mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-22 04:05:05 +00:00
bd7189d76c
After some look-ahead PRE was added for GEPs, an instruction could end up in the table of candidates before it was actually inspected. When this happened the pass might decide it was the best candidate to replace itself. This didn't go well. Should fix PR25291 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251145 91177308-0d34-0410-b5e6-96231b3b80d8
2922 lines
105 KiB
C++
2922 lines
105 KiB
C++
//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs global value numbering to eliminate fully redundant
|
|
// instructions. It also performs simple dead load elimination.
|
|
//
|
|
// Note that this pass does the value numbering itself; it does not use the
|
|
// ValueNumbering analysis passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/PHITransAddr.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include <vector>
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "gvn"
|
|
|
|
STATISTIC(NumGVNInstr, "Number of instructions deleted");
|
|
STATISTIC(NumGVNLoad, "Number of loads deleted");
|
|
STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
|
|
STATISTIC(NumGVNBlocks, "Number of blocks merged");
|
|
STATISTIC(NumGVNSimpl, "Number of instructions simplified");
|
|
STATISTIC(NumGVNEqProp, "Number of equalities propagated");
|
|
STATISTIC(NumPRELoad, "Number of loads PRE'd");
|
|
|
|
static cl::opt<bool> EnablePRE("enable-pre",
|
|
cl::init(true), cl::Hidden);
|
|
static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
|
|
|
|
// Maximum allowed recursion depth.
|
|
static cl::opt<uint32_t>
|
|
MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
|
|
cl::desc("Max recurse depth (default = 1000)"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class holds the mapping between values and value numbers. It is used
|
|
/// as an efficient mechanism to determine the expression-wise equivalence of
|
|
/// two values.
|
|
namespace {
|
|
struct Expression {
|
|
uint32_t opcode;
|
|
Type *type;
|
|
SmallVector<uint32_t, 4> varargs;
|
|
|
|
Expression(uint32_t o = ~2U) : opcode(o) { }
|
|
|
|
bool operator==(const Expression &other) const {
|
|
if (opcode != other.opcode)
|
|
return false;
|
|
if (opcode == ~0U || opcode == ~1U)
|
|
return true;
|
|
if (type != other.type)
|
|
return false;
|
|
if (varargs != other.varargs)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
friend hash_code hash_value(const Expression &Value) {
|
|
return hash_combine(Value.opcode, Value.type,
|
|
hash_combine_range(Value.varargs.begin(),
|
|
Value.varargs.end()));
|
|
}
|
|
};
|
|
|
|
class ValueTable {
|
|
DenseMap<Value*, uint32_t> valueNumbering;
|
|
DenseMap<Expression, uint32_t> expressionNumbering;
|
|
AliasAnalysis *AA;
|
|
MemoryDependenceAnalysis *MD;
|
|
DominatorTree *DT;
|
|
|
|
uint32_t nextValueNumber;
|
|
|
|
Expression create_expression(Instruction* I);
|
|
Expression create_cmp_expression(unsigned Opcode,
|
|
CmpInst::Predicate Predicate,
|
|
Value *LHS, Value *RHS);
|
|
Expression create_extractvalue_expression(ExtractValueInst* EI);
|
|
uint32_t lookup_or_add_call(CallInst* C);
|
|
public:
|
|
ValueTable() : nextValueNumber(1) { }
|
|
uint32_t lookup_or_add(Value *V);
|
|
uint32_t lookup(Value *V) const;
|
|
uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
|
|
Value *LHS, Value *RHS);
|
|
void add(Value *V, uint32_t num);
|
|
void clear();
|
|
void erase(Value *v);
|
|
void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
|
|
AliasAnalysis *getAliasAnalysis() const { return AA; }
|
|
void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
|
|
void setDomTree(DominatorTree* D) { DT = D; }
|
|
uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
|
|
void verifyRemoved(const Value *) const;
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
template <> struct DenseMapInfo<Expression> {
|
|
static inline Expression getEmptyKey() {
|
|
return ~0U;
|
|
}
|
|
|
|
static inline Expression getTombstoneKey() {
|
|
return ~1U;
|
|
}
|
|
|
|
static unsigned getHashValue(const Expression e) {
|
|
using llvm::hash_value;
|
|
return static_cast<unsigned>(hash_value(e));
|
|
}
|
|
static bool isEqual(const Expression &LHS, const Expression &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable Internal Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Expression ValueTable::create_expression(Instruction *I) {
|
|
Expression e;
|
|
e.type = I->getType();
|
|
e.opcode = I->getOpcode();
|
|
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
|
|
OI != OE; ++OI)
|
|
e.varargs.push_back(lookup_or_add(*OI));
|
|
if (I->isCommutative()) {
|
|
// Ensure that commutative instructions that only differ by a permutation
|
|
// of their operands get the same value number by sorting the operand value
|
|
// numbers. Since all commutative instructions have two operands it is more
|
|
// efficient to sort by hand rather than using, say, std::sort.
|
|
assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
|
|
if (e.varargs[0] > e.varargs[1])
|
|
std::swap(e.varargs[0], e.varargs[1]);
|
|
}
|
|
|
|
if (CmpInst *C = dyn_cast<CmpInst>(I)) {
|
|
// Sort the operand value numbers so x<y and y>x get the same value number.
|
|
CmpInst::Predicate Predicate = C->getPredicate();
|
|
if (e.varargs[0] > e.varargs[1]) {
|
|
std::swap(e.varargs[0], e.varargs[1]);
|
|
Predicate = CmpInst::getSwappedPredicate(Predicate);
|
|
}
|
|
e.opcode = (C->getOpcode() << 8) | Predicate;
|
|
} else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
|
|
for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
|
|
II != IE; ++II)
|
|
e.varargs.push_back(*II);
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_cmp_expression(unsigned Opcode,
|
|
CmpInst::Predicate Predicate,
|
|
Value *LHS, Value *RHS) {
|
|
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
|
|
"Not a comparison!");
|
|
Expression e;
|
|
e.type = CmpInst::makeCmpResultType(LHS->getType());
|
|
e.varargs.push_back(lookup_or_add(LHS));
|
|
e.varargs.push_back(lookup_or_add(RHS));
|
|
|
|
// Sort the operand value numbers so x<y and y>x get the same value number.
|
|
if (e.varargs[0] > e.varargs[1]) {
|
|
std::swap(e.varargs[0], e.varargs[1]);
|
|
Predicate = CmpInst::getSwappedPredicate(Predicate);
|
|
}
|
|
e.opcode = (Opcode << 8) | Predicate;
|
|
return e;
|
|
}
|
|
|
|
Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
|
|
assert(EI && "Not an ExtractValueInst?");
|
|
Expression e;
|
|
e.type = EI->getType();
|
|
e.opcode = 0;
|
|
|
|
IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
|
|
if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
|
|
// EI might be an extract from one of our recognised intrinsics. If it
|
|
// is we'll synthesize a semantically equivalent expression instead on
|
|
// an extract value expression.
|
|
switch (I->getIntrinsicID()) {
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
e.opcode = Instruction::Add;
|
|
break;
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
e.opcode = Instruction::Sub;
|
|
break;
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
e.opcode = Instruction::Mul;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (e.opcode != 0) {
|
|
// Intrinsic recognized. Grab its args to finish building the expression.
|
|
assert(I->getNumArgOperands() == 2 &&
|
|
"Expect two args for recognised intrinsics.");
|
|
e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
|
|
e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
|
|
return e;
|
|
}
|
|
}
|
|
|
|
// Not a recognised intrinsic. Fall back to producing an extract value
|
|
// expression.
|
|
e.opcode = EI->getOpcode();
|
|
for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
|
|
OI != OE; ++OI)
|
|
e.varargs.push_back(lookup_or_add(*OI));
|
|
|
|
for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
|
|
II != IE; ++II)
|
|
e.varargs.push_back(*II);
|
|
|
|
return e;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTable External Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// add - Insert a value into the table with a specified value number.
|
|
void ValueTable::add(Value *V, uint32_t num) {
|
|
valueNumbering.insert(std::make_pair(V, num));
|
|
}
|
|
|
|
uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
|
|
if (AA->doesNotAccessMemory(C)) {
|
|
Expression exp = create_expression(C);
|
|
uint32_t &e = expressionNumbering[exp];
|
|
if (!e) e = nextValueNumber++;
|
|
valueNumbering[C] = e;
|
|
return e;
|
|
} else if (AA->onlyReadsMemory(C)) {
|
|
Expression exp = create_expression(C);
|
|
uint32_t &e = expressionNumbering[exp];
|
|
if (!e) {
|
|
e = nextValueNumber++;
|
|
valueNumbering[C] = e;
|
|
return e;
|
|
}
|
|
if (!MD) {
|
|
e = nextValueNumber++;
|
|
valueNumbering[C] = e;
|
|
return e;
|
|
}
|
|
|
|
MemDepResult local_dep = MD->getDependency(C);
|
|
|
|
if (!local_dep.isDef() && !local_dep.isNonLocal()) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
if (local_dep.isDef()) {
|
|
CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
|
|
|
|
if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
|
|
uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
|
|
uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
|
|
if (c_vn != cd_vn) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
}
|
|
|
|
uint32_t v = lookup_or_add(local_cdep);
|
|
valueNumbering[C] = v;
|
|
return v;
|
|
}
|
|
|
|
// Non-local case.
|
|
const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
|
|
MD->getNonLocalCallDependency(CallSite(C));
|
|
// FIXME: Move the checking logic to MemDep!
|
|
CallInst* cdep = nullptr;
|
|
|
|
// Check to see if we have a single dominating call instruction that is
|
|
// identical to C.
|
|
for (unsigned i = 0, e = deps.size(); i != e; ++i) {
|
|
const NonLocalDepEntry *I = &deps[i];
|
|
if (I->getResult().isNonLocal())
|
|
continue;
|
|
|
|
// We don't handle non-definitions. If we already have a call, reject
|
|
// instruction dependencies.
|
|
if (!I->getResult().isDef() || cdep != nullptr) {
|
|
cdep = nullptr;
|
|
break;
|
|
}
|
|
|
|
CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
|
|
// FIXME: All duplicated with non-local case.
|
|
if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
|
|
cdep = NonLocalDepCall;
|
|
continue;
|
|
}
|
|
|
|
cdep = nullptr;
|
|
break;
|
|
}
|
|
|
|
if (!cdep) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
|
|
uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
|
|
uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
|
|
if (c_vn != cd_vn) {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
}
|
|
|
|
uint32_t v = lookup_or_add(cdep);
|
|
valueNumbering[C] = v;
|
|
return v;
|
|
|
|
} else {
|
|
valueNumbering[C] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
}
|
|
|
|
/// lookup_or_add - Returns the value number for the specified value, assigning
|
|
/// it a new number if it did not have one before.
|
|
uint32_t ValueTable::lookup_or_add(Value *V) {
|
|
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
|
|
if (VI != valueNumbering.end())
|
|
return VI->second;
|
|
|
|
if (!isa<Instruction>(V)) {
|
|
valueNumbering[V] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
Instruction* I = cast<Instruction>(V);
|
|
Expression exp;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Call:
|
|
return lookup_or_add_call(cast<CallInst>(I));
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
case Instruction::Select:
|
|
case Instruction::ExtractElement:
|
|
case Instruction::InsertElement:
|
|
case Instruction::ShuffleVector:
|
|
case Instruction::InsertValue:
|
|
case Instruction::GetElementPtr:
|
|
exp = create_expression(I);
|
|
break;
|
|
case Instruction::ExtractValue:
|
|
exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
|
|
break;
|
|
default:
|
|
valueNumbering[V] = nextValueNumber;
|
|
return nextValueNumber++;
|
|
}
|
|
|
|
uint32_t& e = expressionNumbering[exp];
|
|
if (!e) e = nextValueNumber++;
|
|
valueNumbering[V] = e;
|
|
return e;
|
|
}
|
|
|
|
/// Returns the value number of the specified value. Fails if
|
|
/// the value has not yet been numbered.
|
|
uint32_t ValueTable::lookup(Value *V) const {
|
|
DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
|
|
assert(VI != valueNumbering.end() && "Value not numbered?");
|
|
return VI->second;
|
|
}
|
|
|
|
/// Returns the value number of the given comparison,
|
|
/// assigning it a new number if it did not have one before. Useful when
|
|
/// we deduced the result of a comparison, but don't immediately have an
|
|
/// instruction realizing that comparison to hand.
