llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
Ulrich Weigand 0291833580 [SystemZ] Improve use of conditional instructions
This patch moves formation of LOC-type instructions from (late)
IfConversion to the early if-conversion pass, and in some cases
additionally creates them directly from select instructions
during DAG instruction selection.

To make early if-conversion work, the patch implements the
canInsertSelect / insertSelect callbacks.  It also implements
the commuteInstructionImpl and FoldImmediate callbacks to
enable generation of the full range of LOC instructions.

Finally, the patch adds support for all instructions of the
load-store-on-condition-2 facility, which allows using LOC
instructions also for high registers.

Due to the use of the GRX32 register class to enable high registers,
we now also have to handle the cases where there are still no single
hardware instructions (conditional move from a low register to a high
register or vice versa).  These are converted back to a branch sequence
after register allocation.  Since the expandRAPseudos callback is not
allowed to create new basic blocks, this requires a simple new pass,
modelled after the ARM/AArch64 ExpandPseudos pass.

Overall, this patch causes significantly more LOC-type instructions
to be used, and results in a measurable performance improvement.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288028 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-28 13:34:08 +00:00

1420 lines
50 KiB
C++

//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the SystemZ target.
//
//===----------------------------------------------------------------------===//
#include "SystemZTargetMachine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "systemz-isel"
namespace {
// Used to build addressing modes.
struct SystemZAddressingMode {
// The shape of the address.
enum AddrForm {
// base+displacement
FormBD,
// base+displacement+index for load and store operands
FormBDXNormal,
// base+displacement+index for load address operands
FormBDXLA,
// base+displacement+index+ADJDYNALLOC
FormBDXDynAlloc
};
AddrForm Form;
// The type of displacement. The enum names here correspond directly
// to the definitions in SystemZOperand.td. We could split them into
// flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
enum DispRange {
Disp12Only,
Disp12Pair,
Disp20Only,
Disp20Only128,
Disp20Pair
};
DispRange DR;
// The parts of the address. The address is equivalent to:
//
// Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
SDValue Base;
int64_t Disp;
SDValue Index;
bool IncludesDynAlloc;
SystemZAddressingMode(AddrForm form, DispRange dr)
: Form(form), DR(dr), Base(), Disp(0), Index(),
IncludesDynAlloc(false) {}
// True if the address can have an index register.
bool hasIndexField() { return Form != FormBD; }
// True if the address can (and must) include ADJDYNALLOC.
bool isDynAlloc() { return Form == FormBDXDynAlloc; }
void dump() {
errs() << "SystemZAddressingMode " << this << '\n';
errs() << " Base ";
if (Base.getNode())
Base.getNode()->dump();
else
errs() << "null\n";
if (hasIndexField()) {
errs() << " Index ";
if (Index.getNode())
Index.getNode()->dump();
else
errs() << "null\n";
}
errs() << " Disp " << Disp;
if (IncludesDynAlloc)
errs() << " + ADJDYNALLOC";
errs() << '\n';
}
};
// Return a mask with Count low bits set.
static uint64_t allOnes(unsigned int Count) {
assert(Count <= 64);
if (Count > 63)
return UINT64_MAX;
return (uint64_t(1) << Count) - 1;
}
// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
// given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
// Rotate (I5). The combined operand value is effectively:
//
// (or (rotl Input, Rotate), ~Mask)
//
// for RNSBG and:
//
// (and (rotl Input, Rotate), Mask)
//
// otherwise. The output value has BitSize bits, although Input may be
// narrower (in which case the upper bits are don't care), or wider (in which
// case the result will be truncated as part of the operation).
struct RxSBGOperands {
RxSBGOperands(unsigned Op, SDValue N)
: Opcode(Op), BitSize(N.getValueSizeInBits()),
Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
Rotate(0) {}
unsigned Opcode;
unsigned BitSize;
uint64_t Mask;
SDValue Input;
unsigned Start;
unsigned End;
unsigned Rotate;
};
class SystemZDAGToDAGISel : public SelectionDAGISel {
const SystemZSubtarget *Subtarget;
// Used by SystemZOperands.td to create integer constants.
inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
}
const SystemZTargetMachine &getTargetMachine() const {
return static_cast<const SystemZTargetMachine &>(TM);
}
const SystemZInstrInfo *getInstrInfo() const {
return Subtarget->getInstrInfo();
}
// Try to fold more of the base or index of AM into AM, where IsBase
// selects between the base and index.
bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
// Try to describe N in AM, returning true on success.
bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
// Extract individual target operands from matched address AM.
void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
SDValue &Base, SDValue &Disp) const;
void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
SDValue &Base, SDValue &Disp, SDValue &Index) const;
// Try to match Addr as a FormBD address with displacement type DR.
// Return true on success, storing the base and displacement in
// Base and Disp respectively.
bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
SDValue &Base, SDValue &Disp) const;
// Try to match Addr as a FormBDX address with displacement type DR.
// Return true on success and if the result had no index. Store the
// base and displacement in Base and Disp respectively.
bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
SDValue &Base, SDValue &Disp) const;
// Try to match Addr as a FormBDX* address of form Form with
// displacement type DR. Return true on success, storing the base,
// displacement and index in Base, Disp and Index respectively.
bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
SystemZAddressingMode::DispRange DR, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) const;
// PC-relative address matching routines used by SystemZOperands.td.
bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
if (SystemZISD::isPCREL(Addr.getOpcode())) {
Target = Addr.getOperand(0);
return true;
}
return false;
}
// BD matching routines used by SystemZOperands.td.
bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
}
bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
}
bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
}
bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
}
// MVI matching routines used by SystemZOperands.td.
bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
}
bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
}
// BDX matching routines used by SystemZOperands.td.
bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) const {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp12Only,
Addr, Base, Disp, Index);
}
bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) const {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp12Pair,
Addr, Base, Disp, Index);
}
bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) const {
return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
SystemZAddressingMode::Disp12Only,
Addr, Base, Disp, Index);
}
bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) const {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp20Only,
Addr, Base, Disp, Index);
}
bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) const {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp20Only128,
Addr, Base, Disp, Index);
}
bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) const {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp20Pair,
Addr, Base, Disp, Index);
}
bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) const {
return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
SystemZAddressingMode::Disp12Pair,
Addr, Base, Disp, Index);
}
bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) const {
return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
SystemZAddressingMode::Disp20Pair,
Addr, Base, Disp, Index);
}
// Try to match Addr as an address with a base, 12-bit displacement
// and index, where the index is element Elem of a vector.
// Return true on success, storing the base, displacement and vector
// in Base, Disp and Index respectively.
bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
SDValue &Disp, SDValue &Index) const;
// Check whether (or Op (and X InsertMask)) is effectively an insertion
// of X into bits InsertMask of some Y != Op. Return true if so and
// set Op to that Y.
bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
// Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
// Return true on success.
bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
// Try to fold some of RxSBG.Input into other fields of RxSBG.
// Return true on success.
bool expandRxSBG(RxSBGOperands &RxSBG) const;
// Return an undefined value of type VT.
SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
// Convert N to VT, if it isn't already.
SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
// Try to implement AND or shift node N using RISBG with the zero flag set.
// Return the selected node on success, otherwise return null.
bool tryRISBGZero(SDNode *N);
// Try to use RISBG or Opcode to implement OR or XOR node N.
// Return the selected node on success, otherwise return null.
bool tryRxSBG(SDNode *N, unsigned Opcode);
// If Op0 is null, then Node is a constant that can be loaded using:
//
// (Opcode UpperVal LowerVal)
//
// If Op0 is nonnull, then Node can be implemented using:
//
// (Opcode (Opcode Op0 UpperVal) LowerVal)
void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
uint64_t UpperVal, uint64_t LowerVal);
// Try to use gather instruction Opcode to implement vector insertion N.
bool tryGather(SDNode *N, unsigned Opcode);
// Try to use scatter instruction Opcode to implement store Store.
bool tryScatter(StoreSDNode *Store, unsigned Opcode);
// Return true if Load and Store are loads and stores of the same size
// and are guaranteed not to overlap. Such operations can be implemented
// using block (SS-format) instructions.
