mirror of
https://github.com/RPCSX/llvm.git
synced 2025-02-08 21:47:23 +00:00
![Daniel Sanders](/assets/img/avatar_default.png)
Summary: This will allow future patches to inspect the details of the LLT. The implementation is now split between the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns. Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem. The problem with the previous commit appears to have been that TableGen was including CodeGen/LowLevelType.h instead of Support/LowLevelTypeImpl.h. Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls Differential Revision: https://reviews.llvm.org/D30046 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297241 91177308-0d34-0410-b5e6-96231b3b80d8
988 lines
34 KiB
C++
988 lines
34 KiB
C++
//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This tablegen backend emits code for use by the GlobalISel instruction
|
|
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
|
|
///
|
|
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
|
|
/// backend, filters out the ones that are unsupported, maps
|
|
/// SelectionDAG-specific constructs to their GlobalISel counterpart
|
|
/// (when applicable: MVT to LLT; SDNode to generic Instruction).
|
|
///
|
|
/// Not all patterns are supported: pass the tablegen invocation
|
|
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
|
|
/// as well as why.
|
|
///
|
|
/// The generated file defines a single method:
|
|
/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
|
|
/// intended to be used in InstructionSelector::select as the first-step
|
|
/// selector for the patterns that don't require complex C++.
|
|
///
|
|
/// FIXME: We'll probably want to eventually define a base
|
|
/// "TargetGenInstructionSelector" class.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineValueType.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/LowLevelTypeImpl.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include <string>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "gisel-emitter"
|
|
|
|
STATISTIC(NumPatternTotal, "Total number of patterns");
|
|
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
|
|
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
|
|
STATISTIC(NumPatternEmitted, "Number of patterns emitted");
|
|
|
|
static cl::opt<bool> WarnOnSkippedPatterns(
|
|
"warn-on-skipped-patterns",
|
|
cl::desc("Explain why a pattern was skipped for inclusion "
|
|
"in the GlobalISel selector"),
|
|
cl::init(false));
|
|
|
|
//===- Helper functions ---------------------------------------------------===//
|
|
|
|
/// This class stands in for LLT wherever we want to tablegen-erate an
|
|
/// equivalent at compiler run-time.
|
|
class LLTCodeGen {
|
|
private:
|
|
LLT Ty;
|
|
|
|
public:
|
|
LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
|
|
|
|
void emitCxxConstructorCall(raw_ostream &OS) const {
|
|
if (Ty.isScalar()) {
|
|
OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
|
|
return;
|
|
}
|
|
if (Ty.isVector()) {
|
|
OS << "LLT::vector(" << Ty.getNumElements() << ", " << Ty.getSizeInBits()
|
|
<< ")";
|
|
return;
|
|
}
|
|
llvm_unreachable("Unhandled LLT");
|
|
}
|
|
};
|
|
|
|
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
|
|
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
|
|
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
|
|
MVT VT(SVT);
|
|
if (VT.isVector() && VT.getVectorNumElements() != 1)
|
|
return LLTCodeGen(LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
|
|
if (VT.isInteger() || VT.isFloatingPoint())
|
|
return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
|
|
return None;
|
|
}
|
|
|
|
static bool isTrivialOperatorNode(const TreePatternNode *N) {
|
|
return !N->isLeaf() && !N->hasAnyPredicate() && !N->getTransformFn();
|
|
}
|
|
|
|
//===- Matchers -----------------------------------------------------------===//
|
|
|
|
template <class PredicateTy> class PredicateListMatcher {
|
|
private:
|
|
typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec;
|
|
PredicateVec Predicates;
|
|
|
|
public:
|
|
/// Construct a new operand predicate and add it to the matcher.
|
|
template <class Kind, class... Args>
|
|
Kind &addPredicate(Args&&... args) {
|
|
Predicates.emplace_back(
|
|
llvm::make_unique<Kind>(std::forward<Args>(args)...));
|
|
return *static_cast<Kind *>(Predicates.back().get());
|
|
}
|
|
|
|
typename PredicateVec::const_iterator predicates_begin() const { return Predicates.begin(); }
|
|
typename PredicateVec::const_iterator predicates_end() const { return Predicates.end(); }
|
|
iterator_range<typename PredicateVec::const_iterator> predicates() const {
|
|
return make_range(predicates_begin(), predicates_end());
|
|
}
|
|
typename PredicateVec::size_type predicates_size() const { return Predicates.size(); }
|
|
|
|
/// Emit a C++ expression that tests whether all the predicates are met.