|
|
uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
|
|
CmpInst::Predicate Predicate,
|
|
Value *LHS, Value *RHS) {
|
|
Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
|
|
uint32_t& e = expressionNumbering[exp];
|
|
if (!e) e = nextValueNumber++;
|
|
return e;
|
|
}
|
|
|
|
/// Remove all entries from the ValueTable.
|
|
void ValueTable::clear() {
|
|
valueNumbering.clear();
|
|
expressionNumbering.clear();
|
|
nextValueNumber = 1;
|
|
}
|
|
|
|
/// Remove a value from the value numbering.
|
|
void ValueTable::erase(Value *V) {
|
|
valueNumbering.erase(V);
|
|
}
|
|
|
|
/// verifyRemoved - Verify that the value is removed from all internal data
|
|
/// structures.
|
|
void ValueTable::verifyRemoved(const Value *V) const {
|
|
for (DenseMap<Value*, uint32_t>::const_iterator
|
|
I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
|
|
assert(I->first != V && "Inst still occurs in value numbering map!");
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GVN Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class GVN;
|
|
struct AvailableValueInBlock {
|
|
/// BB - The basic block in question.
|
|
BasicBlock *BB;
|
|
enum ValType {
|
|
SimpleVal, // A simple offsetted value that is accessed.
|
|
LoadVal, // A value produced by a load.
|
|
MemIntrin, // A memory intrinsic which is loaded from.
|
|
UndefVal // A UndefValue representing a value from dead block (which
|
|
// is not yet physically removed from the CFG).
|
|
};
|
|
|
|
/// V - The value that is live out of the block.
|
|
PointerIntPair<Value *, 2, ValType> Val;
|
|
|
|
/// Offset - The byte offset in Val that is interesting for the load query.
|
|
unsigned Offset;
|
|
|
|
static AvailableValueInBlock get(BasicBlock *BB, Value *V,
|
|
unsigned Offset = 0) {
|
|
AvailableValueInBlock Res;
|
|
Res.BB = BB;
|
|
Res.Val.setPointer(V);
|
|
Res.Val.setInt(SimpleVal);
|
|
Res.Offset = Offset;
|
|
return Res;
|
|
}
|
|
|
|
static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
|
|
unsigned Offset = 0) {
|
|
AvailableValueInBlock Res;
|
|
Res.BB = BB;
|
|
Res.Val.setPointer(MI);
|
|
Res.Val.setInt(MemIntrin);
|
|
Res.Offset = Offset;
|
|
return Res;
|
|
}
|
|
|
|
static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
|
|
unsigned Offset = 0) {
|
|
AvailableValueInBlock Res;
|
|
Res.BB = BB;
|
|
Res.Val.setPointer(LI);
|
|
Res.Val.setInt(LoadVal);
|
|
Res.Offset = Offset;
|
|
return Res;
|
|
}
|
|
|
|
static AvailableValueInBlock getUndef(BasicBlock *BB) {
|
|
AvailableValueInBlock Res;
|
|
Res.BB = BB;
|
|
Res.Val.setPointer(nullptr);
|
|
Res.Val.setInt(UndefVal);
|
|
Res.Offset = 0;
|
|
return Res;
|
|
}
|
|
|
|
bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
|
|
bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
|
|
bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
|
|
bool isUndefValue() const { return Val.getInt() == UndefVal; }
|
|
|
|
Value *getSimpleValue() const {
|
|
assert(isSimpleValue() && "Wrong accessor");
|
|
return Val.getPointer();
|
|
}
|
|
|
|
LoadInst *getCoercedLoadValue() const {
|
|
assert(isCoercedLoadValue() && "Wrong accessor");
|
|
return cast<LoadInst>(Val.getPointer());
|
|
}
|
|
|
|
MemIntrinsic *getMemIntrinValue() const {
|
|
assert(isMemIntrinValue() && "Wrong accessor");
|
|
return cast<MemIntrinsic>(Val.getPointer());
|
|
}
|
|
|
|
/// Emit code into this block to adjust the value defined here to the
|
|
/// specified type. This handles various coercion cases.
|
|
Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const;
|
|
};
|
|
|
|
class GVN : public FunctionPass {
|
|
bool NoLoads;
|
|
MemoryDependenceAnalysis *MD;
|
|
DominatorTree *DT;
|
|
const TargetLibraryInfo *TLI;
|
|
AssumptionCache *AC;
|
|
SetVector<BasicBlock *> DeadBlocks;
|
|
|
|
ValueTable VN;
|
|
|
|
/// A mapping from value numbers to lists of Value*'s that
|
|
/// have that value number. Use findLeader to query it.
|
|
struct LeaderTableEntry {
|
|
Value *Val;
|
|
const BasicBlock *BB;
|
|
LeaderTableEntry *Next;
|
|
};
|
|
DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
|
|
BumpPtrAllocator TableAllocator;
|
|
|
|
// Block-local map of equivalent values to their leader, does not
|
|
// propagate to any successors. Entries added mid-block are applied
|
|
// to the remaining instructions in the block.
|
|
SmallMapVector<llvm::Value *, llvm::Constant *, 4> ReplaceWithConstMap;
|
|
SmallVector<Instruction*, 8> InstrsToErase;
|
|
|
|
typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
|
|
typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
|
|
typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
explicit GVN(bool noloads = false)
|
|
: FunctionPass(ID), NoLoads(noloads), MD(nullptr) {
|
|
initializeGVNPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
/// This removes the specified instruction from
|
|
/// our various maps and marks it for deletion.
|
|
void markInstructionForDeletion(Instruction *I) {
|
|
VN.erase(I);
|
|
InstrsToErase.push_back(I);
|
|
}
|
|
|
|
DominatorTree &getDominatorTree() const { return *DT; }
|
|
AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
|
|
MemoryDependenceAnalysis &getMemDep() const { return *MD; }
|
|
private:
|
|
/// Push a new Value to the LeaderTable onto the list for its value number.
|
|
void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
|
|
LeaderTableEntry &Curr = LeaderTable[N];
|
|
if (!Curr.Val) {
|
|
Curr.Val = V;
|
|
Curr.BB = BB;
|
|
return;
|
|
}
|
|
|
|
LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
|
|
Node->Val = V;
|
|
Node->BB = BB;
|
|
Node->Next = Curr.Next;
|
|
Curr.Next = Node;
|
|
}
|
|
|
|
/// Scan the list of values corresponding to a given
|
|
/// value number, and remove the given instruction if encountered.
|
|
void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
|
|
LeaderTableEntry* Prev = nullptr;
|
|
LeaderTableEntry* Curr = &LeaderTable[N];
|
|
|
|
while (Curr && (Curr->Val != I || Curr->BB != BB)) {
|
|
Prev = Curr;
|
|
Curr = Curr->Next;
|
|
}
|
|
|
|
if (!Curr)
|
|
return;
|
|
|
|
if (Prev) {
|
|
Prev->Next = Curr->Next;
|
|
} else {
|
|
if (!Curr->Next) {
|
|
Curr->Val = nullptr;
|
|
Curr->BB = nullptr;
|
|
} else {
|
|
LeaderTableEntry* Next = Curr->Next;
|
|
Curr->Val = Next->Val;
|
|
Curr->BB = Next->BB;
|
|
Curr->Next = Next->Next;
|
|
}
|
|
}
|
|
}
|
|
|
|
// List of critical edges to be split between iterations.
|
|
SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
|
|
|
|
// This transformation requires dominator postdominator info
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
if (!NoLoads)
|
|
AU.addRequired<MemoryDependenceAnalysis>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
|
|
|
|
// Helper functions of redundant load elimination
|
|
bool processLoad(LoadInst *L);
|
|
bool processNonLocalLoad(LoadInst *L);
|
|
bool processAssumeIntrinsic(IntrinsicInst *II);
|
|
void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
|
|
AvailValInBlkVect &ValuesPerBlock,
|
|
UnavailBlkVect &UnavailableBlocks);
|
|
bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
|
|
UnavailBlkVect &UnavailableBlocks);
|
|
|
|
// Other helper routines
|
|
bool processInstruction(Instruction *I);
|
|
bool processBlock(BasicBlock *BB);
|
|
void dump(DenseMap<uint32_t, Value*> &d);
|
|
bool iterateOnFunction(Function &F);
|
|
bool performPRE(Function &F);
|
|
bool performScalarPRE(Instruction *I);
|
|
bool performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
|
|
unsigned int ValNo);
|
|
Value *findLeader(const BasicBlock *BB, uint32_t num);
|
|
void cleanupGlobalSets();
|
|
void verifyRemoved(const Instruction *I) const;
|
|
bool splitCriticalEdges();
|
|
BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
|
|
bool replaceOperandsWithConsts(Instruction *I) const;
|
|
bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
|
|
bool DominatesByEdge);
|
|
bool processFoldableCondBr(BranchInst *BI);
|
|
void addDeadBlock(BasicBlock *BB);
|
|
void assignValNumForDeadCode();
|
|
};
|
|
|
|
char GVN::ID = 0;
|
|
}
|
|
|
|
// The public interface to this file...
|
|
FunctionPass *llvm::createGVNPass(bool NoLoads) {
|
|
return new GVN(NoLoads);
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void GVN::dump(DenseMap<uint32_t, Value*>& d) {
|
|
errs() << "{\n";
|
|
for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
|
|
E = d.end(); I != E; ++I) {
|
|
errs() << I->first << "\n";
|
|
I->second->dump();
|
|
}
|
|
errs() << "}\n";
|
|
}
|
|
#endif
|
|
|
|
/// Return true if we can prove that the value
|
|
/// we're analyzing is fully available in the specified block. As we go, keep
|
|
/// track of which blocks we know are fully alive in FullyAvailableBlocks. This
|
|
/// map is actually a tri-state map with the following values:
|
|
/// 0) we know the block *is not* fully available.
|
|
/// 1) we know the block *is* fully available.
|
|
/// 2) we do not know whether the block is fully available or not, but we are
|
|
/// currently speculating that it will be.
|
|
/// 3) we are speculating for this block and have used that to speculate for
|
|
/// other blocks.
|
|
static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
|
|
DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
|
|
uint32_t RecurseDepth) {
|
|
if (RecurseDepth > MaxRecurseDepth)
|
|
return false;
|
|
|
|
// Optimistically assume that the block is fully available and check to see
|
|
// if we already know about this block in one lookup.
|
|
std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
|
|
FullyAvailableBlocks.insert(std::make_pair(BB, 2));
|
|
|
|
// If the entry already existed for this block, return the precomputed value.
|
|
if (!IV.second) {
|
|
// If this is a speculative "available" value, mark it as being used for
|
|
// speculation of other blocks.
|
|
if (IV.first->second == 2)
|
|
IV.first->second = 3;
|
|
return IV.first->second != 0;
|
|
}
|
|
|
|
// Otherwise, see if it is fully available in all predecessors.
