mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-03 17:31:50 +00:00
b10cea86a9
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7586 91177308-0d34-0410-b5e6-96231b3b80d8
245 lines
8.4 KiB
C++
245 lines
8.4 KiB
C++
//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==//
|
|
//
|
|
// This file implements the generic part of a Scheduler description for a
|
|
// target. This functionality is defined in the llvm/Target/SchedInfo.h file.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetSchedInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
resourceId_t MachineResource::nextId = 0;
|
|
|
|
// Check if fromRVec and toRVec have *any* common entries.
|
|
// Assume the vectors are sorted in increasing order.
|
|
// Algorithm copied from function set_intersection() for sorted ranges
|
|
// (stl_algo.h).
|
|
//
|
|
inline static bool
|
|
RUConflict(const std::vector<resourceId_t>& fromRVec,
|
|
const std::vector<resourceId_t>& toRVec)
|
|
{
|
|
|
|
unsigned fN = fromRVec.size(), tN = toRVec.size();
|
|
unsigned fi = 0, ti = 0;
|
|
|
|
while (fi < fN && ti < tN) {
|
|
if (fromRVec[fi] < toRVec[ti])
|
|
++fi;
|
|
else if (toRVec[ti] < fromRVec[fi])
|
|
++ti;
|
|
else
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
static cycles_t
|
|
ComputeMinGap(const InstrRUsage &fromRU,
|
|
const InstrRUsage &toRU)
|
|
{
|
|
cycles_t minGap = 0;
|
|
|
|
if (fromRU.numBubbles > 0)
|
|
minGap = fromRU.numBubbles;
|
|
|
|
if (minGap < fromRU.numCycles) {
|
|
// only need to check from cycle `minGap' onwards
|
|
for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) {
|
|
// check if instr. #2 can start executing `gap' cycles after #1
|
|
// by checking for resource conflicts in each overlapping cycle
|
|
cycles_t numOverlap =std::min(fromRU.numCycles - gap, toRU.numCycles);
|
|
for (cycles_t c = 0; c <= numOverlap-1; c++)
|
|
if (RUConflict(fromRU.resourcesByCycle[gap + c],
|
|
toRU.resourcesByCycle[c])) {
|
|
// conflict found so minGap must be more than `gap'
|
|
minGap = gap+1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return minGap;
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// class TargetSchedInfo
|
|
// Interface to machine description for instruction scheduling
|
|
//---------------------------------------------------------------------------
|
|
|
|
TargetSchedInfo::TargetSchedInfo(const TargetMachine& tgt,
|
|
int NumSchedClasses,
|
|
const InstrClassRUsage* ClassRUsages,
|
|
const InstrRUsageDelta* UsageDeltas,
|
|
const InstrIssueDelta* IssueDeltas,
|
|
unsigned NumUsageDeltas,
|
|
unsigned NumIssueDeltas)
|
|
: target(tgt),
|
|
numSchedClasses(NumSchedClasses), mii(& tgt.getInstrInfo()),
|
|
classRUsages(ClassRUsages), usageDeltas(UsageDeltas),
|
|
issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas),
|
|
numIssueDeltas(NumIssueDeltas)
|
|
{}
|
|
|
|
void
|
|
TargetSchedInfo::initializeResources()
|
|
{
|
|
assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal()
|
|
&& "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
|
|
|
|
// First, compute common resource usage info for each class because
|
|
// most instructions will probably behave the same as their class.
|
|
// Cannot allocate a vector of InstrRUsage so new each one.
|
|
//
|
|
std::vector<InstrRUsage> instrRUForClasses;
|
|
instrRUForClasses.resize(numSchedClasses);
|
|
for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) {
|
|
// instrRUForClasses.push_back(new InstrRUsage);
|
|
instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
|
|
instrRUForClasses[sc].setTo(classRUsages[sc]);
|
|
}
|
|
|
|
computeInstrResources(instrRUForClasses);
|
|
computeIssueGaps(instrRUForClasses);
|
|
}
|
|
|
|
|
|
void
|
|
TargetSchedInfo::computeInstrResources(const std::vector<InstrRUsage>&
|
|
instrRUForClasses)
|
|
{
|
|
int numOpCodes = mii->getNumRealOpCodes();
|
|
instrRUsages.resize(numOpCodes);
|
|
|
|
// First get the resource usage information from the class resource usages.
|
|
for (MachineOpCode op = 0; op < numOpCodes; ++op) {
|
|
InstrSchedClass sc = getSchedClass(op);
|
|
assert(sc < numSchedClasses);
|
|
instrRUsages[op] = instrRUForClasses[sc];
|
|
}
|
|
|
|
// Now, modify the resource usages as specified in the deltas.
|
|
for (unsigned i = 0; i < numUsageDeltas; ++i) {
|
|
MachineOpCode op = usageDeltas[i].opCode;
|
|
assert(op < numOpCodes);
|
|
instrRUsages[op].addUsageDelta(usageDeltas[i]);
|
|
}
|
|
|
|
// Then modify the issue restrictions as specified in the deltas.