|
|
template <class... Args>
|
|
void emitCxxPredicateListExpr(raw_ostream &OS, Args &&... args) const {
|
|
if (Predicates.empty()) {
|
|
OS << "true";
|
|
return;
|
|
}
|
|
|
|
StringRef Separator = "";
|
|
for (const auto &Predicate : predicates()) {
|
|
OS << Separator << "(";
|
|
Predicate->emitCxxPredicateExpr(OS, std::forward<Args>(args)...);
|
|
OS << ")";
|
|
Separator = " &&\n";
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Generates code to check a predicate of an operand.
|
|
///
|
|
/// Typical predicates include:
|
|
/// * Operand is a particular register.
|
|
/// * Operand is assigned a particular register bank.
|
|
/// * Operand is an MBB.
|
|
class OperandPredicateMatcher {
|
|
public:
|
|
/// This enum is used for RTTI and also defines the priority that is given to
|
|
/// the predicate when generating the matcher code. Kinds with higher priority
|
|
/// must be tested first.
|
|
///
|
|
/// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
|
|
/// but OPM_Int must have priority over OPM_RegBank since constant integers
|
|
/// are represented by a virtual register defined by a G_CONSTANT instruction.
|
|
enum PredicateKind {
|
|
OPM_Int,
|
|
OPM_LLT,
|
|
OPM_RegBank,
|
|
OPM_MBB,
|
|
};
|
|
|
|
protected:
|
|
PredicateKind Kind;
|
|
|
|
public:
|
|
OperandPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
|
|
virtual ~OperandPredicateMatcher() {}
|
|
|
|
PredicateKind getKind() const { return Kind; }
|
|
|
|
/// Emit a C++ expression that checks the predicate for the given operand.
|
|
virtual void emitCxxPredicateExpr(raw_ostream &OS,
|
|
StringRef OperandExpr) const = 0;
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const {
|
|
return Kind < B.Kind;
|
|
};
|
|
};
|
|
|
|
/// Generates code to check that an operand is a particular LLT.
|
|
class LLTOperandMatcher : public OperandPredicateMatcher {
|
|
protected:
|
|
LLTCodeGen Ty;
|
|
|
|
public:
|
|
LLTOperandMatcher(const LLTCodeGen &Ty)
|
|
: OperandPredicateMatcher(OPM_LLT), Ty(Ty) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_LLT;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS,
|
|
StringRef OperandExpr) const override {
|
|
OS << "MRI.getType(" << OperandExpr << ".getReg()) == (";
|
|
Ty.emitCxxConstructorCall(OS);
|
|
OS << ")";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that an operand is in a particular register bank.
|
|
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
|
|
protected:
|
|
const CodeGenRegisterClass &RC;
|
|
|
|
public:
|
|
RegisterBankOperandMatcher(const CodeGenRegisterClass &RC)
|
|
: OperandPredicateMatcher(OPM_RegBank), RC(RC) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_RegBank;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS,
|
|
StringRef OperandExpr) const override {
|
|
OS << "(&RBI.getRegBankFromRegClass(" << RC.getQualifiedName()
|
|
<< "RegClass) == RBI.getRegBank(" << OperandExpr
|
|
<< ".getReg(), MRI, TRI))";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that an operand is a basic block.
|
|
class MBBOperandMatcher : public OperandPredicateMatcher {
|
|
public:
|
|
MBBOperandMatcher() : OperandPredicateMatcher(OPM_MBB) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_MBB;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS,
|
|
StringRef OperandExpr) const override {
|
|
OS << OperandExpr << ".isMBB()";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that an operand is a particular int.
|
|
class IntOperandMatcher : public OperandPredicateMatcher {
|
|
protected:
|
|
int64_t Value;
|
|
|
|
public:
|
|
IntOperandMatcher(int64_t Value)
|
|
: OperandPredicateMatcher(OPM_Int), Value(Value) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_Int;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS,
|
|
StringRef OperandExpr) const override {
|
|
OS << "isOperandImmEqual(" << OperandExpr << ", " << Value << ", MRI)";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that a set of predicates match for a particular
|
|
/// operand.
|
|
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
|
|
protected:
|
|
unsigned OpIdx;
|
|
std::string SymbolicName;
|
|
|
|
public:
|
|
OperandMatcher(unsigned OpIdx, const std::string &SymbolicName)
|
|
: OpIdx(OpIdx), SymbolicName(SymbolicName) {}
|
|
|
|
bool hasSymbolicName() const { return !SymbolicName.empty(); }
|
|
const StringRef getSymbolicName() const { return SymbolicName; }
|
|
unsigned getOperandIndex() const { return OpIdx; }
|
|
|
|
std::string getOperandExpr(const StringRef InsnVarName) const {
|
|
return (InsnVarName + ".getOperand(" + llvm::to_string(OpIdx) + ")").str();
|
|
}
|
|
|
|
/// Emit a C++ expression that tests whether the instruction named in
|
|
/// InsnVarName matches all the predicate and all the operands.