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
|
|
// If this block has no predecessors, it isn't live-in here.
|
|
if (PI == PE)
|
|
goto SpeculationFailure;
|
|
|
|
for (; PI != PE; ++PI)
|
|
// If the value isn't fully available in one of our predecessors, then it
|
|
// isn't fully available in this block either. Undo our previous
|
|
// optimistic assumption and bail out.
|
|
if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
|
|
goto SpeculationFailure;
|
|
|
|
return true;
|
|
|
|
// If we get here, we found out that this is not, after
|
|
// all, a fully-available block. We have a problem if we speculated on this and
|
|
// used the speculation to mark other blocks as available.
|
|
SpeculationFailure:
|
|
char &BBVal = FullyAvailableBlocks[BB];
|
|
|
|
// If we didn't speculate on this, just return with it set to false.
|
|
if (BBVal == 2) {
|
|
BBVal = 0;
|
|
return false;
|
|
}
|
|
|
|
// If we did speculate on this value, we could have blocks set to 1 that are
|
|
// incorrect. Walk the (transitive) successors of this block and mark them as
|
|
// 0 if set to one.
|
|
SmallVector<BasicBlock*, 32> BBWorklist;
|
|
BBWorklist.push_back(BB);
|
|
|
|
do {
|
|
BasicBlock *Entry = BBWorklist.pop_back_val();
|
|
// Note that this sets blocks to 0 (unavailable) if they happen to not
|
|
// already be in FullyAvailableBlocks. This is safe.
|
|
char &EntryVal = FullyAvailableBlocks[Entry];
|
|
if (EntryVal == 0) continue; // Already unavailable.
|
|
|
|
// Mark as unavailable.
|
|
EntryVal = 0;
|
|
|
|
BBWorklist.append(succ_begin(Entry), succ_end(Entry));
|
|
} while (!BBWorklist.empty());
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Return true if CoerceAvailableValueToLoadType will succeed.
|
|
static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
|
|
Type *LoadTy,
|
|
const DataLayout &DL) {
|
|
// If the loaded or stored value is an first class array or struct, don't try
|
|
// to transform them. We need to be able to bitcast to integer.
|
|
if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
|
|
StoredVal->getType()->isStructTy() ||
|
|
StoredVal->getType()->isArrayTy())
|
|
return false;
|
|
|
|
// The store has to be at least as big as the load.
|
|
if (DL.getTypeSizeInBits(StoredVal->getType()) <
|
|
DL.getTypeSizeInBits(LoadTy))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// If we saw a store of a value to memory, and
|
|
/// then a load from a must-aliased pointer of a different type, try to coerce
|
|
/// the stored value. LoadedTy is the type of the load we want to replace.
|
|
/// IRB is IRBuilder used to insert new instructions.
|
|
///
|
|
/// If we can't do it, return null.
|
|
static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
|
|
IRBuilder<> &IRB,
|
|
const DataLayout &DL) {
|
|
if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
|
|
return nullptr;
|
|
|
|
// If this is already the right type, just return it.
|
|
Type *StoredValTy = StoredVal->getType();
|
|
|
|
uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
|
|
|
|
// If the store and reload are the same size, we can always reuse it.
|
|
if (StoreSize == LoadSize) {
|
|
// Pointer to Pointer -> use bitcast.
|
|
if (StoredValTy->getScalarType()->isPointerTy() &&
|
|
LoadedTy->getScalarType()->isPointerTy())
|
|
return IRB.CreateBitCast(StoredVal, LoadedTy);
|
|
|
|
// Convert source pointers to integers, which can be bitcast.
|
|
if (StoredValTy->getScalarType()->isPointerTy()) {
|
|
StoredValTy = DL.getIntPtrType(StoredValTy);
|
|
StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
|
|
}
|
|
|
|
Type *TypeToCastTo = LoadedTy;
|
|
if (TypeToCastTo->getScalarType()->isPointerTy())
|
|
TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
|
|
|
|
if (StoredValTy != TypeToCastTo)
|
|
StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo);
|
|
|
|
// Cast to pointer if the load needs a pointer type.
|
|
if (LoadedTy->getScalarType()->isPointerTy())
|
|
StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy);
|
|
|
|
return StoredVal;
|
|
}
|
|
|
|
// If the loaded value is smaller than the available value, then we can
|
|
// extract out a piece from it. If the available value is too small, then we
|
|
// can't do anything.
|
|
assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
|
|
|
|
// Convert source pointers to integers, which can be manipulated.
|
|
if (StoredValTy->getScalarType()->isPointerTy()) {
|
|
StoredValTy = DL.getIntPtrType(StoredValTy);
|
|
StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
|
|
}
|
|
|
|
// Convert vectors and fp to integer, which can be manipulated.
|
|
if (!StoredValTy->isIntegerTy()) {
|
|
StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
|
|
StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy);
|
|
}
|
|
|
|
// If this is a big-endian system, we need to shift the value down to the low
|
|
// bits so that a truncate will work.
|
|
if (DL.isBigEndian()) {
|
|
StoredVal = IRB.CreateLShr(StoredVal, StoreSize - LoadSize, "tmp");
|
|
}
|
|
|
|
// Truncate the integer to the right size now.
|
|
Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
|
|
StoredVal = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc");
|
|
|
|
if (LoadedTy == NewIntTy)
|
|
return StoredVal;
|
|
|
|
// If the result is a pointer, inttoptr.
|
|
if (LoadedTy->getScalarType()->isPointerTy())
|
|
return IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr");
|
|
|
|
// Otherwise, bitcast.
|
|
return IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast");
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering memory write (store,
|
|
/// memset, memcpy, memmove). This means that the write *may* provide bits used
|
|
/// by the load but we can't be sure because the pointers don't mustalias.
|
|
///
|
|
/// Check this case to see if there is anything more we can do before we give
|
|
/// up. This returns -1 if we have to give up, or a byte number in the stored
|
|
/// value of the piece that feeds the load.
|
|
static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
|
|
Value *WritePtr,
|
|
uint64_t WriteSizeInBits,
|
|
const DataLayout &DL) {
|
|
// If the loaded or stored value is a first class array or struct, don't try
|
|
// to transform them. We need to be able to bitcast to integer.
|
|
if (LoadTy->isStructTy() || LoadTy->isArrayTy())
|
|
return -1;
|
|
|
|
int64_t StoreOffset = 0, LoadOffset = 0;
|
|
Value *StoreBase =
|
|
GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
|
|
Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
|
|
if (StoreBase != LoadBase)
|
|
return -1;
|
|
|
|
// If the load and store are to the exact same address, they should have been
|
|
// a must alias. AA must have gotten confused.
|
|
// FIXME: Study to see if/when this happens. One case is forwarding a memset
|
|
// to a load from the base of the memset.
|
|
#if 0
|
|
if (LoadOffset == StoreOffset) {
|
|
dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
|
|
<< "Base = " << *StoreBase << "\n"
|
|
<< "Store Ptr = " << *WritePtr << "\n"
|
|
<< "Store Offs = " << StoreOffset << "\n"
|
|
<< "Load Ptr = " << *LoadPtr << "\n";
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
// If the load and store don't overlap at all, the store doesn't provide
|
|
// anything to the load. In this case, they really don't alias at all, AA
|
|
// must have gotten confused.
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
|
|
|
|
if ((WriteSizeInBits & 7) | (LoadSize & 7))
|
|
return -1;
|
|
uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
|
|
LoadSize >>= 3;
|
|
|
|
|
|
bool isAAFailure = false;
|
|
if (StoreOffset < LoadOffset)
|
|
isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
|
|
else
|
|
isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
|
|
|
|
if (isAAFailure) {
|
|
#if 0
|
|
dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
|
|
<< "Base = " << *StoreBase << "\n"
|
|
<< "Store Ptr = " << *WritePtr << "\n"
|
|
<< "Store Offs = " << StoreOffset << "\n"
|
|
<< "Load Ptr = " << *LoadPtr << "\n";
|
|
abort();
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
// If the Load isn't completely contained within the stored bits, we don't
|
|
// have all the bits to feed it. We could do something crazy in the future
|
|
// (issue a smaller load then merge the bits in) but this seems unlikely to be
|
|
// valuable.
|
|
if (StoreOffset > LoadOffset ||
|
|
StoreOffset+StoreSize < LoadOffset+LoadSize)
|
|
return -1;
|
|
|
|
// Okay, we can do this transformation. Return the number of bytes into the
|
|
// store that the load is.
|
|
return LoadOffset-StoreOffset;
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering store.
|
|
static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
|
|
StoreInst *DepSI) {
|
|
// Cannot handle reading from store of first-class aggregate yet.
|
|
if (DepSI->getValueOperand()->getType()->isStructTy() ||
|
|
DepSI->getValueOperand()->getType()->isArrayTy())
|
|
return -1;
|
|
|
|
const DataLayout &DL = DepSI->getModule()->getDataLayout();
|
|
Value *StorePtr = DepSI->getPointerOperand();
|
|
uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
|
|
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
|
|
StorePtr, StoreSize, DL);
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being clobbered by another load. See if
|
|
/// the other load can feed into the second load.
|
|
static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
|
|
LoadInst *DepLI, const DataLayout &DL){
|
|
// Cannot handle reading from store of first-class aggregate yet.
|
|
if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
|
|
return -1;
|
|
|
|
Value *DepPtr = DepLI->getPointerOperand();
|
|
uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
|
|
int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
|
|
if (R != -1) return R;
|
|
|
|
// If we have a load/load clobber an DepLI can be widened to cover this load,
|
|
// then we should widen it!
|
|
int64_t LoadOffs = 0;
|
|
const Value *LoadBase =
|
|
GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
|
|
|
|
unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
|
|
LoadBase, LoadOffs, LoadSize, DepLI);
|
|
if (Size == 0) return -1;
|
|
|
|
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
|
|
}
|
|
|
|
|
|
|
|
static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
|
|
MemIntrinsic *MI,
|
|
const DataLayout &DL) {
|
|
// If the mem operation is a non-constant size, we can't handle it.
|
|
ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
|
|
if (!SizeCst) return -1;
|
|
uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
|
|
|
|
// If this is memset, we just need to see if the offset is valid in the size
|
|
// of the memset..
|
|
if (MI->getIntrinsicID() == Intrinsic::memset)
|
|
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
|
|
MemSizeInBits, DL);
|
|
|
|
// If we have a memcpy/memmove, the only case we can handle is if this is a
|
|
// copy from constant memory. In that case, we can read directly from the
|
|
// constant memory.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(MI);
|
|
|
|
Constant *Src = dyn_cast<Constant>(MTI->getSource());
|
|
if (!Src) return -1;
|
|
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
|
|
if (!GV || !GV->isConstant()) return -1;
|
|
|
|
// See if the access is within the bounds of the transfer.
|
|
int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
|
|
MI->getDest(), MemSizeInBits, DL);
|
|
if (Offset == -1)
|
|
return Offset;
|
|
|
|
unsigned AS = Src->getType()->getPointerAddressSpace();
|
|
// Otherwise, see if we can constant fold a load from the constant with the
|
|
// offset applied as appropriate.
|
|
Src = ConstantExpr::getBitCast(Src,
|
|
Type::getInt8PtrTy(Src->getContext(), AS));
|
|
Constant *OffsetCst =
|
|
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
|
|
Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
|
|
OffsetCst);
|
|
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
|
|
if (ConstantFoldLoadFromConstPtr(Src, DL))
|
|
return Offset;
|
|
return -1;
|
|
}
|
|
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering store. This means
|
|
/// that the store provides bits used by the load but we the pointers don't
|
|
/// mustalias. Check this case to see if there is anything more we can do
|
|
/// before we give up.
|
|
static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
|
|
Type *LoadTy,
|
|
Instruction *InsertPt, const DataLayout &DL){
|
|
LLVMContext &Ctx = SrcVal->getType()->getContext();
|
|
|
|
uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
|
|
uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
|
|
|
|
IRBuilder<> Builder(InsertPt);
|
|
|
|
// Compute which bits of the stored value are being used by the load. Convert
|
|
// to an integer type to start with.
|
|
if (SrcVal->getType()->getScalarType()->isPointerTy())
|
|
SrcVal = Builder.CreatePtrToInt(SrcVal,
|
|
DL.getIntPtrType(SrcVal->getType()));
|
|
if (!SrcVal->getType()->isIntegerTy())
|
|
SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
|
|
|
|
// Shift the bits to the least significant depending on endianness.
|
|
unsigned ShiftAmt;
|
|
if (DL.isLittleEndian())
|
|
ShiftAmt = Offset*8;
|
|
else
|
|
ShiftAmt = (StoreSize-LoadSize-Offset)*8;
|
|
|
|
if (ShiftAmt)
|
|
SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
|
|
|
|
if (LoadSize != StoreSize)
|
|
SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
|
|
|
|
return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering load. This means
|
|
/// that the load *may* provide bits used by the load but we can't be sure
|
|
/// because the pointers don't mustalias. Check this case to see if there is
|
|
/// anything more we can do before we give up.
|
|
static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
|
|
Type *LoadTy, Instruction *InsertPt,
|
|
GVN &gvn) {
|
|
const DataLayout &DL = SrcVal->getModule()->getDataLayout();
|
|
// If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
|
|
// widen SrcVal out to a larger load.
|
|
unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
|
|
if (Offset+LoadSize > SrcValSize) {
|
|
assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
|
|
assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
|
|
// If we have a load/load clobber an DepLI can be widened to cover this
|
|
// load, then we should widen it to the next power of 2 size big enough!
|
|
unsigned NewLoadSize = Offset+LoadSize;
|
|
if (!isPowerOf2_32(NewLoadSize))
|
|
NewLoadSize = NextPowerOf2(NewLoadSize);
|
|
|
|
Value *PtrVal = SrcVal->getPointerOperand();
|
|
|
|
// Insert the new load after the old load. This ensures that subsequent
|
|
// memdep queries will find the new load. We can't easily remove the old
|
|
// load completely because it is already in the value numbering table.
