llvm/lib/IR/SafepointIRVerifier.cpp
Anna Thomas 25f28db283 [SafepointIRVerifier] Avoid false positives in GC verifier for compare between pointers
Today the safepoint IR verifier catches some unrelocated uses of base
pointers that are actually valid.

With this change, we narrow down the set of false positives.
Specifically, the verifier knows about compares to null and compares
between 2 unrelocated pointers.

Reviewed by: skatkov

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D35057

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307392 91177308-0d34-0410-b5e6-96231b3b80d8
2017-07-07 13:02:29 +00:00

438 lines
16 KiB
C++

//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Run a sanity check on the IR to ensure that Safepoints - if they've been
// inserted - were inserted correctly. In particular, look for use of
// non-relocated values after a safepoint. It's primary use is to check the
// correctness of safepoint insertion immediately after insertion, but it can
// also be used to verify that later transforms have not found a way to break
// safepoint semenatics.
//
// In its current form, this verify checks a property which is sufficient, but
// not neccessary for correctness. There are some cases where an unrelocated
// pointer can be used after the safepoint. Consider this example:
//
// a = ...
// b = ...
// (a',b') = safepoint(a,b)
// c = cmp eq a b
// br c, ..., ....
//
// Because it is valid to reorder 'c' above the safepoint, this is legal. In
// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
// idioms like this. The verifier knows about these cases and avoids reporting
// false positives.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/SafepointIRVerifier.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "safepoint-ir-verifier"
using namespace llvm;
/// This option is used for writing test cases. Instead of crashing the program
/// when verification fails, report a message to the console (for FileCheck
/// usage) and continue execution as if nothing happened.
static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
cl::init(false));
static void Verify(const Function &F, const DominatorTree &DT);
struct SafepointIRVerifier : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
DominatorTree DT;
SafepointIRVerifier() : FunctionPass(ID) {
initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
DT.recalculate(F);
Verify(F, DT);
return false; // no modifications
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
StringRef getPassName() const override { return "safepoint verifier"; }
};
void llvm::verifySafepointIR(Function &F) {
SafepointIRVerifier pass;
pass.runOnFunction(F);
}
char SafepointIRVerifier::ID = 0;
FunctionPass *llvm::createSafepointIRVerifierPass() {
return new SafepointIRVerifier();
}
INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
"Safepoint IR Verifier", false, true)
INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
"Safepoint IR Verifier", false, true)
static bool isGCPointerType(Type *T) {
if (auto *PT = dyn_cast<PointerType>(T))
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
// GC managed heap. We know that a pointer into this heap needs to be
// updated and that no other pointer does.
return (1 == PT->getAddressSpace());
return false;
}
static bool containsGCPtrType(Type *Ty) {
if (isGCPointerType(Ty))
return true;
if (VectorType *VT = dyn_cast<VectorType>(Ty))
return isGCPointerType(VT->getScalarType());
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
return containsGCPtrType(AT->getElementType());
if (StructType *ST = dyn_cast<StructType>(Ty))
return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
containsGCPtrType);
return false;
}
// Debugging aid -- prints a [Begin, End) range of values.
template<typename IteratorTy>
static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
OS << "[ ";
while (Begin != End) {
OS << **Begin << " ";
++Begin;
}
OS << "]";
}
/// The verifier algorithm is phrased in terms of availability. The set of
/// values "available" at a given point in the control flow graph is the set of
/// correctly relocated value at that point, and is a subset of the set of
/// definitions dominating that point.
/// State we compute and track per basic block.
struct BasicBlockState {
// Set of values available coming in, before the phi nodes
DenseSet<const Value *> AvailableIn;
// Set of values available going out
DenseSet<const Value *> AvailableOut;
// AvailableOut minus AvailableIn.
// All elements are Instructions
DenseSet<const Value *> Contribution;
// True if this block contains a safepoint and thus AvailableIn does not
// contribute to AvailableOut.
bool Cleared = false;
};
/// Gather all the definitions dominating the start of BB into Result. This is