|
|
void emitCxxPredicateExpr(raw_ostream &OS, const StringRef InsnVarName) const {
|
|
OS << "(/* ";
|
|
if (SymbolicName.empty())
|
|
OS << "Operand " << OpIdx;
|
|
else
|
|
OS << SymbolicName;
|
|
OS << " */ ";
|
|
emitCxxPredicateListExpr(OS, getOperandExpr(InsnVarName));
|
|
OS << ")";
|
|
}
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
bool isHigherPriorityThan(const OperandMatcher &B) const {
|
|
// Operand matchers involving more predicates have higher priority.
|
|
if (predicates_size() > B.predicates_size())
|
|
return true;
|
|
if (predicates_size() < B.predicates_size())
|
|
return false;
|
|
|
|
// This assumes that predicates are added in a consistent order.
|
|
for (const auto &Predicate : zip(predicates(), B.predicates())) {
|
|
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
|
|
return true;
|
|
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
};
|
|
|
|
/// Generates code to check a predicate on an instruction.
|
|
///
|
|
/// Typical predicates include:
|
|
/// * The opcode of the instruction is a particular value.
|
|
/// * The nsw/nuw flag is/isn't set.
|
|
class InstructionPredicateMatcher {
|
|
protected:
|
|
/// This enum is used for RTTI and also defines the priority that is given to
|
|
/// the predicate when generating the matcher code. Kinds with higher priority
|
|
/// must be tested first.
|
|
enum PredicateKind {
|
|
IPM_Opcode,
|
|
};
|
|
|
|
PredicateKind Kind;
|
|
|
|
public:
|
|
InstructionPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
|
|
virtual ~InstructionPredicateMatcher() {}
|
|
|
|
PredicateKind getKind() const { return Kind; }
|
|
|
|
/// Emit a C++ expression that tests whether the instruction named in
|
|
/// InsnVarName matches the predicate.
|
|
virtual void emitCxxPredicateExpr(raw_ostream &OS,
|
|
StringRef InsnVarName) const = 0;
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
virtual bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
|
|
return Kind < B.Kind;
|
|
};
|
|
};
|
|
|
|
/// Generates code to check the opcode of an instruction.
|
|
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
|
|
protected:
|
|
const CodeGenInstruction *I;
|
|
|
|
public:
|
|
InstructionOpcodeMatcher(const CodeGenInstruction *I)
|
|
: InstructionPredicateMatcher(IPM_Opcode), I(I) {}
|
|
|
|
static bool classof(const InstructionPredicateMatcher *P) {
|
|
return P->getKind() == IPM_Opcode;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS,
|
|
StringRef InsnVarName) const override {
|
|
OS << InsnVarName << ".getOpcode() == " << I->Namespace
|
|
<< "::" << I->TheDef->getName();
|
|
}
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
|
|
if (InstructionPredicateMatcher::isHigherPriorityThan(B))
|
|
return true;
|
|
if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
|
|
return false;
|
|
|
|
// Prioritize opcodes for cosmetic reasons in the generated source. Although
|
|
// this is cosmetic at the moment, we may want to drive a similar ordering
|
|
// using instruction frequency information to improve compile time.
|
|
if (const InstructionOpcodeMatcher *BO =
|
|
dyn_cast<InstructionOpcodeMatcher>(&B))
|
|
return I->TheDef->getName() < BO->I->TheDef->getName();
|
|
|
|
return false;
|
|
};
|
|
};
|
|
|
|
/// Generates code to check that a set of predicates and operands match for a
|
|
/// particular instruction.
|
|
///
|
|
/// Typical predicates include:
|
|
/// * Has a specific opcode.
|
|
/// * Has an nsw/nuw flag or doesn't.
|
|
class InstructionMatcher
|
|
: public PredicateListMatcher<InstructionPredicateMatcher> {
|
|
protected:
|
|
typedef std::vector<OperandMatcher> OperandVec;
|
|
|
|
/// The operands to match. All rendered operands must be present even if the
|
|
/// condition is always true.
|
|
OperandVec Operands;
|
|
|
|
public:
|
|
/// Add an operand to the matcher.