//
// Partial overlap would lead to incorrect code, since the block operations
// are logically bytewise, even though they have a fast path for the
// non-overlapping case. We also need to avoid full overlap (i.e. two
// addresses that might be equal at run time) because although that case
// would be handled correctly, it might be implemented by millicode.
bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
// N is a (store (load Y), X) pattern. Return true if it can use an MVC
// from Y to X.
bool storeLoadCanUseMVC(SDNode *N) const;
// N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
// if A[1 - I] == X and if N can use a block operation like NC from A[I]
// to X.
bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
public:
SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(TM, OptLevel) {}
bool runOnMachineFunction(MachineFunction &MF) override {
Subtarget = &MF.getSubtarget<SystemZSubtarget>();
return SelectionDAGISel::runOnMachineFunction(MF);
}
// Override MachineFunctionPass.
StringRef getPassName() const override {
return "SystemZ DAG->DAG Pattern Instruction Selection";
}
// Override SelectionDAGISel.
void Select(SDNode *Node) override;
bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
std::vector<SDValue> &OutOps) override;
// Include the pieces autogenerated from the target description.
#include "SystemZGenDAGISel.inc"
};
} // end anonymous namespace
FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new SystemZDAGToDAGISel(TM, OptLevel);
}
// Return true if Val should be selected as a displacement for an address
// with range DR. Here we're interested in the range of both the instruction
// described by DR and of any pairing instruction.
static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
switch (DR) {
case SystemZAddressingMode::Disp12Only:
return isUInt<12>(Val);
case SystemZAddressingMode::Disp12Pair:
case SystemZAddressingMode::Disp20Only:
case SystemZAddressingMode::Disp20Pair:
return isInt<20>(Val);
case SystemZAddressingMode::Disp20Only128:
return isInt<20>(Val) && isInt<20>(Val + 8);
}
llvm_unreachable("Unhandled displacement range");
}
// Change the base or index in AM to Value, where IsBase selects
// between the base and index.
static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
SDValue Value) {
if (IsBase)
AM.Base = Value;
else
AM.Index = Value;
}
// The base or index of AM is equivalent to Value + ADJDYNALLOC,
// where IsBase selects between the base and index. Try to fold the
// ADJDYNALLOC into AM.
static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
SDValue Value) {
if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
changeComponent(AM, IsBase, Value);
AM.IncludesDynAlloc = true;
return true;
}
return false;
}
// The base of AM is equivalent to Base + Index. Try to use Index as
// the index register.
static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
SDValue Index) {
if (AM.hasIndexField() && !AM.Index.getNode()) {
AM.Base = Base;
AM.Index = Index;
return true;
}
return false;
}
// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
// between the base and index. Try to fold Op1 into AM's displacement.
static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
SDValue Op0, uint64_t Op1) {
// First try adjusting the displacement.
int64_t TestDisp = AM.Disp + Op1;
if (selectDisp(AM.DR, TestDisp)) {
changeComponent(AM, IsBase, Op0);
AM.Disp = TestDisp;
return true;
}
// We could consider forcing the displacement into a register and
// using it as an index, but it would need to be carefully tuned.