/// simply the Defs introduced by every dominating basic block and the function
/// arguments.
static void GatherDominatingDefs(const BasicBlock *BB,
DenseSet<const Value *> &Result,
const DominatorTree &DT,
DenseMap<const BasicBlock *, BasicBlockState *> &BlockMap) {
DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
while (DTN->getIDom()) {
DTN = DTN->getIDom();
const auto &Defs = BlockMap[DTN->getBlock()]->Contribution;
Result.insert(Defs.begin(), Defs.end());
// If this block is 'Cleared', then nothing LiveIn to this block can be
// available after this block completes. Note: This turns out to be
// really important for reducing memory consuption of the initial available
// sets and thus peak memory usage by this verifier.
if (BlockMap[DTN->getBlock()]->Cleared)
return;
}
for (const Argument &A : BB->getParent()->args())
if (containsGCPtrType(A.getType()))
Result.insert(&A);
}
/// Model the effect of an instruction on the set of available values.
static void TransferInstruction(const Instruction &I, bool &Cleared,
DenseSet<const Value *> &Available) {
if (isStatepoint(I)) {
Cleared = true;
Available.clear();
} else if (containsGCPtrType(I.getType()))
Available.insert(&I);
}
/// Compute the AvailableOut set for BB, based on the
/// BasicBlockState BBS, which is the BasicBlockState for BB. FirstPass is set
/// when the verifier runs for the first time computing the AvailableOut set
/// for BB.
static void TransferBlock(const BasicBlock *BB,
BasicBlockState &BBS, bool FirstPass) {
const DenseSet<const Value *> &AvailableIn = BBS.AvailableIn;
DenseSet<const Value *> &AvailableOut = BBS.AvailableOut;
if (BBS.Cleared) {
// AvailableOut does not change no matter how the input changes, just
// leave it be. We need to force this calculation the first time so that
// we have a AvailableOut at all.
if (FirstPass) {
AvailableOut = BBS.Contribution;
}
} else {
// Otherwise, we need to reduce the AvailableOut set by things which are no
// longer in our AvailableIn
DenseSet<const Value *> Temp = BBS.Contribution;
set_union(Temp, AvailableIn);
AvailableOut = std::move(Temp);
}
DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
dbgs() << " to ";
PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
dbgs() << "\n";);
}
/// A given derived pointer can have multiple base pointers through phi/selects.
/// This type indicates when the base pointer is exclusively constant
/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
/// NonConstant.
enum BaseType {
NonConstant = 1, // Base pointers is not exclusively constant.
ExclusivelyNull,
ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
// set of constants, but they are not exclusively
// null.
};
/// Return the baseType for Val which states whether Val is exclusively
/// derived from constant/null, or not exclusively derived from constant.
/// Val is exclusively derived off a constant base when all operands of phi and
/// selects are derived off a constant base.
static enum BaseType getBaseType(const Value *Val) {
SmallVector<const Value *, 32> Worklist;
DenseSet<const Value *> Visited;
bool isExclusivelyDerivedFromNull = true;
Worklist.push_back(Val);
// Strip through all the bitcasts and geps to get base pointer. Also check for
// the exclusive value when there can be multiple base pointers (through phis
// or selects).
while(!Worklist.empty()) {
const Value *V = Worklist.pop_back_val();
if (!Visited.insert(V).second)
continue;
if (const auto *CI = dyn_cast<CastInst>(V)) {
Worklist.push_back(CI->stripPointerCasts());
continue;
}
if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
Worklist.push_back(GEP->getPointerOperand());
continue;
}
// Push all the incoming values of phi node into the worklist for
// processing.
if (const auto *PN = dyn_cast<PHINode>(V)) {
for (Value *InV: PN->incoming_values())
Worklist.push_back(InV);
continue;
}
if (const auto *SI = dyn_cast<SelectInst>(V)) {
// Push in the true and false values
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
if (isa<Constant>(V)) {
// We found at least one base pointer which is non-null, so this derived
// pointer is not exclusively derived from null.
if (V != Constant::getNullValue(V->getType()))
isExclusivelyDerivedFromNull = false;
// Continue processing the remaining values to make sure it's exclusively
// constant.
continue;
}
// At this point, we know that the base pointer is not exclusively
// constant.
return BaseType::NonConstant;
}
// Now, we know that the base pointer is exclusively constant, but we need to
// differentiate between exclusive null constant and non-null constant.
return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
: BaseType::ExclusivelySomeConstant;
}
static void Verify(const Function &F, const DominatorTree &DT) {
SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n");
if (PrintOnly)
dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
for (const BasicBlock &BB : F) {
BasicBlockState *BBS = new(BSAllocator.Allocate()) BasicBlockState;
for (const auto &I : BB)
TransferInstruction(I, BBS->Cleared, BBS->Contribution);
BlockMap[&BB] = BBS;
}
for (auto &BBI : BlockMap) {
GatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT, BlockMap);
TransferBlock(BBI.first, *BBI.second, true);
}
SetVector<const BasicBlock *> Worklist;
for (auto &BBI : BlockMap)
Worklist.insert(BBI.first);
// This loop iterates the AvailableIn and AvailableOut sets to a fixed point.
// The AvailableIn and AvailableOut sets decrease as we iterate.
while (!Worklist.empty()) {
const BasicBlock *BB = Worklist.pop_back_val();
BasicBlockState *BBS = BlockMap[BB];
size_t OldInCount = BBS->AvailableIn.size();
for (const BasicBlock *PBB : predecessors(BB))
set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut);
if (OldInCount == BBS->AvailableIn.size())
continue;
assert(OldInCount > BBS->AvailableIn.size() && "invariant!");
size_t OldOutCount = BBS->AvailableOut.size();
TransferBlock(BB, *BBS, false);
if (OldOutCount != BBS->AvailableOut.size()) {
assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
Worklist.insert(succ_begin(BB), succ_end(BB));
}
}
// We now have all the information we need to decide if the use of a heap
// reference is legal or not, given our safepoint semantics.
bool AnyInvalidUses = false;
auto ReportInvalidUse = [&AnyInvalidUses](const Value &V,
const Instruction &I) {
errs() << "Illegal use of unrelocated value found!\n";
errs() << "Def: " << V << "\n";
errs() << "Use: " << I << "\n";
if (!PrintOnly)
abort();
AnyInvalidUses = true;
};
auto isNotExclusivelyConstantDerived = [](const Value *V) {
return getBaseType(V) == BaseType::NonConstant;
};
for (const BasicBlock &BB : F) {
// We destructively modify AvailableIn as we traverse the block instruction
// by instruction.
DenseSet<const Value *> &AvailableSet = BlockMap[&BB]->AvailableIn;
for (const Instruction &I : BB) {
if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
if (containsGCPtrType(PN->getType()))
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
const BasicBlock *InBB = PN->getIncomingBlock(i);
const Value *InValue = PN->getIncomingValue(i);
if (isNotExclusivelyConstantDerived(InValue) &&
!BlockMap[InBB]->AvailableOut.count(InValue))
ReportInvalidUse(*InValue, *PN);
}
} else if (isa<CmpInst>(I) &&
containsGCPtrType(I.getOperand(0)->getType())) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
enum BaseType baseTyLHS = getBaseType(LHS),
baseTyRHS = getBaseType(RHS);
// Returns true if LHS and RHS are unrelocated pointers and they are
// valid unrelocated uses.
auto hasValidUnrelocatedUse = [&AvailableSet, baseTyLHS, baseTyRHS, &LHS, &RHS] () {
// A cmp instruction has valid unrelocated pointer operands only if
// both operands are unrelocated pointers.
// In the comparison between two pointers, if one is an unrelocated
// use, the other *should be* an unrelocated use, for this
// instruction to contain valid unrelocated uses. This unrelocated
// use can be a null constant as well, or another unrelocated
// pointer.
if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
return false;
// Constant pointers (that are not exclusively null) may have
// meaning in different VMs, so we cannot reorder the compare
// against constant pointers before the safepoint. In other words,
// comparison of an unrelocated use against a non-null constant
// maybe invalid.
if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
baseTyRHS == BaseType::NonConstant) ||
(baseTyLHS == BaseType::NonConstant &&
baseTyRHS == BaseType::ExclusivelySomeConstant))
return false;
// All other cases are valid cases enumerated below:
// 1. Comparison between an exlusively derived null pointer and a
// constant base pointer.
// 2. Comparison between an exlusively derived null pointer and a
// non-constant unrelocated base pointer.
// 3. Comparison between 2 unrelocated pointers.
return true;
};
if (!hasValidUnrelocatedUse()) {
// Print out all non-constant derived pointers that are unrelocated
// uses, which are invalid.
if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
ReportInvalidUse(*LHS, I);
if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
ReportInvalidUse(*RHS, I);
}
} else {
for (const Value *V : I.operands())
if (containsGCPtrType(V->getType()) &&
isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
ReportInvalidUse(*V, I);
}
bool Cleared = false;
TransferInstruction(I, Cleared, AvailableSet);
(void)Cleared;
}
}
if (PrintOnly && !AnyInvalidUses) {
dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
<< "\n";
}
}