|
|
OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName) {
|
|
Operands.emplace_back(OpIdx, SymbolicName);
|
|
return Operands.back();
|
|
}
|
|
|
|
const OperandMatcher &getOperand(const StringRef SymbolicName) const {
|
|
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
|
|
const auto &I = std::find_if(Operands.begin(), Operands.end(),
|
|
[&SymbolicName](const OperandMatcher &X) {
|
|
return X.getSymbolicName() == SymbolicName;
|
|
});
|
|
if (I != Operands.end())
|
|
return *I;
|
|
llvm_unreachable("Failed to lookup operand");
|
|
}
|
|
|
|
unsigned getNumOperands() const { return Operands.size(); }
|
|
OperandVec::const_iterator operands_begin() const {
|
|
return Operands.begin();
|
|
}
|
|
OperandVec::const_iterator operands_end() const {
|
|
return Operands.end();
|
|
}
|
|
iterator_range<OperandVec::const_iterator> operands() const {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
|
|
/// Emit a C++ expression that tests whether the instruction named in
|
|
/// InsnVarName matches all the predicates and all the operands.
|
|
void emitCxxPredicateExpr(raw_ostream &OS, StringRef InsnVarName) const {
|
|
emitCxxPredicateListExpr(OS, InsnVarName);
|
|
for (const auto &Operand : Operands) {
|
|
OS << " &&\n(";
|
|
Operand.emitCxxPredicateExpr(OS, InsnVarName);
|
|
OS << ")";
|
|
}
|
|
}
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
bool isHigherPriorityThan(const InstructionMatcher &B) const {
|
|
// Instruction matchers involving more operands have higher priority.
|
|
if (Operands.size() > B.Operands.size())
|
|
return true;
|
|
if (Operands.size() < B.Operands.size())
|
|
return false;
|
|
|
|
for (const auto &Predicate : zip(predicates(), B.predicates())) {
|
|
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
|
|
return true;
|
|
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
|
|
return false;
|
|
}
|
|
|
|
for (const auto &Operand : zip(Operands, B.Operands)) {
|
|
if (std::get<0>(Operand).isHigherPriorityThan(std::get<1>(Operand)))
|
|
return true;
|
|
if (std::get<1>(Operand).isHigherPriorityThan(std::get<0>(Operand)))
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
};
|
|
|
|
//===- Actions ------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class OperandRenderer {
|
|
public:
|
|
enum RendererKind { OR_Copy, OR_Register };
|
|
|
|
protected:
|
|
RendererKind Kind;
|
|
|
|
public:
|
|
OperandRenderer(RendererKind Kind) : Kind(Kind) {}
|
|
virtual ~OperandRenderer() {}
|
|
|
|
RendererKind getKind() const { return Kind; }
|
|
|
|
virtual void emitCxxRenderStmts(raw_ostream &OS) const = 0;
|
|
};
|
|
|
|
/// A CopyRenderer emits code to copy a single operand from an existing
|
|
/// instruction to the one being built.
|
|
class CopyRenderer : public OperandRenderer {
|
|
protected:
|
|
/// The matcher for the instruction that this operand is copied from.
|
|
/// This provides the facility for looking up an a operand by it's name so
|
|
/// that it can be used as a source for the instruction being built.
|
|
const InstructionMatcher &Matched;
|
|
/// The name of the instruction to copy from.
|
|
const StringRef InsnVarName;
|
|
/// The name of the operand.
|
|
const StringRef SymbolicName;
|
|
|
|
public:
|
|
CopyRenderer(const InstructionMatcher &Matched, const StringRef InsnVarName,
|
|
const StringRef SymbolicName)
|
|
: OperandRenderer(OR_Copy), Matched(Matched), InsnVarName(InsnVarName),
|
|
SymbolicName(SymbolicName) {}
|
|
|
|
static bool classof(const OperandRenderer *R) {
|
|
return R->getKind() == OR_Copy;
|
|
}
|
|
|
|
const StringRef getSymbolicName() const { return SymbolicName; }
|
|
|
|
void emitCxxRenderStmts(raw_ostream &OS) const override {
|
|
std::string OperandExpr =
|
|
Matched.getOperand(SymbolicName).getOperandExpr(InsnVarName);
|
|
OS << " MIB.add(" << OperandExpr << "/*" << SymbolicName << "*/);\n";
|
|
}
|
|
};
|
|
|
|
/// Adds a specific physical register to the instruction being built.
|
|
/// This is typically useful for WZR/XZR on AArch64.
