finish();
|
|
|
|
/// getBlockFrequency - Return the estimated block execution frequency per
|
|
/// function invocation.
|
|
BlockFrequency getBlockFrequency(unsigned Number) const {
|
|
return BlockFrequencies[Number];
|
|
}
|
|
|
|
private:
|
|
bool runOnMachineFunction(MachineFunction&) override;
|
|
void getAnalysisUsage(AnalysisUsage&) const override;
|
|
void releaseMemory() override;
|
|
|
|
void activate(unsigned);
|
|
void setThreshold(const BlockFrequency &Entry);
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|