return false;
}
bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
bool IsBase) const {
SDValue N = IsBase ? AM.Base : AM.Index;
unsigned Opcode = N.getOpcode();
if (Opcode == ISD::TRUNCATE) {
N = N.getOperand(0);
Opcode = N.getOpcode();
}
if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
SDValue Op0 = N.getOperand(0);
SDValue Op1 = N.getOperand(1);
unsigned Op0Code = Op0->getOpcode();
unsigned Op1Code = Op1->getOpcode();
if (Op0Code == SystemZISD::ADJDYNALLOC)
return expandAdjDynAlloc(AM, IsBase, Op1);
if (Op1Code == SystemZISD::ADJDYNALLOC)
return expandAdjDynAlloc(AM, IsBase, Op0);
if (Op0Code == ISD::Constant)
return expandDisp(AM, IsBase, Op1,
cast<ConstantSDNode>(Op0)->getSExtValue());
if (Op1Code == ISD::Constant)
return expandDisp(AM, IsBase, Op0,
cast<ConstantSDNode>(Op1)->getSExtValue());
if (IsBase && expandIndex(AM, Op0, Op1))
return true;
}
if (Opcode == SystemZISD::PCREL_OFFSET) {
SDValue Full = N.getOperand(0);
SDValue Base = N.getOperand(1);
SDValue Anchor = Base.getOperand(0);
uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
cast<GlobalAddressSDNode>(Anchor)->getOffset());
return expandDisp(AM, IsBase, Base, Offset);
}
return false;
}
// Return true if an instruction with displacement range DR should be
// used for displacement value Val. selectDisp(DR, Val) must already hold.
static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
assert(selectDisp(DR, Val) && "Invalid displacement");
switch (DR) {
case SystemZAddressingMode::Disp12Only:
case SystemZAddressingMode::Disp20Only:
case SystemZAddressingMode::Disp20Only128:
return true;
case SystemZAddressingMode::Disp12Pair:
// Use the other instruction if the displacement is too large.
return isUInt<12>(Val);
case SystemZAddressingMode::Disp20Pair:
// Use the other instruction if the displacement is small enough.
return !isUInt<12>(Val);
}
llvm_unreachable("Unhandled displacement range");
}
// Return true if Base + Disp + Index should be performed by LA(Y).
static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
// Don't use LA(Y) for constants.
if (!Base)
return false;
// Always use LA(Y) for frame addresses, since we know that the destination
// register is almost always (perhaps always) going to be different from
// the frame register.
if (Base->getOpcode() == ISD::FrameIndex)
return true;
if (Disp) {
// Always use LA(Y) if there is a base, displacement and index.
if (Index)
return true;
// Always use LA if the displacement is small enough. It should always
// be no worse than AGHI (and better if it avoids a move).
if (isUInt<12>(Disp))
return true;
// For similar reasons, always use LAY if the constant is too big for AGHI.
// LAY should be no worse than AGFI.
if (!isInt<16>(Disp))
return true;
} else {
// Don't use LA for plain registers.
if (!Index)
return false;
// Don't use LA for plain addition if the index operand is only used
// once. It should be a natural two-operand addition in that case.
if (Index->hasOneUse())
return false;
// Prefer addition if the second operation is sign-extended, in the
// hope of using AGF.
unsigned IndexOpcode = Index->getOpcode();
if (IndexOpcode == ISD::SIGN_EXTEND ||
IndexOpcode == ISD::SIGN_EXTEND_INREG)
return false;
}
// Don't use LA for two-operand addition if either operand is only
// used once. The addition instructions are better in that case.
if (Base->hasOneUse())
return false;
return true;
}
// Return true if Addr is suitable for AM, updating AM if so.
bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
SystemZAddressingMode &AM) const {
// Start out assuming that the address will need to be loaded separately,
// then try to extend it as much as we can.