|
|
class AddRegisterRenderer : public OperandRenderer {
|
|
protected:
|
|
const Record *RegisterDef;
|
|
|
|
public:
|
|
AddRegisterRenderer(const Record *RegisterDef)
|
|
: OperandRenderer(OR_Register), RegisterDef(RegisterDef) {}
|
|
|
|
static bool classof(const OperandRenderer *R) {
|
|
return R->getKind() == OR_Register;
|
|
}
|
|
|
|
void emitCxxRenderStmts(raw_ostream &OS) const override {
|
|
OS << " MIB.addReg(" << RegisterDef->getValueAsString("Namespace")
|
|
<< "::" << RegisterDef->getName() << ");\n";
|
|
}
|
|
};
|
|
|
|
/// An action taken when all Matcher predicates succeeded for a parent rule.
|
|
///
|
|
/// Typical actions include:
|
|
/// * Changing the opcode of an instruction.
|
|
/// * Adding an operand to an instruction.
|
|
class MatchAction {
|
|
public:
|
|
virtual ~MatchAction() {}
|
|
|
|
/// Emit the C++ statements to implement the action.
|
|
///
|
|
/// \param InsnVarName If given, it's an instruction to recycle. The
|
|
/// requirements on the instruction vary from action to
|
|
/// action.
|
|
virtual void emitCxxActionStmts(raw_ostream &OS,
|
|
const StringRef InsnVarName) const = 0;
|
|
};
|
|
|
|
/// Generates a comment describing the matched rule being acted upon.
|
|
class DebugCommentAction : public MatchAction {
|
|
private:
|
|
const PatternToMatch &P;
|
|
|
|
public:
|
|
DebugCommentAction(const PatternToMatch &P) : P(P) {}
|
|
|
|
void emitCxxActionStmts(raw_ostream &OS,
|
|
const StringRef InsnVarName) const override {
|
|
OS << "// " << *P.getSrcPattern() << " => " << *P.getDstPattern();
|
|
}
|
|
};
|
|
|
|
/// Generates code to build an instruction or mutate an existing instruction
|
|
/// into the desired instruction when this is possible.
|
|
class BuildMIAction : public MatchAction {
|
|
private:
|
|
const CodeGenInstruction *I;
|
|
const InstructionMatcher &Matched;
|
|
std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
|
|
|
|
/// True if the instruction can be built solely by mutating the opcode.
|
|
bool canMutate() const {
|
|
for (const auto &Renderer : enumerate(OperandRenderers)) {
|
|
if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.Value)) {
|
|
if (Matched.getOperand(Copy->getSymbolicName()).getOperandIndex() !=
|
|
Renderer.Index)
|
|
return false;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
BuildMIAction(const CodeGenInstruction *I, const InstructionMatcher &Matched)
|
|
: I(I), Matched(Matched) {}
|
|
|
|
template <class Kind, class... Args>
|
|
Kind &addRenderer(Args&&... args) {
|
|
OperandRenderers.emplace_back(
|
|
llvm::make_unique<Kind>(std::forward<Args>(args)...));
|
|
return *static_cast<Kind *>(OperandRenderers.back().get());
|
|
}
|
|
|
|
virtual void emitCxxActionStmts(raw_ostream &OS,
|
|
const StringRef InsnVarName) const {
|
|
if (canMutate()) {
|
|
OS << "I.setDesc(TII.get(" << I->Namespace << "::" << I->TheDef->getName()
|
|
<< "));\n";
|
|
OS << " MachineInstr &NewI = I;\n";
|
|
return;
|
|
}
|
|
|
|
// TODO: Simple permutation looks like it could be almost as common as
|
|
// mutation due to commutative operations.
|
|
|
|
OS << "MachineInstrBuilder MIB = BuildMI(*I.getParent(), I, "
|
|
"I.getDebugLoc(), TII.get("
|
|
<< I->Namespace << "::" << I->TheDef->getName() << "));\n";
|
|
for (const auto &Renderer : OperandRenderers)
|
|
Renderer->emitCxxRenderStmts(OS);
|
|
OS << " MIB.setMemRefs(I.memoperands_begin(), I.memoperands_end());\n";
|
|
OS << " " << InsnVarName << ".eraseFromParent();\n";
|
|
OS << " MachineInstr &NewI = *MIB;\n";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that a match rule matches.
|
|
class RuleMatcher {
|
|
/// A list of matchers that all need to succeed for the current rule to match.
|
|
/// FIXME: This currently supports a single match position but could be
|
|
/// extended to support multiple positions to support div/rem fusion or
|
|
/// load-multiple instructions.