|
|
IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
|
|
Type *DestPTy =
|
|
IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
|
|
DestPTy = PointerType::get(DestPTy,
|
|
PtrVal->getType()->getPointerAddressSpace());
|
|
Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
|
|
PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
|
|
LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
|
|
NewLoad->takeName(SrcVal);
|
|
NewLoad->setAlignment(SrcVal->getAlignment());
|
|
|
|
DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
|
|
DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
|
|
|
|
// Replace uses of the original load with the wider load. On a big endian
|
|
// system, we need to shift down to get the relevant bits.
|
|
Value *RV = NewLoad;
|
|
if (DL.isBigEndian())
|
|
RV = Builder.CreateLShr(RV,
|
|
NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
|
|
RV = Builder.CreateTrunc(RV, SrcVal->getType());
|
|
SrcVal->replaceAllUsesWith(RV);
|
|
|
|
// We would like to use gvn.markInstructionForDeletion here, but we can't
|
|
// because the load is already memoized into the leader map table that GVN
|
|
// tracks. It is potentially possible to remove the load from the table,
|
|
// but then there all of the operations based on it would need to be
|
|
// rehashed. Just leave the dead load around.
|
|
gvn.getMemDep().removeInstruction(SrcVal);
|
|
SrcVal = NewLoad;
|
|
}
|
|
|
|
return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
|
|
}
|
|
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering mem intrinsic.
|
|
static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, Instruction *InsertPt,
|
|
const DataLayout &DL){
|
|
LLVMContext &Ctx = LoadTy->getContext();
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
|
|
|
|
IRBuilder<> Builder(InsertPt);
|
|
|
|
// We know that this method is only called when the mem transfer fully
|
|
// provides the bits for the load.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
|
|
// memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
|
|
// independently of what the offset is.
|
|
Value *Val = MSI->getValue();
|
|
if (LoadSize != 1)
|
|
Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
|
|
|
|
Value *OneElt = Val;
|
|
|
|
// Splat the value out to the right number of bits.
|
|
for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
|
|
// If we can double the number of bytes set, do it.
|
|
if (NumBytesSet*2 <= LoadSize) {
|
|
Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
|
|
Val = Builder.CreateOr(Val, ShVal);
|
|
NumBytesSet <<= 1;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise insert one byte at a time.
|
|
Value *ShVal = Builder.CreateShl(Val, 1*8);
|
|
Val = Builder.CreateOr(OneElt, ShVal);
|
|
++NumBytesSet;
|
|
}
|
|
|
|
return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
|
|
}
|
|
|
|
// Otherwise, this is a memcpy/memmove from a constant global.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
|
|
Constant *Src = cast<Constant>(MTI->getSource());
|
|
unsigned AS = Src->getType()->getPointerAddressSpace();
|
|
|
|
// Otherwise, see if we can constant fold a load from the constant with the
|
|
// offset applied as appropriate.
|
|
Src = ConstantExpr::getBitCast(Src,
|
|
Type::getInt8PtrTy(Src->getContext(), AS));
|
|
Constant *OffsetCst =
|
|
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
|
|
Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
|
|
OffsetCst);
|
|
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
|
|
return ConstantFoldLoadFromConstPtr(Src, DL);
|
|
}
|
|
|
|
|
|
/// Given a set of loads specified by ValuesPerBlock,
|
|
/// construct SSA form, allowing us to eliminate LI. This returns the value
|
|
/// that should be used at LI's definition site.
|
|
static Value *ConstructSSAForLoadSet(LoadInst *LI,
|
|
SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
|
|
GVN &gvn) {
|
|
// Check for the fully redundant, dominating load case. In this case, we can
|
|
// just use the dominating value directly.
|
|
if (ValuesPerBlock.size() == 1 &&
|
|
gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
|
|
LI->getParent())) {
|
|
assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
|
|
return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
|
|
}
|
|
|
|
// Otherwise, we have to construct SSA form.
|
|
SmallVector<PHINode*, 8> NewPHIs;
|
|
SSAUpdater SSAUpdate(&NewPHIs);
|
|
SSAUpdate.Initialize(LI->getType(), LI->getName());
|
|
|
|
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
|
|
const AvailableValueInBlock &AV = ValuesPerBlock[i];
|
|
BasicBlock *BB = AV.BB;
|
|
|
|
if (SSAUpdate.HasValueForBlock(BB))
|
|
continue;
|
|
|
|
SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
|
|
}
|
|
|
|
// Perform PHI construction.
|
|
return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
|
|
}
|
|
|
|
Value *AvailableValueInBlock::MaterializeAdjustedValue(LoadInst *LI,
|
|
GVN &gvn) const {
|
|
Value *Res;
|
|
Type *LoadTy = LI->getType();
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
if (isSimpleValue()) {
|
|
Res = getSimpleValue();
|
|
if (Res->getType() != LoadTy) {
|
|
Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), DL);
|
|
|
|
DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
|
|
<< *getSimpleValue() << '\n'
|
|
<< *Res << '\n' << "\n\n\n");
|
|
}
|
|
} else if (isCoercedLoadValue()) {
|
|
LoadInst *Load = getCoercedLoadValue();
|
|
if (Load->getType() == LoadTy && Offset == 0) {
|
|
Res = Load;
|
|
} else {
|
|
Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
|
|
gvn);
|
|
|
|
DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
|
|
<< *getCoercedLoadValue() << '\n'
|
|
<< *Res << '\n' << "\n\n\n");
|
|
}
|
|
} else if (isMemIntrinValue()) {
|
|
Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
|
|
BB->getTerminator(), DL);
|
|
DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
|
|
<< " " << *getMemIntrinValue() << '\n'
|
|
<< *Res << '\n' << "\n\n\n");
|
|
} else {
|
|
assert(isUndefValue() && "Should be UndefVal");
|
|
DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
|
|
return UndefValue::get(LoadTy);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
static bool isLifetimeStart(const Instruction *Inst) {
|
|
if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
|
|
return II->getIntrinsicID() == Intrinsic::lifetime_start;
|
|
return false;
|
|
}
|
|
|
|
void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
|
|
AvailValInBlkVect &ValuesPerBlock,
|
|
UnavailBlkVect &UnavailableBlocks) {
|
|
|
|
// Filter out useless results (non-locals, etc). Keep track of the blocks
|
|
// where we have a value available in repl, also keep track of whether we see
|
|
// dependencies that produce an unknown value for the load (such as a call
|
|
// that could potentially clobber the load).
|
|
unsigned NumDeps = Deps.size();
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
for (unsigned i = 0, e = NumDeps; i != e; ++i) {
|
|
BasicBlock *DepBB = Deps[i].getBB();
|
|
MemDepResult DepInfo = Deps[i].getResult();
|
|
|
|
if (DeadBlocks.count(DepBB)) {
|
|
// Dead dependent mem-op disguise as a load evaluating the same value
|
|
// as the load in question.
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
|
|
continue;
|
|
}
|
|
|
|
if (!DepInfo.isDef() && !DepInfo.isClobber()) {
|
|
UnavailableBlocks.push_back(DepBB);
|
|
continue;
|
|
}
|
|
|
|
if (DepInfo.isClobber()) {
|
|
// The address being loaded in this non-local block may not be the same as
|
|
// the pointer operand of the load if PHI translation occurs. Make sure
|
|
// to consider the right address.
|
|
Value *Address = Deps[i].getAddress();
|
|
|
|
// If the dependence is to a store that writes to a superset of the bits
|
|
// read by the load, we can extract the bits we need for the load from the
|
|
// stored value.
|
|
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
|
|
if (Address) {
|
|
int Offset =
|
|
AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
|
|
if (Offset != -1) {
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
|
|
DepSI->getValueOperand(),
|
|
Offset));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check to see if we have something like this:
|
|
// load i32* P
|
|
// load i8* (P+1)
|
|
// if we have this, replace the later with an extraction from the former.
|
|
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
|
|
// If this is a clobber and L is the first instruction in its block, then
|
|
// we have the first instruction in the entry block.
|
|
if (DepLI != LI && Address) {
|
|
int Offset =
|
|
AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
|
|
|
|
if (Offset != -1) {
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
|
|
Offset));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the clobbering value is a memset/memcpy/memmove, see if we can
|
|
// forward a value on from it.
|
|
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
|
|
if (Address) {
|
|
int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
|
|
DepMI, DL);
|
|
if (Offset != -1) {
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
|
|
Offset));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
UnavailableBlocks.push_back(DepBB);
|
|
continue;
|
|
}
|
|
|
|
// DepInfo.isDef() here
|
|
|
|
Instruction *DepInst = DepInfo.getInst();
|
|
|
|
// Loading the allocation -> undef.
|
|
if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
|
|
// Loading immediately after lifetime begin -> undef.
|
|
isLifetimeStart(DepInst)) {
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
|
|
UndefValue::get(LI->getType())));
|
|
continue;
|
|
}
|
|
|
|
// Loading from calloc (which zero initializes memory) -> zero
|
|
if (isCallocLikeFn(DepInst, TLI)) {
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::get(
|
|
DepBB, Constant::getNullValue(LI->getType())));
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
|
|
// Reject loads and stores that are to the same address but are of
|
|
// different types if we have to.
|
|
if (S->getValueOperand()->getType() != LI->getType()) {
|
|
// If the stored value is larger or equal to the loaded value, we can
|
|
// reuse it.
|
|
if (!CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
|
|
LI->getType(), DL)) {
|
|
UnavailableBlocks.push_back(DepBB);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
|
|
S->getValueOperand()));
|
|
continue;
|
|
}
|
|
|
|
if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
|
|
// If the types mismatch and we can't handle it, reject reuse of the load.
|
|
if (LD->getType() != LI->getType()) {
|
|
// If the stored value is larger or equal to the loaded value, we can
|
|
// reuse it.
|
|
if (!CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) {
|
|
UnavailableBlocks.push_back(DepBB);
|
|
continue;
|
|
}
|
|
}
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
|
|
continue;
|
|
}
|
|
|
|
UnavailableBlocks.push_back(DepBB);
|
|
}
|
|
}
|
|
|
|
bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
|
|
UnavailBlkVect &UnavailableBlocks) {
|
|
// Okay, we have *some* definitions of the value. This means that the value
|
|
// is available in some of our (transitive) predecessors. Lets think about
|
|
// doing PRE of this load. This will involve inserting a new load into the
|
|
// predecessor when it's not available. We could do this in general, but
|
|
// prefer to not increase code size. As such, we only do this when we know
|
|
// that we only have to insert *one* load (which means we're basically moving
|
|
// the load, not inserting a new one).
|
|
|
|
SmallPtrSet<BasicBlock *, 4> Blockers;
|
|
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
|
|
Blockers.insert(UnavailableBlocks[i]);
|
|
|
|
// Let's find the first basic block with more than one predecessor. Walk
|
|
// backwards through predecessors if needed.
|
|
BasicBlock *LoadBB = LI->getParent();
|
|
BasicBlock *TmpBB = LoadBB;
|
|
|
|
while (TmpBB->getSinglePredecessor()) {
|
|
TmpBB = TmpBB->getSinglePredecessor();
|
|
if (TmpBB == LoadBB) // Infinite (unreachable) loop.
|
|
return false;
|
|
if (Blockers.count(TmpBB))
|
|
return false;
|
|
|
|
// If any of these blocks has more than one successor (i.e. if the edge we
|
|
// just traversed was critical), then there are other paths through this
|
|
// block along which the load may not be anticipated. Hoisting the load
|
|
// above this block would be adding the load to execution paths along
|
|
// which it was not previously executed.
|
|
if (TmpBB->getTerminator()->getNumSuccessors() != 1)
|
|
return false;
|
|
}
|
|
|
|
assert(TmpBB);
|
|
LoadBB = TmpBB;
|
|
|
|
// Check to see how many predecessors have the loaded value fully
|
|
// available.
|
|
MapVector<BasicBlock *, Value *> PredLoads;
|
|
DenseMap<BasicBlock*, char> FullyAvailableBlocks;
|
|
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
|
|
FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
|
|
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
|
|
FullyAvailableBlocks[UnavailableBlocks[i]] = false;
|
|
|
|
SmallVector<BasicBlock *, 4> CriticalEdgePred;
|
|
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
|
|
PI != E; ++PI) {
|
|
BasicBlock *Pred = *PI;
|
|
if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
|
|
continue;
|
|
}
|
|
|
|
if (Pred->getTerminator()->getNumSuccessors() != 1) {
|
|
if (isa<IndirectBrInst>(Pred->getTerminator())) {
|
|
DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
|
|
<< Pred->getName() << "': " << *LI << '\n');
|
|
return false;
|
|
}
|
|
|
|
if (LoadBB->isEHPad()) {
|
|
DEBUG(dbgs()
|
|
<< "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
|
|
<< Pred->getName() << "': " << *LI << '\n');
|
|
return false;
|
|
}
|
|
|
|
CriticalEdgePred.push_back(Pred);
|
|
} else {
|
|
// Only add the predecessors that will not be split for now.