AM.Base = Addr;
// First try treating the address as a constant.
if (Addr.getOpcode() == ISD::Constant &&
expandDisp(AM, true, SDValue(),
cast<ConstantSDNode>(Addr)->getSExtValue()))
;
// Also see if it's a bare ADJDYNALLOC.
else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
expandAdjDynAlloc(AM, true, SDValue()))
;
else
// Otherwise try expanding each component.
while (expandAddress(AM, true) ||
(AM.Index.getNode() && expandAddress(AM, false)))
continue;
// Reject cases where it isn't profitable to use LA(Y).
if (AM.Form == SystemZAddressingMode::FormBDXLA &&
!shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
return false;
// Reject cases where the other instruction in a pair should be used.
if (!isValidDisp(AM.DR, AM.Disp))
return false;
// Make sure that ADJDYNALLOC is included where necessary.
if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
return false;
DEBUG(AM.dump());
return true;
}
// Insert a node into the DAG at least before Pos. This will reposition
// the node as needed, and will assign it a node ID that is <= Pos's ID.
// Note that this does *not* preserve the uniqueness of node IDs!
// The selection DAG must no longer depend on their uniqueness when this
// function is used.
static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
if (N.getNode()->getNodeId() == -1 ||
N.getNode()->getNodeId() > Pos->getNodeId()) {
DAG->RepositionNode(Pos->getIterator(), N.getNode());
N.getNode()->setNodeId(Pos->getNodeId());
}
}
void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
EVT VT, SDValue &Base,
SDValue &Disp) const {
Base = AM.Base;
if (!Base.getNode())
// Register 0 means "no base". This is mostly useful for shifts.
Base = CurDAG->getRegister(0, VT);
else if (Base.getOpcode() == ISD::FrameIndex) {
// Lower a FrameIndex to a TargetFrameIndex.
int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
} else if (Base.getValueType() != VT) {
// Truncate values from i64 to i32, for shifts.
assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
"Unexpected truncation");
SDLoc DL(Base);
SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
insertDAGNode(CurDAG, Base.getNode(), Trunc);
Base = Trunc;
}
// Lower the displacement to a TargetConstant.
Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
}
void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
EVT VT, SDValue &Base,
SDValue &Disp,
SDValue &Index) const {
getAddressOperands(AM, VT, Base, Disp);
Index = AM.Index;
if (!Index.getNode())
// Register 0 means "no index".
Index = CurDAG->getRegister(0, VT);
}
bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
SDValue Addr, SDValue &Base,
SDValue &Disp) const {
SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
if (!selectAddress(Addr, AM))
return false;
getAddressOperands(AM, Addr.getValueType(), Base, Disp);
return true;
}
bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
SDValue Addr, SDValue &Base,
SDValue &Disp) const {
SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
if (!selectAddress(Addr, AM) || AM.Index.getNode())
return false;
getAddressOperands(AM, Addr.getValueType(), Base, Disp);
return true;
}
bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
SystemZAddressingMode::DispRange DR,
SDValue Addr, SDValue &Base,
SDValue &Disp, SDValue &Index) const {
SystemZAddressingMode AM(Form, DR);
if (!selectAddress(Addr, AM))
return false;
getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
return true;
}
bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
SDValue &Base,
SDValue &Disp,
SDValue &Index) const {
SDValue Regs[2];
if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
Regs[0].getNode() && Regs[1].getNode()) {
for (unsigned int I = 0; I < 2; ++I) {
Base = Regs[I];
Index = Regs[1 - I];
// We can't tell here whether the index vector has the right type
// for the access; the caller needs to do that instead.
if (Index.getOpcode() == ISD::ZERO_EXTEND)
Index = Index.getOperand(0);
if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Index.getOperand(1) == Elem) {
Index = Index.getOperand(0);
return true;
}
}
}
return false;
}
bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
uint64_t InsertMask) const {
// We're only interested in cases where the insertion is into some operand
// of Op, rather than into Op itself. The only useful case is an AND.
if (Op.getOpcode() != ISD::AND)
return false;
// We need a constant mask.
auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
if (!MaskNode)
return false;
// It's not an insertion of Op.getOperand(0) if the two masks overlap.
uint64_t AndMask = MaskNode->getZExtValue();
if (InsertMask & AndMask)
return false;
// It's only an insertion if all bits are covered or are known to be zero.