|
|
std::vector<std::unique_ptr<InstructionMatcher>> Matchers;
|
|
|
|
/// A list of actions that need to be taken when all predicates in this rule
|
|
/// have succeeded.
|
|
std::vector<std::unique_ptr<MatchAction>> Actions;
|
|
|
|
public:
|
|
RuleMatcher() {}
|
|
|
|
InstructionMatcher &addInstructionMatcher() {
|
|
Matchers.emplace_back(new InstructionMatcher());
|
|
return *Matchers.back();
|
|
}
|
|
|
|
template <class Kind, class... Args>
|
|
Kind &addAction(Args&&... args) {
|
|
Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
|
|
return *static_cast<Kind *>(Actions.back().get());
|
|
}
|
|
|
|
void emit(raw_ostream &OS) const {
|
|
if (Matchers.empty())
|
|
llvm_unreachable("Unexpected empty matcher!");
|
|
|
|
// The representation supports rules that require multiple roots such as:
|
|
// %ptr(p0) = ...
|
|
// %elt0(s32) = G_LOAD %ptr
|
|
// %1(p0) = G_ADD %ptr, 4
|
|
// %elt1(s32) = G_LOAD p0 %1
|
|
// which could be usefully folded into:
|
|
// %ptr(p0) = ...
|
|
// %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
|
|
// on some targets but we don't need to make use of that yet.
|
|
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
|
|
OS << " if (";
|
|
Matchers.front()->emitCxxPredicateExpr(OS, "I");
|
|
OS << ") {\n";
|
|
|
|
for (const auto &MA : Actions) {
|
|
OS << " ";
|
|
MA->emitCxxActionStmts(OS, "I");
|
|
OS << "\n";
|
|
}
|
|
|
|
OS << " constrainSelectedInstRegOperands(NewI, TII, TRI, RBI);\n";
|
|
OS << " return true;\n";
|
|
OS << " }\n\n";
|
|
}
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
bool isHigherPriorityThan(const RuleMatcher &B) const {
|
|
// Rules involving more match roots have higher priority.
|
|
if (Matchers.size() > B.Matchers.size())
|
|
return true;
|
|
if (Matchers.size() < B.Matchers.size())
|
|
return false;
|
|
|
|
for (const auto &Matcher : zip(Matchers, B.Matchers)) {
|
|
if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
|
|
return true;
|
|
if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
};
|
|
|
|
//===- GlobalISelEmitter class --------------------------------------------===//
|
|
|
|
class GlobalISelEmitter {
|
|
public:
|
|
explicit GlobalISelEmitter(RecordKeeper &RK);
|
|
void run(raw_ostream &OS);
|
|
|
|
private:
|
|
const RecordKeeper &RK;
|
|
const CodeGenDAGPatterns CGP;
|
|
const CodeGenTarget &Target;
|
|
|
|
/// Keep track of the equivalence between SDNodes and Instruction.
|
|
/// This is defined using 'GINodeEquiv' in the target description.
|
|
DenseMap<Record *, const CodeGenInstruction *> NodeEquivs;
|
|
|
|
void gatherNodeEquivs();
|
|
const CodeGenInstruction *findNodeEquiv(Record *N);
|
|
|
|
/// Analyze pattern \p P, returning a matcher for it if possible.
|
|
/// Otherwise, return an Error explaining why we don't support it.
|
|
Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
|
|
};
|
|
|
|
void GlobalISelEmitter::gatherNodeEquivs() {
|
|
assert(NodeEquivs.empty());
|
|
for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
|
|
NodeEquivs[Equiv->getValueAsDef("Node")] =
|
|
&Target.getInstruction(Equiv->getValueAsDef("I"));
|
|
}
|
|
|
|
const CodeGenInstruction *GlobalISelEmitter::findNodeEquiv(Record *N) {
|
|
return NodeEquivs.lookup(N);
|
|
}
|
|
|
|
GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
|
|
: RK(RK), CGP(RK), Target(CGP.getTargetInfo()) {}
|
|
|
|
//===- Emitter ------------------------------------------------------------===//
|
|
|
|
/// Helper function to let the emitter report skip reason error messages.
|
|
static Error failedImport(const Twine &Reason) {
|
|
return make_error<StringError>(Reason, inconvertibleErrorCode());
|
|
}
|
|
|
|
Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
|
|
// Keep track of the matchers and actions to emit.
|
|
RuleMatcher M;
|
|
M.addAction<DebugCommentAction>(P);
|
|
|
|
// First, analyze the whole pattern.
|
|
// If the entire pattern has a predicate (e.g., target features), ignore it.