|
|
PredLoads[Pred] = nullptr;
|
|
}
|
|
}
|
|
|
|
// Decide whether PRE is profitable for this load.
|
|
unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
|
|
assert(NumUnavailablePreds != 0 &&
|
|
"Fully available value should already be eliminated!");
|
|
|
|
// If this load is unavailable in multiple predecessors, reject it.
|
|
// FIXME: If we could restructure the CFG, we could make a common pred with
|
|
// all the preds that don't have an available LI and insert a new load into
|
|
// that one block.
|
|
if (NumUnavailablePreds != 1)
|
|
return false;
|
|
|
|
// Split critical edges, and update the unavailable predecessors accordingly.
|
|
for (BasicBlock *OrigPred : CriticalEdgePred) {
|
|
BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
|
|
assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
|
|
PredLoads[NewPred] = nullptr;
|
|
DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
|
|
<< LoadBB->getName() << '\n');
|
|
}
|
|
|
|
// Check if the load can safely be moved to all the unavailable predecessors.
|
|
bool CanDoPRE = true;
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
SmallVector<Instruction*, 8> NewInsts;
|
|
for (auto &PredLoad : PredLoads) {
|
|
BasicBlock *UnavailablePred = PredLoad.first;
|
|
|
|
// Do PHI translation to get its value in the predecessor if necessary. The
|
|
// returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
|
|
|
|
// If all preds have a single successor, then we know it is safe to insert
|
|
// the load on the pred (?!?), so we can insert code to materialize the
|
|
// pointer if it is not available.
|
|
PHITransAddr Address(LI->getPointerOperand(), DL, AC);
|
|
Value *LoadPtr = nullptr;
|
|
LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
|
|
*DT, NewInsts);
|
|
|
|
// If we couldn't find or insert a computation of this phi translated value,
|
|
// we fail PRE.
|
|
if (!LoadPtr) {
|
|
DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
|
|
<< *LI->getPointerOperand() << "\n");
|
|
CanDoPRE = false;
|
|
break;
|
|
}
|
|
|
|
PredLoad.second = LoadPtr;
|
|
}
|
|
|
|
if (!CanDoPRE) {
|
|
while (!NewInsts.empty()) {
|
|
Instruction *I = NewInsts.pop_back_val();
|
|
if (MD) MD->removeInstruction(I);
|
|
I->eraseFromParent();
|
|
}
|
|
// HINT: Don't revert the edge-splitting as following transformation may
|
|
// also need to split these critical edges.
|
|
return !CriticalEdgePred.empty();
|
|
}
|
|
|
|
// Okay, we can eliminate this load by inserting a reload in the predecessor
|
|
// and using PHI construction to get the value in the other predecessors, do
|
|
// it.
|
|
DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
|
|
DEBUG(if (!NewInsts.empty())
|
|
dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
|
|
<< *NewInsts.back() << '\n');
|
|
|
|
// Assign value numbers to the new instructions.
|
|
for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
|
|
// FIXME: We really _ought_ to insert these value numbers into their
|
|
// parent's availability map. However, in doing so, we risk getting into
|
|
// ordering issues. If a block hasn't been processed yet, we would be
|
|
// marking a value as AVAIL-IN, which isn't what we intend.
|
|
VN.lookup_or_add(NewInsts[i]);
|
|
}
|
|
|
|
for (const auto &PredLoad : PredLoads) {
|
|
BasicBlock *UnavailablePred = PredLoad.first;
|
|
Value *LoadPtr = PredLoad.second;
|
|
|
|
Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
|
|
LI->getAlignment(),
|
|
UnavailablePred->getTerminator());
|
|
|
|
// Transfer the old load's AA tags to the new load.
|
|
AAMDNodes Tags;
|
|
LI->getAAMetadata(Tags);
|
|
if (Tags)
|
|
NewLoad->setAAMetadata(Tags);
|
|
|
|
if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
|
|
NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
|
|
|
|
// Transfer DebugLoc.
|
|
NewLoad->setDebugLoc(LI->getDebugLoc());
|
|
|
|
// Add the newly created load.
|
|
ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
|
|
NewLoad));
|
|
MD->invalidateCachedPointerInfo(LoadPtr);
|
|
DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
|
|
}
|
|
|
|
// Perform PHI construction.
|
|
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
|
|
LI->replaceAllUsesWith(V);
|
|
if (isa<PHINode>(V))
|
|
V->takeName(LI);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
I->setDebugLoc(LI->getDebugLoc());
|
|
if (V->getType()->getScalarType()->isPointerTy())
|
|
MD->invalidateCachedPointerInfo(V);
|
|
markInstructionForDeletion(LI);
|
|
++NumPRELoad;
|
|
return true;
|
|
}
|
|
|
|
/// Attempt to eliminate a load whose dependencies are
|
|
/// non-local by performing PHI construction.
|
|
bool GVN::processNonLocalLoad(LoadInst *LI) {
|
|
// Step 1: Find the non-local dependencies of the load.
|
|
LoadDepVect Deps;
|
|
MD->getNonLocalPointerDependency(LI, Deps);
|
|
|
|
// If we had to process more than one hundred blocks to find the
|
|
// dependencies, this load isn't worth worrying about. Optimizing
|
|
// it will be too expensive.
|
|
unsigned NumDeps = Deps.size();
|
|
if (NumDeps > 100)
|
|
return false;
|
|
|
|
// If we had a phi translation failure, we'll have a single entry which is a
|
|
// clobber in the current block. Reject this early.
|
|
if (NumDeps == 1 &&
|
|
!Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
|
|
DEBUG(
|
|
dbgs() << "GVN: non-local load ";
|
|
LI->printAsOperand(dbgs());
|
|
dbgs() << " has unknown dependencies\n";
|
|
);
|
|
return false;
|
|
}
|
|
|
|
// If this load follows a GEP, see if we can PRE the indices before analyzing.
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
|
|
for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
|
|
OE = GEP->idx_end();
|
|
OI != OE; ++OI)
|
|
if (Instruction *I = dyn_cast<Instruction>(OI->get()))
|
|
performScalarPRE(I);
|
|
}
|
|
|
|
// Step 2: Analyze the availability of the load
|
|
AvailValInBlkVect ValuesPerBlock;
|
|
UnavailBlkVect UnavailableBlocks;
|
|
AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
|
|
|
|
// If we have no predecessors that produce a known value for this load, exit
|
|
// early.
|
|
if (ValuesPerBlock.empty())
|
|
return false;
|
|
|
|
// Step 3: Eliminate fully redundancy.
|
|
//
|
|
// If all of the instructions we depend on produce a known value for this
|
|
// load, then it is fully redundant and we can use PHI insertion to compute
|
|
// its value. Insert PHIs and remove the fully redundant value now.
|
|
if (UnavailableBlocks.empty()) {
|
|
DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
|
|
|
|
// Perform PHI construction.
|
|
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
|
|
LI->replaceAllUsesWith(V);
|
|
|
|
if (isa<PHINode>(V))
|
|
V->takeName(LI);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (LI->getDebugLoc())
|
|
I->setDebugLoc(LI->getDebugLoc());
|
|
if (V->getType()->getScalarType()->isPointerTy())
|
|
MD->invalidateCachedPointerInfo(V);
|
|
markInstructionForDeletion(LI);
|
|
++NumGVNLoad;
|
|
return true;
|
|
}
|
|
|
|
// Step 4: Eliminate partial redundancy.
|
|
if (!EnablePRE || !EnableLoadPRE)
|
|
return false;
|
|
|
|
return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
|
|
}
|
|
|
|
bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
|
|
assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
|
|
"This function can only be called with llvm.assume intrinsic");
|
|
Value *V = IntrinsicI->getArgOperand(0);
|
|
|
|
if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
|
|
if (Cond->isZero()) {
|
|
Type *Int8Ty = Type::getInt8Ty(V->getContext());
|
|
// Insert a new store to null instruction before the load to indicate that
|
|
// this code is not reachable. FIXME: We could insert unreachable
|
|
// instruction directly because we can modify the CFG.
|
|
new StoreInst(UndefValue::get(Int8Ty),
|
|
Constant::getNullValue(Int8Ty->getPointerTo()),
|
|
IntrinsicI);
|
|
}
|
|
markInstructionForDeletion(IntrinsicI);
|
|
return false;
|
|
}
|
|
|
|
Constant *True = ConstantInt::getTrue(V->getContext());
|
|
bool Changed = false;
|
|
|
|
for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
|
|
BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
|
|
|
|
// This property is only true in dominated successors, propagateEquality
|
|
// will check dominance for us.
|
|
Changed |= propagateEquality(V, True, Edge, false);
|
|
}
|
|
|
|
// We can replace assume value with true, which covers cases like this:
|
|
// call void @llvm.assume(i1 %cmp)
|
|
// br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
|
|
ReplaceWithConstMap[V] = True;
|
|
|
|
// If one of *cmp *eq operand is const, adding it to map will cover this:
|
|
// %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
|
|
// call void @llvm.assume(i1 %cmp)
|
|
// ret float %0 ; will change it to ret float 3.000000e+00
|
|
if (auto *CmpI = dyn_cast<CmpInst>(V)) {
|
|
if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
|
|
CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
|
|
(CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
|
|
CmpI->getFastMathFlags().noNaNs())) {
|
|
Value *CmpLHS = CmpI->getOperand(0);
|
|
Value *CmpRHS = CmpI->getOperand(1);
|
|
if (isa<Constant>(CmpLHS))
|
|
std::swap(CmpLHS, CmpRHS);
|
|
auto *RHSConst = dyn_cast<Constant>(CmpRHS);
|
|
|
|
// If only one operand is constant.
|
|
if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
|
|
ReplaceWithConstMap[CmpLHS] = RHSConst;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static void patchReplacementInstruction(Instruction *I, Value *Repl) {
|
|
// Patch the replacement so that it is not more restrictive than the value
|
|
// being replaced.
|
|
BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
|
|
BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
|
|
if (Op && ReplOp)
|
|
ReplOp->andIRFlags(Op);
|
|
|
|
if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
|
|
// FIXME: If both the original and replacement value are part of the
|
|
// same control-flow region (meaning that the execution of one
|
|
// guarantees the execution of the other), then we can combine the
|
|
// noalias scopes here and do better than the general conservative
|
|
// answer used in combineMetadata().
|
|
|
|
// In general, GVN unifies expressions over different control-flow
|
|
// regions, and so we need a conservative combination of the noalias
|
|
// scopes.
|
|
static const unsigned KnownIDs[] = {
|
|
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias, LLVMContext::MD_range,
|
|
LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
|
|
LLVMContext::MD_invariant_group};
|
|
combineMetadata(ReplInst, I, KnownIDs);
|
|
}
|
|
}
|
|
|
|
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
|
|
patchReplacementInstruction(I, Repl);
|
|
I->replaceAllUsesWith(Repl);
|
|
}
|
|
|
|
/// Attempt to eliminate a load, first by eliminating it
|
|
/// locally, and then attempting non-local elimination if that fails.
|
|
bool GVN::processLoad(LoadInst *L) {
|
|
if (!MD)
|
|
return false;
|
|
|
|
if (!L->isSimple())
|
|
return false;
|
|
|
|
if (L->use_empty()) {
|
|
markInstructionForDeletion(L);
|
|
return true;
|
|
}
|
|
|
|
// ... to a pointer that has been loaded from before...
|
|
MemDepResult Dep = MD->getDependency(L);
|
|
const DataLayout &DL = L->getModule()->getDataLayout();
|
|
|
|
// If we have a clobber and target data is around, see if this is a clobber
|
|
// that we can fix up through code synthesis.
|
|
if (Dep.isClobber()) {
|
|
// Check to see if we have something like this:
|
|
// store i32 123, i32* %P
|
|
// %A = bitcast i32* %P to i8*
|
|
// %B = gep i8* %A, i32 1
|
|
// %C = load i8* %B
|
|
//
|
|
// We could do that by recognizing if the clobber instructions are obviously
|
|
// a common base + constant offset, and if the previous store (or memset)
|
|
// completely covers this load. This sort of thing can happen in bitfield
|
|
// access code.