|
|
for (unsigned i = 0; i < numIssueDeltas; ++i) {
|
|
MachineOpCode op = issueDeltas[i].opCode;
|
|
assert(op < numOpCodes);
|
|
instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
TargetSchedInfo::computeIssueGaps(const std::vector<InstrRUsage>&
|
|
instrRUForClasses)
|
|
{
|
|
int numOpCodes = mii->getNumRealOpCodes();
|
|
issueGaps.resize(numOpCodes);
|
|
conflictLists.resize(numOpCodes);
|
|
|
|
assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
|
|
&& "numOpCodes invalid for implementation of class OpCodePair!");
|
|
|
|
// First, compute issue gaps between pairs of classes based on common
|
|
// resources usages for each class, because most instruction pairs will
|
|
// usually behave the same as their class.
|
|
//
|
|
int classPairGaps[numSchedClasses][numSchedClasses];
|
|
for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
|
|
for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) {
|
|
int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
|
|
instrRUForClasses[toSC]);
|
|
classPairGaps[fromSC][toSC] = classPairGap;
|
|
}
|
|
|
|
// Now, for each pair of instructions, use the class pair gap if both
|
|
// instructions have identical resource usage as their respective classes.
|
|
// If not, recompute the gap for the pair from scratch.
|
|
|
|
longestIssueConflict = 0;
|
|
|
|
for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
|
|
for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) {
|
|
int instrPairGap =
|
|
(instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
|
|
? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
|
|
: ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
|
|
|
|
if (instrPairGap > 0) {
|
|
this->setGap(instrPairGap, fromOp, toOp);
|
|
conflictLists[fromOp].push_back(toOp);
|
|
longestIssueConflict=std::max(longestIssueConflict, instrPairGap);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void InstrRUsage::setTo(const InstrClassRUsage& classRU) {
|
|
sameAsClass = true;
|
|
isSingleIssue = classRU.isSingleIssue;
|
|
breaksGroup = classRU.breaksGroup;
|
|
numBubbles = classRU.numBubbles;
|
|
|
|
for (unsigned i=0; i < classRU.numSlots; i++) {
|
|
unsigned slot = classRU.feasibleSlots[i];
|
|
assert(slot < feasibleSlots.size() && "Invalid slot specified!");
|
|
this->feasibleSlots[slot] = true;
|
|
}
|
|
|
|
numCycles = classRU.totCycles;
|
|
resourcesByCycle.resize(this->numCycles);
|
|
|
|
for (unsigned i=0; i < classRU.numRUEntries; i++)
|
|
for (unsigned c=classRU.V[i].startCycle, NC = c + classRU.V[i].numCycles;
|
|
c < NC; c++)
|
|
this->resourcesByCycle[c].push_back(classRU.V[i].resourceId);
|
|
|
|
// Sort each resource usage vector by resourceId_t to speed up conflict
|
|
// checking
|
|
for (unsigned i=0; i < this->resourcesByCycle.size(); i++)
|
|
sort(resourcesByCycle[i].begin(), resourcesByCycle[i].end());
|
|
}
|
|
|
|
// Add the extra resource usage requirements specified in the delta.
|
|
// Note that a negative value of `numCycles' means one entry for that
|
|
// resource should be deleted for each cycle.
|
|
//
|
|
void InstrRUsage::addUsageDelta(const InstrRUsageDelta &delta) {
|
|
int NC = delta.numCycles;
|
|
sameAsClass = false;
|
|
|
|
// resize the resources vector if more cycles are specified
|
|
unsigned maxCycles = this->numCycles;
|
|
maxCycles = std::max(maxCycles, delta.startCycle + abs(NC) - 1);
|
|
if (maxCycles > this->numCycles) {
|
|
this->resourcesByCycle.resize(maxCycles);
|
|
this->numCycles = maxCycles;
|
|
}
|
|
|
|
if (NC >= 0)
|
|
for (unsigned c=delta.startCycle, last=c+NC-1; c <= last; c++)
|
|
this->resourcesByCycle[c].push_back(delta.resourceId);
|
|
else
|
|
// Remove the resource from all NC cycles.
|
|
for (unsigned c=delta.startCycle, last=(c-NC)-1; c <= last; c++) {
|
|
// Look for the resource backwards so we remove the last entry
|
|
// for that resource in each cycle.
|
|
std::vector<resourceId_t>& rvec = this->resourcesByCycle[c];
|
|
int r;
|
|
for (r = rvec.size() - 1; r >= 0; r--)
|
|
if (rvec[r] == delta.resourceId) {
|
|
// found last entry for the resource
|
|
rvec.erase(rvec.begin() + r);
|
|
break;
|
|
}
|
|
assert(r >= 0 && "Resource to remove was unused in cycle c!");
|
|
}
|
|
}
|