|
|
if (!P.getPredicates()->getValues().empty())
|
|
return failedImport("Pattern has a predicate");
|
|
|
|
// Physreg imp-defs require additional logic. Ignore the pattern.
|
|
if (!P.getDstRegs().empty())
|
|
return failedImport("Pattern defines a physical register");
|
|
|
|
// Next, analyze the pattern operators.
|
|
TreePatternNode *Src = P.getSrcPattern();
|
|
TreePatternNode *Dst = P.getDstPattern();
|
|
|
|
// If the root of either pattern isn't a simple operator, ignore it.
|
|
if (!isTrivialOperatorNode(Dst))
|
|
return failedImport("Dst pattern root isn't a trivial operator");
|
|
if (!isTrivialOperatorNode(Src))
|
|
return failedImport("Src pattern root isn't a trivial operator");
|
|
|
|
Record *DstOp = Dst->getOperator();
|
|
if (!DstOp->isSubClassOf("Instruction"))
|
|
return failedImport("Pattern operator isn't an instruction");
|
|
|
|
auto &DstI = Target.getInstruction(DstOp);
|
|
|
|
auto SrcGIOrNull = findNodeEquiv(Src->getOperator());
|
|
if (!SrcGIOrNull)
|
|
return failedImport("Pattern operator lacks an equivalent Instruction");
|
|
auto &SrcGI = *SrcGIOrNull;
|
|
|
|
// The operators look good: match the opcode and mutate it to the new one.
|
|
InstructionMatcher &InsnMatcher = M.addInstructionMatcher();
|
|
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI);
|
|
auto &DstMIBuilder = M.addAction<BuildMIAction>(&DstI, InsnMatcher);
|
|
|
|
// Next, analyze the children, only accepting patterns that don't require
|
|
// any change to operands.
|
|
if (Src->getNumChildren() != Dst->getNumChildren())
|
|
return failedImport("Src/dst patterns have a different # of children");
|
|
|
|
unsigned OpIdx = 0;
|
|
|
|
// Start with the defined operands (i.e., the results of the root operator).
|
|
if (DstI.Operands.NumDefs != Src->getExtTypes().size())
|
|
return failedImport("Src pattern results and dst MI defs are different");
|
|
|
|
for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
|
|
const auto &DstIOperand = DstI.Operands[OpIdx];
|
|
Record *DstIOpRec = DstIOperand.Rec;
|
|
if (!DstIOpRec->isSubClassOf("RegisterClass"))
|
|
return failedImport("Dst MI def isn't a register class");
|
|
|
|
auto OpTyOrNone = MVTToLLT(Ty.getConcrete());
|
|
if (!OpTyOrNone)
|
|
return failedImport("Dst operand has an unsupported type");
|
|
|
|
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx, DstIOperand.Name);
|
|
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
|
|
OM.addPredicate<RegisterBankOperandMatcher>(
|
|
Target.getRegisterClass(DstIOpRec));
|
|
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, "I", DstIOperand.Name);
|
|
++OpIdx;
|
|
}
|
|
|
|
// Finally match the used operands (i.e., the children of the root operator).
|
|
for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
|
|
auto *SrcChild = Src->getChild(i);
|
|
|
|
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, SrcChild->getName());
|
|
|
|
// The only non-leaf child we accept is 'bb': it's an operator because
|
|
// BasicBlockSDNode isn't inline, but in MI it's just another operand.
|
|
if (!SrcChild->isLeaf()) {
|
|
if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
|
|
auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
|
|
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
|
|
OM.addPredicate<MBBOperandMatcher>();
|
|
continue;
|
|
}
|
|
}
|
|
return failedImport("Src pattern child isn't a leaf node or an MBB");
|
|
}
|
|
|
|
if (SrcChild->hasAnyPredicate())
|
|
return failedImport("Src pattern child has predicate");
|
|
|
|
ArrayRef<EEVT::TypeSet> ChildTypes = SrcChild->getExtTypes();
|
|
if (ChildTypes.size() != 1)
|
|
return failedImport("Src pattern child has multiple results");
|
|
|
|
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
|
|
if (!OpTyOrNone)
|
|
return failedImport("Src operand has an unsupported type");
|
|
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
|
|
|
|
if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
|
|
OM.addPredicate<IntOperandMatcher>(ChildInt->getValue());
|
|
continue;
|
|
}
|
|
|
|
if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
|
|
auto *ChildRec = ChildDefInit->getDef();
|
|
|
|
// Otherwise, we're looking for a bog-standard RegisterClass operand.