|
|
Value *AvailVal = nullptr;
|
|
if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
|
|
int Offset = AnalyzeLoadFromClobberingStore(
|
|
L->getType(), L->getPointerOperand(), DepSI);
|
|
if (Offset != -1)
|
|
AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
|
|
L->getType(), L, DL);
|
|
}
|
|
|
|
// Check to see if we have something like this:
|
|
// load i32* P
|
|
// load i8* (P+1)
|
|
// if we have this, replace the later with an extraction from the former.
|
|
if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
|
|
// If this is a clobber and L is the first instruction in its block, then
|
|
// we have the first instruction in the entry block.
|
|
if (DepLI == L)
|
|
return false;
|
|
|
|
int Offset = AnalyzeLoadFromClobberingLoad(
|
|
L->getType(), L->getPointerOperand(), DepLI, DL);
|
|
if (Offset != -1)
|
|
AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
|
|
}
|
|
|
|
// If the clobbering value is a memset/memcpy/memmove, see if we can forward
|
|
// a value on from it.
|
|
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
|
|
int Offset = AnalyzeLoadFromClobberingMemInst(
|
|
L->getType(), L->getPointerOperand(), DepMI, DL);
|
|
if (Offset != -1)
|
|
AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, DL);
|
|
}
|
|
|
|
if (AvailVal) {
|
|
DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
|
|
<< *AvailVal << '\n' << *L << "\n\n\n");
|
|
|
|
// Replace the load!
|
|
L->replaceAllUsesWith(AvailVal);
|
|
if (AvailVal->getType()->getScalarType()->isPointerTy())
|
|
MD->invalidateCachedPointerInfo(AvailVal);
|
|
markInstructionForDeletion(L);
|
|
++NumGVNLoad;
|
|
return true;
|
|
}
|
|
|
|
// If the value isn't available, don't do anything!
|
|
DEBUG(
|
|
// fast print dep, using operator<< on instruction is too slow.
|
|
dbgs() << "GVN: load ";
|
|
L->printAsOperand(dbgs());
|
|
Instruction *I = Dep.getInst();
|
|
dbgs() << " is clobbered by " << *I << '\n';
|
|
);
|
|
return false;
|
|
}
|
|
|
|
// If it is defined in another block, try harder.
|
|
if (Dep.isNonLocal())
|
|
return processNonLocalLoad(L);
|
|
|
|
if (!Dep.isDef()) {
|
|
DEBUG(
|
|
// fast print dep, using operator<< on instruction is too slow.
|
|
dbgs() << "GVN: load ";
|
|
L->printAsOperand(dbgs());
|
|
dbgs() << " has unknown dependence\n";
|
|
);
|
|
return false;
|
|
}
|
|
|
|
Instruction *DepInst = Dep.getInst();
|
|
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
|
|
Value *StoredVal = DepSI->getValueOperand();
|
|
|
|
// The store and load are to a must-aliased pointer, but they may not
|
|
// actually have the same type. See if we know how to reuse the stored
|
|
// value (depending on its type).
|
|
if (StoredVal->getType() != L->getType()) {
|
|
IRBuilder<> Builder(L);
|
|
StoredVal =
|
|
CoerceAvailableValueToLoadType(StoredVal, L->getType(), Builder, DL);
|
|
if (!StoredVal)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
|
|
<< '\n' << *L << "\n\n\n");
|
|
}
|
|
|
|
// Remove it!
|
|
L->replaceAllUsesWith(StoredVal);
|
|
if (StoredVal->getType()->getScalarType()->isPointerTy())
|
|
MD->invalidateCachedPointerInfo(StoredVal);
|
|
markInstructionForDeletion(L);
|
|
++NumGVNLoad;
|
|
return true;
|
|
}
|
|
|
|
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
|
|
Value *AvailableVal = DepLI;
|
|
|
|
// The loads are of a must-aliased pointer, but they may not actually have
|
|
// the same type. See if we know how to reuse the previously loaded value
|
|
// (depending on its type).
|
|
if (DepLI->getType() != L->getType()) {
|
|
IRBuilder<> Builder(L);
|
|
AvailableVal =
|
|
CoerceAvailableValueToLoadType(DepLI, L->getType(), Builder, DL);
|
|
if (!AvailableVal)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
|
|
<< "\n" << *L << "\n\n\n");
|
|
}
|
|
|
|
// Remove it!
|
|
patchAndReplaceAllUsesWith(L, AvailableVal);
|
|
if (DepLI->getType()->getScalarType()->isPointerTy())
|
|
MD->invalidateCachedPointerInfo(DepLI);
|
|
markInstructionForDeletion(L);
|
|
++NumGVNLoad;
|
|
return true;
|
|
}
|
|
|
|
// If this load really doesn't depend on anything, then we must be loading an
|
|
// undef value. This can happen when loading for a fresh allocation with no
|
|
// intervening stores, for example.
|
|
if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
|
|
L->replaceAllUsesWith(UndefValue::get(L->getType()));
|
|
markInstructionForDeletion(L);
|
|
++NumGVNLoad;
|
|
return true;
|
|
}
|
|
|
|
// If this load occurs either right after a lifetime begin,
|
|
// then the loaded value is undefined.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
|
|
L->replaceAllUsesWith(UndefValue::get(L->getType()));
|
|
markInstructionForDeletion(L);
|
|
++NumGVNLoad;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If this load follows a calloc (which zero initializes memory),
|
|
// then the loaded value is zero
|
|
if (isCallocLikeFn(DepInst, TLI)) {
|
|
L->replaceAllUsesWith(Constant::getNullValue(L->getType()));
|
|
markInstructionForDeletion(L);
|
|
++NumGVNLoad;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// In order to find a leader for a given value number at a
|
|
// specific basic block, we first obtain the list of all Values for that number,
|
|
// and then scan the list to find one whose block dominates the block in
|
|
// question. This is fast because dominator tree queries consist of only
|
|
// a few comparisons of DFS numbers.
|
|
Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
|
|
LeaderTableEntry Vals = LeaderTable[num];
|
|
if (!Vals.Val) return nullptr;
|
|
|
|
Value *Val = nullptr;
|
|
if (DT->dominates(Vals.BB, BB)) {
|
|
Val = Vals.Val;
|
|
if (isa<Constant>(Val)) return Val;
|
|
}
|
|
|
|
LeaderTableEntry* Next = Vals.Next;
|
|
while (Next) {
|
|
if (DT->dominates(Next->BB, BB)) {
|
|
if (isa<Constant>(Next->Val)) return Next->Val;
|
|
if (!Val) Val = Next->Val;
|
|
}
|
|
|
|
Next = Next->Next;
|
|
}
|
|
|
|
return Val;
|
|
}
|
|
|
|
/// There is an edge from 'Src' to 'Dst'. Return
|
|
/// true if every path from the entry block to 'Dst' passes via this edge. In
|
|
/// particular 'Dst' must not be reachable via another edge from 'Src'.
|
|
static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
|
|
DominatorTree *DT) {
|
|
// While in theory it is interesting to consider the case in which Dst has
|
|
// more than one predecessor, because Dst might be part of a loop which is
|
|
// only reachable from Src, in practice it is pointless since at the time
|
|
// GVN runs all such loops have preheaders, which means that Dst will have
|
|
// been changed to have only one predecessor, namely Src.
|
|
const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
|
|
const BasicBlock *Src = E.getStart();
|
|
assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
|
|
(void)Src;
|
|
return Pred != nullptr;
|
|
}
|
|
|
|
// Tries to replace instruction with const, using information from
|
|
// ReplaceWithConstMap.
|
|
bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
|
|
bool Changed = false;
|
|
for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
|
|
Value *Operand = Instr->getOperand(OpNum);
|
|
auto it = ReplaceWithConstMap.find(Operand);
|
|
if (it != ReplaceWithConstMap.end()) {
|
|
assert(!isa<Constant>(Operand) &&
|
|
"Replacing constants with constants is invalid");
|
|
DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second
|
|
<< " in instruction " << *Instr << '\n');
|
|
Instr->setOperand(OpNum, it->second);
|
|
Changed = true;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// The given values are known to be equal in every block
|
|
/// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
|
|
/// 'RHS' everywhere in the scope. Returns whether a change was made.
|
|
/// If DominatesByEdge is false, then it means that it is dominated by Root.End.
|
|
bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
|
|
bool DominatesByEdge) {
|
|
SmallVector<std::pair<Value*, Value*>, 4> Worklist;
|
|
Worklist.push_back(std::make_pair(LHS, RHS));
|
|
bool Changed = false;
|
|
// For speed, compute a conservative fast approximation to
|
|
// DT->dominates(Root, Root.getEnd());
|
|
bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
|
|
|
|
while (!Worklist.empty()) {
|
|
std::pair<Value*, Value*> Item = Worklist.pop_back_val();
|
|
LHS = Item.first; RHS = Item.second;
|
|
|
|
if (LHS == RHS)
|
|
continue;
|
|
assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
|
|
|
|
// Don't try to propagate equalities between constants.
|
|
if (isa<Constant>(LHS) && isa<Constant>(RHS))
|
|
continue;
|
|
|
|
// Prefer a constant on the right-hand side, or an Argument if no constants.
|
|
if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
|
|
std::swap(LHS, RHS);
|
|
assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
|
|
|
|
// If there is no obvious reason to prefer the left-hand side over the
|
|
// right-hand side, ensure the longest lived term is on the right-hand side,
|
|
// so the shortest lived term will be replaced by the longest lived.
|
|
// This tends to expose more simplifications.
|
|
uint32_t LVN = VN.lookup_or_add(LHS);
|
|
if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
|
|
(isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
|
|
// Move the 'oldest' value to the right-hand side, using the value number
|
|
// as a proxy for age.
|
|
uint32_t RVN = VN.lookup_or_add(RHS);
|
|
if (LVN < RVN) {
|
|
std::swap(LHS, RHS);
|
|
LVN = RVN;
|
|
}
|
|
}
|
|
|
|
// If value numbering later sees that an instruction in the scope is equal
|
|
// to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
|
|
// the invariant that instructions only occur in the leader table for their
|
|
// own value number (this is used by removeFromLeaderTable), do not do this
|
|
// if RHS is an instruction (if an instruction in the scope is morphed into
|
|
// LHS then it will be turned into RHS by the next GVN iteration anyway, so
|
|
// using the leader table is about compiling faster, not optimizing better).
|
|
// The leader table only tracks basic blocks, not edges. Only add to if we
|
|
// have the simple case where the edge dominates the end.
|
|
if (RootDominatesEnd && !isa<Instruction>(RHS))
|
|
addToLeaderTable(LVN, RHS, Root.getEnd());
|
|
|
|
// Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
|
|
// LHS always has at least one use that is not dominated by Root, this will
|
|
// never do anything if LHS has only one use.
|
|
if (!LHS->hasOneUse()) {
|
|
unsigned NumReplacements =
|
|
DominatesByEdge
|
|
? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
|
|
: replaceDominatedUsesWith(LHS, RHS, *DT, Root.getEnd());
|
|
|
|
Changed |= NumReplacements > 0;
|
|
NumGVNEqProp += NumReplacements;
|
|
}
|
|
|
|
// Now try to deduce additional equalities from this one. For example, if
|
|
// the known equality was "(A != B)" == "false" then it follows that A and B
|
|
// are equal in the scope. Only boolean equalities with an explicit true or
|
|
// false RHS are currently supported.
|
|
if (!RHS->getType()->isIntegerTy(1))
|
|
// Not a boolean equality - bail out.
|
|
continue;
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
|
|
if (!CI)
|
|
// RHS neither 'true' nor 'false' - bail out.
|
|
continue;
|
|
// Whether RHS equals 'true'. Otherwise it equals 'false'.
|
|
bool isKnownTrue = CI->isAllOnesValue();
|
|
bool isKnownFalse = !isKnownTrue;
|
|
|
|
// If "A && B" is known true then both A and B are known true. If "A || B"
|
|
// is known false then both A and B are known false.
|
|
Value *A, *B;
|
|
if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
|
|
(isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
|
|
Worklist.push_back(std::make_pair(A, RHS));
|
|
Worklist.push_back(std::make_pair(B, RHS));
|
|
continue;
|
|
}
|
|
|
|
// If we are propagating an equality like "(A == B)" == "true" then also
|
|
// propagate the equality A == B. When propagating a comparison such as
|
|
// "(A >= B)" == "true", replace all instances of "A < B" with "false".