|
|
if (!ChildRec->isSubClassOf("RegisterClass"))
|
|
return failedImport("Src pattern child isn't a RegisterClass");
|
|
|
|
OM.addPredicate<RegisterBankOperandMatcher>(
|
|
Target.getRegisterClass(ChildRec));
|
|
continue;
|
|
}
|
|
|
|
return failedImport("Src pattern child is an unsupported kind");
|
|
}
|
|
|
|
// Finally render the used operands (i.e., the children of the root operator).
|
|
for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
|
|
auto *DstChild = Dst->getChild(i);
|
|
|
|
// The only non-leaf child we accept is 'bb': it's an operator because
|
|
// BasicBlockSDNode isn't inline, but in MI it's just another operand.
|
|
if (!DstChild->isLeaf()) {
|
|
if (DstChild->getOperator()->isSubClassOf("SDNode")) {
|
|
auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
|
|
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
|
|
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, "I",
|
|
DstChild->getName());
|
|
continue;
|
|
}
|
|
}
|
|
return failedImport("Dst pattern child isn't a leaf node or an MBB");
|
|
}
|
|
|
|
// Otherwise, we're looking for a bog-standard RegisterClass operand.
|
|
if (DstChild->hasAnyPredicate())
|
|
return failedImport("Dst pattern child has predicate");
|
|
|
|
if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
|
|
auto *ChildRec = ChildDefInit->getDef();
|
|
|
|
ArrayRef<EEVT::TypeSet> ChildTypes = DstChild->getExtTypes();
|
|
if (ChildTypes.size() != 1)
|
|
return failedImport("Dst pattern child has multiple results");
|
|
|
|
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
|
|
if (!OpTyOrNone)
|
|
return failedImport("Dst operand has an unsupported type");
|
|
|
|
if (ChildRec->isSubClassOf("Register")) {
|
|
DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
|
|
continue;
|
|
}
|
|
|
|
if (ChildRec->isSubClassOf("RegisterClass")) {
|
|
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, "I",
|
|
DstChild->getName());
|
|
continue;
|
|
}
|
|
|
|
return failedImport(
|
|
"Dst pattern child def is an unsupported tablegen class");
|
|
}
|
|
|
|
return failedImport("Src pattern child is an unsupported kind");
|
|
}
|
|
|
|
// We're done with this pattern! It's eligible for GISel emission; return it.
|
|
++NumPatternImported;
|
|
return std::move(M);
|
|
}
|
|
|
|
void GlobalISelEmitter::run(raw_ostream &OS) {
|
|
// Track the GINodeEquiv definitions.
|
|
gatherNodeEquivs();
|
|
|
|
emitSourceFileHeader(("Global Instruction Selector for the " +
|
|
Target.getName() + " target").str(), OS);
|
|
OS << "bool " << Target.getName()
|
|
<< "InstructionSelector::selectImpl"
|
|
"(MachineInstr &I) const {\n const MachineRegisterInfo &MRI = "
|
|
"I.getParent()->getParent()->getRegInfo();\n\n";
|
|
|
|
std::vector<RuleMatcher> Rules;
|
|
// Look through the SelectionDAG patterns we found, possibly emitting some.
|
|
for (const PatternToMatch &Pat : CGP.ptms()) {
|
|
++NumPatternTotal;
|
|
auto MatcherOrErr = runOnPattern(Pat);
|
|
|
|
// The pattern analysis can fail, indicating an unsupported pattern.
|
|
// Report that if we've been asked to do so.
|
|
if (auto Err = MatcherOrErr.takeError()) {
|
|
if (WarnOnSkippedPatterns) {
|
|
PrintWarning(Pat.getSrcRecord()->getLoc(),
|
|
"Skipped pattern: " + toString(std::move(Err)));
|
|
} else {
|
|
consumeError(std::move(Err));
|
|
}
|
|
++NumPatternImportsSkipped;
|
|
continue;
|
|
}
|
|
|
|
Rules.push_back(std::move(MatcherOrErr.get()));
|
|
}
|
|
|
|
std::stable_sort(Rules.begin(), Rules.end(),
|
|
[&](const RuleMatcher &A, const RuleMatcher &B) {
|
|
if (A.isHigherPriorityThan(B)) {
|
|
assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
|
|
"and less important at "
|
|
"the same time");
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
|
|
for (const auto &Rule : Rules) {
|
|
Rule.emit(OS);
|
|
++NumPatternEmitted;
|
|
}
|
|
|
|
OS << " return false;\n}\n";
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
|
|
GlobalISelEmitter(RK).run(OS);
|
|
}
|
|
} // End llvm namespace
|