|
|
if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
|
|
Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
|
|
|
|
// If "A == B" is known true, or "A != B" is known false, then replace
|
|
// A with B everywhere in the scope.
|
|
if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
|
|
(isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
|
|
Worklist.push_back(std::make_pair(Op0, Op1));
|
|
|
|
// Handle the floating point versions of equality comparisons too.
|
|
if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
|
|
(isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
|
|
|
|
// Floating point -0.0 and 0.0 compare equal, so we can only
|
|
// propagate values if we know that we have a constant and that
|
|
// its value is non-zero.
|
|
|
|
// FIXME: We should do this optimization if 'no signed zeros' is
|
|
// applicable via an instruction-level fast-math-flag or some other
|
|
// indicator that relaxed FP semantics are being used.
|
|
|
|
if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
|
|
Worklist.push_back(std::make_pair(Op0, Op1));
|
|
}
|
|
|
|
// If "A >= B" is known true, replace "A < B" with false everywhere.
|
|
CmpInst::Predicate NotPred = Cmp->getInversePredicate();
|
|
Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
|
|
// Since we don't have the instruction "A < B" immediately to hand, work
|
|
// out the value number that it would have and use that to find an
|
|
// appropriate instruction (if any).
|
|
uint32_t NextNum = VN.getNextUnusedValueNumber();
|
|
uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
|
|
// If the number we were assigned was brand new then there is no point in
|
|
// looking for an instruction realizing it: there cannot be one!
|
|
if (Num < NextNum) {
|
|
Value *NotCmp = findLeader(Root.getEnd(), Num);
|
|
if (NotCmp && isa<Instruction>(NotCmp)) {
|
|
unsigned NumReplacements =
|
|
DominatesByEdge
|
|
? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
|
|
: replaceDominatedUsesWith(NotCmp, NotVal, *DT,
|
|
Root.getEnd());
|
|
Changed |= NumReplacements > 0;
|
|
NumGVNEqProp += NumReplacements;
|
|
}
|
|
}
|
|
// Ensure that any instruction in scope that gets the "A < B" value number
|
|
// is replaced with false.
|
|
// The leader table only tracks basic blocks, not edges. Only add to if we
|
|
// have the simple case where the edge dominates the end.
|
|
if (RootDominatesEnd)
|
|
addToLeaderTable(Num, NotVal, Root.getEnd());
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// When calculating availability, handle an instruction
|
|
/// by inserting it into the appropriate sets
|
|
bool GVN::processInstruction(Instruction *I) {
|
|
// Ignore dbg info intrinsics.
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
return false;
|
|
|
|
// If the instruction can be easily simplified then do so now in preference
|
|
// to value numbering it. Value numbering often exposes redundancies, for
|
|
// example if it determines that %y is equal to %x then the instruction
|
|
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
|
|
I->replaceAllUsesWith(V);
|
|
if (MD && V->getType()->getScalarType()->isPointerTy())
|
|
MD->invalidateCachedPointerInfo(V);
|
|
markInstructionForDeletion(I);
|
|
++NumGVNSimpl;
|
|
return true;
|
|
}
|
|
|
|
if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
|
|
if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
|
|
return processAssumeIntrinsic(IntrinsicI);
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (processLoad(LI))
|
|
return true;
|
|
|
|
unsigned Num = VN.lookup_or_add(LI);
|
|
addToLeaderTable(Num, LI, LI->getParent());
|
|
return false;
|
|
}
|
|
|
|
// For conditional branches, we can perform simple conditional propagation on
|
|
// the condition value itself.
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
|
|
if (!BI->isConditional())
|
|
return false;
|
|
|
|
if (isa<Constant>(BI->getCondition()))
|
|
return processFoldableCondBr(BI);
|
|
|
|
Value *BranchCond = BI->getCondition();
|
|
BasicBlock *TrueSucc = BI->getSuccessor(0);
|
|
BasicBlock *FalseSucc = BI->getSuccessor(1);
|
|
// Avoid multiple edges early.
|
|
if (TrueSucc == FalseSucc)
|
|
return false;
|
|
|
|
BasicBlock *Parent = BI->getParent();
|
|
bool Changed = false;
|
|
|
|
Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
|
|
BasicBlockEdge TrueE(Parent, TrueSucc);
|
|
Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
|
|
|
|
Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
|
|
BasicBlockEdge FalseE(Parent, FalseSucc);
|
|
Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// For switches, propagate the case values into the case destinations.
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
|
|
Value *SwitchCond = SI->getCondition();
|
|
BasicBlock *Parent = SI->getParent();
|
|
bool Changed = false;
|
|
|
|
// Remember how many outgoing edges there are to every successor.
|
|
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
|
|
for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
|
|
++SwitchEdges[SI->getSuccessor(i)];
|
|
|
|
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
|
|
i != e; ++i) {
|
|
BasicBlock *Dst = i.getCaseSuccessor();
|
|
// If there is only a single edge, propagate the case value into it.
|
|
if (SwitchEdges.lookup(Dst) == 1) {
|
|
BasicBlockEdge E(Parent, Dst);
|
|
Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E, true);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
// Instructions with void type don't return a value, so there's
|
|
// no point in trying to find redundancies in them.
|
|
if (I->getType()->isVoidTy())
|
|
return false;
|
|
|
|
uint32_t NextNum = VN.getNextUnusedValueNumber();
|
|
unsigned Num = VN.lookup_or_add(I);
|
|
|
|
// Allocations are always uniquely numbered, so we can save time and memory
|
|
// by fast failing them.
|
|
if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
|
|
addToLeaderTable(Num, I, I->getParent());
|
|
return false;
|
|
}
|
|
|
|
// If the number we were assigned was a brand new VN, then we don't
|
|
// need to do a lookup to see if the number already exists
|
|
// somewhere in the domtree: it can't!
|
|
if (Num >= NextNum) {
|
|
addToLeaderTable(Num, I, I->getParent());
|
|
return false;
|
|
}
|
|
|
|
// Perform fast-path value-number based elimination of values inherited from
|
|
// dominators.
|
|
Value *Repl = findLeader(I->getParent(), Num);
|
|
if (!Repl) {
|
|
// Failure, just remember this instance for future use.
|
|
addToLeaderTable(Num, I, I->getParent());
|
|
return false;
|
|
} else if (Repl == I) {
|
|
// If I was the result of a shortcut PRE, it might already be in the table
|
|
// and the best replacement for itself. Nothing to do.
|
|
return false;
|
|
}
|
|
|
|
// Remove it!
|
|
patchAndReplaceAllUsesWith(I, Repl);
|
|
if (MD && Repl->getType()->getScalarType()->isPointerTy())
|
|
MD->invalidateCachedPointerInfo(Repl);
|
|
markInstructionForDeletion(I);
|
|
return true;
|
|
}
|
|
|
|
/// runOnFunction - This is the main transformation entry point for a function.
|
|
bool GVN::runOnFunction(Function& F) {
|
|
if (skipOptnoneFunction(F))
|
|
return false;
|
|
|
|
if (!NoLoads)
|
|
MD = &getAnalysis<MemoryDependenceAnalysis>();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
VN.setAliasAnalysis(&getAnalysis<AAResultsWrapperPass>().getAAResults());
|
|
VN.setMemDep(MD);
|
|
VN.setDomTree(DT);
|
|
|
|
bool Changed = false;
|
|
bool ShouldContinue = true;
|
|
|
|
// Merge unconditional branches, allowing PRE to catch more
|
|
// optimization opportunities.
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
|
|
BasicBlock *BB = &*FI++;
|
|
|
|
bool removedBlock =
|
|
MergeBlockIntoPredecessor(BB, DT, /* LoopInfo */ nullptr, MD);
|
|
if (removedBlock) ++NumGVNBlocks;
|
|
|
|
Changed |= removedBlock;
|
|
}
|
|
|
|
unsigned Iteration = 0;
|
|
while (ShouldContinue) {
|
|
DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
|
|
ShouldContinue = iterateOnFunction(F);
|
|
Changed |= ShouldContinue;
|
|
++Iteration;
|
|
}
|
|
|
|
if (EnablePRE) {
|
|
// Fabricate val-num for dead-code in order to suppress assertion in
|
|
// performPRE().
|
|
assignValNumForDeadCode();
|
|
bool PREChanged = true;
|
|
while (PREChanged) {
|
|
PREChanged = performPRE(F);
|
|
Changed |= PREChanged;
|
|
}
|
|
}
|
|
|
|
// FIXME: Should perform GVN again after PRE does something. PRE can move
|
|
// computations into blocks where they become fully redundant. Note that
|
|
// we can't do this until PRE's critical edge splitting updates memdep.
|
|
// Actually, when this happens, we should just fully integrate PRE into GVN.
|
|
|
|
cleanupGlobalSets();
|
|
// Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
|
|
// iteration.
|
|
DeadBlocks.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool GVN::processBlock(BasicBlock *BB) {
|
|
// FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
|
|
// (and incrementing BI before processing an instruction).
|
|
assert(InstrsToErase.empty() &&
|
|
"We expect InstrsToErase to be empty across iterations");
|
|
if (DeadBlocks.count(BB))
|
|
return false;
|
|
|
|
// Clearing map before every BB because it can be used only for single BB.
|
|
ReplaceWithConstMap.clear();
|
|
bool ChangedFunction = false;
|
|
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
|
|
BI != BE;) {
|
|
if (!ReplaceWithConstMap.empty())
|
|
ChangedFunction |= replaceOperandsWithConsts(&*BI);
|
|
ChangedFunction |= processInstruction(&*BI);
|
|
|
|
if (InstrsToErase.empty()) {
|
|
++BI;
|
|
continue;
|
|
}
|
|
|
|
// If we need some instructions deleted, do it now.
|
|
NumGVNInstr += InstrsToErase.size();
|
|
|
|
// Avoid iterator invalidation.
|
|
bool AtStart = BI == BB->begin();
|
|
if (!AtStart)
|
|
--BI;
|
|
|
|
for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
|
|
E = InstrsToErase.end(); I != E; ++I) {
|
|
DEBUG(dbgs() << "GVN removed: " << **I << '\n');
|
|
if (MD) MD->removeInstruction(*I);
|
|
DEBUG(verifyRemoved(*I));
|
|
(*I)->eraseFromParent();
|
|
}
|
|
InstrsToErase.clear();
|
|
|
|
if (AtStart)
|
|
BI = BB->begin();
|
|
else
|
|
++BI;
|
|
}
|
|
|
|
return ChangedFunction;
|
|
}
|
|
|
|
// Instantiate an expression in a predecessor that lacked it.
|
|
bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
|
|
unsigned int ValNo) {
|
|
// Because we are going top-down through the block, all value numbers
|
|
// will be available in the predecessor by the time we need them. Any
|
|
// that weren't originally present will have been instantiated earlier
|
|
// in this loop.
|
|
bool success = true;
|
|
for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
|
|
Value *Op = Instr->getOperand(i);
|
|
if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
|
|
continue;
|
|
|
|
if (Value *V = findLeader(Pred, VN.lookup(Op))) {
|
|
Instr->setOperand(i, V);
|
|
} else {
|
|
success = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Fail out if we encounter an operand that is not available in
|
|
// the PRE predecessor. This is typically because of loads which
|
|
// are not value numbered precisely.
|
|
if (!success)
|
|
return false;
|
|
|
|
Instr->insertBefore(Pred->getTerminator());
|
|
Instr->setName(Instr->getName() + ".pre");
|
|
Instr->setDebugLoc(Instr->getDebugLoc());
|
|
VN.add(Instr, ValNo);
|
|
|
|
// Update the availability map to include the new instruction.
|
|
addToLeaderTable(ValNo, Instr, Pred);
|
|
return true;
|
|
}
|
|
|
|
bool GVN::performScalarPRE(Instruction *CurInst) {
|
|
SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
|
|
|
|
if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
|
|
isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
|
|
CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
|
|
isa<DbgInfoIntrinsic>(CurInst))
|
|
return false;
|
|
|
|
// Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
|
|
// sinking the compare again, and it would force the code generator to
|
|
// move the i1 from processor flags or predicate registers into a general
|
|
// purpose register.
|
|
if (isa<CmpInst>(CurInst))
|
|
return false;
|
|
|
|
// We don't currently value number ANY inline asm calls.
|
|
if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
|
|
if (CallI->isInlineAsm())
|
|
return false;
|
|
|
|
uint32_t ValNo = VN.lookup(CurInst);
|
|
|
|
// Look for the predecessors for PRE opportunities. We're
|
|
// only trying to solve the basic diamond case, where
|
|
// a value is computed in the successor and one predecessor,
|
|
// but not the other. We also explicitly disallow cases
|
|
// where the successor is its own predecessor, because they're
|
|
// more complicated to get right.
|
|
unsigned NumWith = 0;
|
|
unsigned NumWithout = 0;
|
|
BasicBlock *PREPred = nullptr;
|
|
BasicBlock *CurrentBlock = CurInst->getParent();
|
|
predMap.clear();
|
|
|
|
for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
|
|
PI != PE; ++PI) {
|
|
BasicBlock *P = *PI;
|
|
// We're not interested in PRE where the block is its
|
|
// own predecessor, or in blocks with predecessors
|
|
// that are not reachable.
|
|
if (P == CurrentBlock) {
|
|
NumWithout = 2;
|
|
break;
|
|
} else if (!DT->isReachableFromEntry(P)) {
|
|
NumWithout = 2;
|
|
break;
|
|
}
|
|
|
|
Value *predV = findLeader(P, ValNo);
|
|
if (!predV) {
|
|
predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
|
|
PREPred = P;
|
|
++NumWithout;
|
|
} else if (predV == CurInst) {
|
|
/* CurInst dominates this predecessor. */
|
|
NumWithout = 2;
|
|
break;
|
|
} else {
|
|
predMap.push_back(std::make_pair(predV, P));
|
|
++NumWith;
|
|
}
|
|
}
|
|
|
|
// Don't do PRE when it might increase code size, i.e. when
|
|
// we would need to insert instructions in more than one pred.
|
|
if (NumWithout > 1 || NumWith == 0)
|
|
return false;
|
|
|
|
// We may have a case where all predecessors have the instruction,
|
|
// and we just need to insert a phi node. Otherwise, perform
|
|
// insertion.
|
|
Instruction *PREInstr = nullptr;
|
|
|
|
if (NumWithout != 0) {
|
|
// Don't do PRE across indirect branch.
|
|
if (isa<IndirectBrInst>(PREPred->getTerminator()))
|
|
return false;
|
|
|
|
// We can't do PRE safely on a critical edge, so instead we schedule
|
|
// the edge to be split and perform the PRE the next time we iterate
|
|
// on the function.
|
|
unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
|
|
if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
|
|
toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
|
|
return false;
|
|
}
|
|
// We need to insert somewhere, so let's give it a shot
|
|
PREInstr = CurInst->clone();
|
|
if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) {
|
|
// If we failed insertion, make sure we remove the instruction.
|
|
DEBUG(verifyRemoved(PREInstr));
|
|
delete PREInstr;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Either we should have filled in the PRE instruction, or we should
|
|
// not have needed insertions.
|
|
assert (PREInstr != nullptr || NumWithout == 0);
|
|
|
|
++NumGVNPRE;
|
|
|
|
// Create a PHI to make the value available in this block.
|
|
PHINode *Phi =
|
|
PHINode::Create(CurInst->getType(), predMap.size(),
|
|
CurInst->getName() + ".pre-phi", &CurrentBlock->front());
|
|
for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
|
|
if (Value *V = predMap[i].first)
|
|
Phi->addIncoming(V, predMap[i].second);
|
|
else
|
|
Phi->addIncoming(PREInstr, PREPred);
|
|
}
|
|
|
|
VN.add(Phi, ValNo);
|
|
addToLeaderTable(ValNo, Phi, CurrentBlock);
|
|
Phi->setDebugLoc(CurInst->getDebugLoc());
|
|
CurInst->replaceAllUsesWith(Phi);
|
|
if (MD && Phi->getType()->getScalarType()->isPointerTy())
|
|
MD->invalidateCachedPointerInfo(Phi);
|
|
VN.erase(CurInst);
|
|
removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
|
|
|
|
DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
|
|
if (MD)
|
|
MD->removeInstruction(CurInst);
|
|
DEBUG(verifyRemoved(CurInst));
|
|
CurInst->eraseFromParent();
|
|
++NumGVNInstr;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Perform a purely local form of PRE that looks for diamond
|
|
/// control flow patterns and attempts to perform simple PRE at the join point.
|
|
bool GVN::performPRE(Function &F) {
|
|
bool Changed = false;
|
|
for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
|
|
// Nothing to PRE in the entry block.
|
|
if (CurrentBlock == &F.getEntryBlock())
|
|
continue;
|
|
|
|
// Don't perform PRE on an EH pad.
|
|
if (CurrentBlock->isEHPad())
|
|
continue;
|
|
|
|
for (BasicBlock::iterator BI = CurrentBlock->begin(),
|
|
BE = CurrentBlock->end();
|
|
BI != BE;) {
|
|
Instruction *CurInst = &*BI++;
|
|
Changed = performScalarPRE(CurInst);
|
|
}
|
|
}
|
|
|
|
if (splitCriticalEdges())
|
|
Changed = true;
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Split the critical edge connecting the given two blocks, and return
|
|
/// the block inserted to the critical edge.
|
|
BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
|
|
BasicBlock *BB =
|
|
SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
|
|
if (MD)
|
|
MD->invalidateCachedPredecessors();
|
|
return BB;
|
|
}
|
|
|
|
/// Split critical edges found during the previous
|
|
/// iteration that may enable further optimization.
|
|
bool GVN::splitCriticalEdges() {
|
|
if (toSplit.empty())
|
|
return false;
|
|
do {
|
|
std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
|
|
SplitCriticalEdge(Edge.first, Edge.second,
|
|
CriticalEdgeSplittingOptions(DT));
|
|
} while (!toSplit.empty());
|
|
if (MD) MD->invalidateCachedPredecessors();
|
|
return true;
|
|
}
|
|
|
|
/// Executes one iteration of GVN
|
|
bool GVN::iterateOnFunction(Function &F) {
|
|
cleanupGlobalSets();
|
|
|
|
// Top-down walk of the dominator tree
|
|
bool Changed = false;
|
|
// Save the blocks this function have before transformation begins. GVN may
|
|
// split critical edge, and hence may invalidate the RPO/DT iterator.
|
|
//
|
|
std::vector<BasicBlock *> BBVect;
|
|
BBVect.reserve(256);
|
|
// Needed for value numbering with phi construction to work.
|
|
ReversePostOrderTraversal<Function *> RPOT(&F);
|
|
for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
|
|
RE = RPOT.end();
|
|
RI != RE; ++RI)
|
|
BBVect.push_back(*RI);
|
|
|
|
for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
|
|
I != E; I++)
|
|
Changed |= processBlock(*I);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void GVN::cleanupGlobalSets() {
|
|
VN.clear();
|
|
LeaderTable.clear();
|
|
TableAllocator.Reset();
|
|
}
|
|
|
|
/// Verify that the specified instruction does not occur in our
|
|
/// internal data structures.
|
|
void GVN::verifyRemoved(const Instruction *Inst) const {
|
|
VN.verifyRemoved(Inst);
|
|
|
|
// Walk through the value number scope to make sure the instruction isn't
|
|
// ferreted away in it.
|
|
for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
|
|
I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
|
|
const LeaderTableEntry *Node = &I->second;
|
|
assert(Node->Val != Inst && "Inst still in value numbering scope!");
|
|
|
|
while (Node->Next) {
|
|
Node = Node->Next;
|
|
assert(Node->Val != Inst && "Inst still in value numbering scope!");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// BB is declared dead, which implied other blocks become dead as well. This
|
|
/// function is to add all these blocks to "DeadBlocks". For the dead blocks'
|
|
/// live successors, update their phi nodes by replacing the operands
|
|
/// corresponding to dead blocks with UndefVal.
|
|
void GVN::addDeadBlock(BasicBlock *BB) {
|
|
SmallVector<BasicBlock *, 4> NewDead;
|
|
SmallSetVector<BasicBlock *, 4> DF;
|
|
|
|
NewDead.push_back(BB);
|
|
while (!NewDead.empty()) {
|
|
BasicBlock *D = NewDead.pop_back_val();
|
|
if (DeadBlocks.count(D))
|
|
continue;
|
|
|
|
// All blocks dominated by D are dead.
|
|
SmallVector<BasicBlock *, 8> Dom;
|
|
DT->getDescendants(D, Dom);
|
|
DeadBlocks.insert(Dom.begin(), Dom.end());
|
|
|
|
// Figure out the dominance-frontier(D).
|
|
for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
|
|
E = Dom.end(); I != E; I++) {
|
|
BasicBlock *B = *I;
|
|
for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
|
|
BasicBlock *S = *SI;
|
|
if (DeadBlocks.count(S))
|
|
continue;
|
|
|
|
bool AllPredDead = true;
|
|
for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
|
|
if (!DeadBlocks.count(*PI)) {
|
|
AllPredDead = false;
|
|
break;
|
|
}
|
|
|
|
if (!AllPredDead) {
|
|
// S could be proved dead later on. That is why we don't update phi
|
|
// operands at this moment.
|
|
DF.insert(S);
|
|
} else {
|
|
// While S is not dominated by D, it is dead by now. This could take
|
|
// place if S already have a dead predecessor before D is declared
|
|
// dead.
|
|
NewDead.push_back(S);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For the dead blocks' live successors, update their phi nodes by replacing
|
|
// the operands corresponding to dead blocks with UndefVal.
|
|
for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
|
|
I != E; I++) {
|
|
BasicBlock *B = *I;
|
|
if (DeadBlocks.count(B))
|
|
continue;
|
|
|
|
SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
|
|
for (SmallVectorImpl<BasicBlock *>::iterator PI = Preds.begin(),
|
|
PE = Preds.end(); PI != PE; PI++) {
|
|
BasicBlock *P = *PI;
|
|
|
|
if (!DeadBlocks.count(P))
|
|
continue;
|
|
|
|
if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
|
|
if (BasicBlock *S = splitCriticalEdges(P, B))
|
|
DeadBlocks.insert(P = S);
|
|
}
|
|
|
|
for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
|
|
PHINode &Phi = cast<PHINode>(*II);
|
|
Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
|
|
UndefValue::get(Phi.getType()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the given branch is recognized as a foldable branch (i.e. conditional
|
|
// branch with constant condition), it will perform following analyses and
|
|
// transformation.
|
|
// 1) If the dead out-coming edge is a critical-edge, split it. Let
|
|
// R be the target of the dead out-coming edge.
|
|
// 1) Identify the set of dead blocks implied by the branch's dead outcoming
|
|
// edge. The result of this step will be {X| X is dominated by R}
|
|
// 2) Identify those blocks which haves at least one dead predecessor. The
|
|
// result of this step will be dominance-frontier(R).
|
|
// 3) Update the PHIs in DF(R) by replacing the operands corresponding to
|
|
// dead blocks with "UndefVal" in an hope these PHIs will optimized away.
|
|
//
|
|
// Return true iff *NEW* dead code are found.
|
|
bool GVN::processFoldableCondBr(BranchInst *BI) {
|
|
if (!BI || BI->isUnconditional())
|
|
return false;
|
|
|
|
// If a branch has two identical successors, we cannot declare either dead.
|
|
if (BI->getSuccessor(0) == BI->getSuccessor(1))
|
|
return false;
|
|
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
|
|
if (!Cond)
|
|
return false;
|
|
|
|
BasicBlock *DeadRoot = Cond->getZExtValue() ?
|
|
BI->getSuccessor(1) : BI->getSuccessor(0);
|
|
if (DeadBlocks.count(DeadRoot))
|
|
return false;
|
|
|
|
if (!DeadRoot->getSinglePredecessor())
|
|
DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
|
|
|
|
addDeadBlock(DeadRoot);
|
|
return true;
|
|
}
|
|
|
|
// performPRE() will trigger assert if it comes across an instruction without
|
|
// associated val-num. As it normally has far more live instructions than dead
|
|
// instructions, it makes more sense just to "fabricate" a val-number for the
|
|
// dead code than checking if instruction involved is dead or not.
|
|
void GVN::assignValNumForDeadCode() {
|
|
for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
|
|
E = DeadBlocks.end(); I != E; I++) {
|
|
BasicBlock *BB = *I;
|
|
for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
|
|
II != EE; II++) {
|
|
Instruction *Inst = &*II;
|
|
unsigned ValNum = VN.lookup_or_add(Inst);
|
|
addToLeaderTable(ValNum, Inst, BB);
|
|
}
|
|
}
|
|
}
|