// The inner check covers all cases but is more expensive.
uint64_t Used = allOnes(Op.getValueSizeInBits());
if (Used != (AndMask | InsertMask)) {
APInt KnownZero, KnownOne;
CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
return false;
}
Op = Op.getOperand(0);
return true;
}
bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
uint64_t Mask) const {
const SystemZInstrInfo *TII = getInstrInfo();
if (RxSBG.Rotate != 0)
Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
Mask &= RxSBG.Mask;
if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
RxSBG.Mask = Mask;
return true;
}
return false;
}
// Return true if any bits of (RxSBG.Input & Mask) are significant.
static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
// Rotate the mask in the same way as RxSBG.Input is rotated.
if (RxSBG.Rotate != 0)
Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
return (Mask & RxSBG.Mask) != 0;
}
bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
SDValue N = RxSBG.Input;
unsigned Opcode = N.getOpcode();
switch (Opcode) {
case ISD::TRUNCATE: {
if (RxSBG.Opcode == SystemZ::RNSBG)
return false;
uint64_t BitSize = N.getValueSizeInBits();
uint64_t Mask = allOnes(BitSize);
if (!refineRxSBGMask(RxSBG, Mask))
return false;
RxSBG.Input = N.getOperand(0);
return true;
}
case ISD::AND: {
if (RxSBG.Opcode == SystemZ::RNSBG)
return false;
auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!MaskNode)
return false;
SDValue Input = N.getOperand(0);
uint64_t Mask = MaskNode->getZExtValue();
if (!refineRxSBGMask(RxSBG, Mask)) {
// If some bits of Input are already known zeros, those bits will have
// been removed from the mask. See if adding them back in makes the
// mask suitable.
APInt KnownZero, KnownOne;
CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
Mask |= KnownZero.getZExtValue();
if (!refineRxSBGMask(RxSBG, Mask))
return false;
}
RxSBG.Input = Input;
return true;
}
case ISD::OR: {
if (RxSBG.Opcode != SystemZ::RNSBG)
return false;
auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!MaskNode)
return false;
SDValue Input = N.getOperand(0);
uint64_t Mask = ~MaskNode->getZExtValue();
if (!refineRxSBGMask(RxSBG, Mask)) {
// If some bits of Input are already known ones, those bits will have
// been removed from the mask. See if adding them back in makes the
// mask suitable.
APInt KnownZero, KnownOne;
CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
Mask &= ~KnownOne.getZExtValue();
if (!refineRxSBGMask(RxSBG, Mask))
return false;
}
RxSBG.Input = Input;
return true;
}
case ISD::ROTL: {
// Any 64-bit rotate left can be merged into the RxSBG.
if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
return false;
auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!CountNode)
return false;
RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
RxSBG.Input = N.getOperand(0);
return true;
}
case ISD::ANY_EXTEND:
// Bits above the extended operand are don't-care.
RxSBG.Input = N.getOperand(0);
return true;
case ISD::ZERO_EXTEND:
if (RxSBG.Opcode != SystemZ::RNSBG) {
// Restrict the mask to the extended operand.
unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
return false;
RxSBG.Input = N.getOperand(0);
return true;
}
LLVM_FALLTHROUGH;
case ISD::SIGN_EXTEND: {
// Check that the extension bits are don't-care (i.e. are masked out
// by the final mask).
unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
return false;
RxSBG.Input = N.getOperand(0);
return true;
}
case ISD::SHL: {
auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!CountNode)
return false;
uint64_t Count = CountNode->getZExtValue();
unsigned BitSize = N.getValueSizeInBits();
if (Count < 1 || Count >= BitSize)
return false;
if (RxSBG.Opcode == SystemZ::RNSBG) {
// Treat (shl X, count) as (rotl X, size-count) as long as the bottom
// count bits from RxSBG.Input are ignored.
if (maskMatters(RxSBG, allOnes(Count)))
return false;
} else {
// Treat (shl X, count) as (and (rotl X, count), ~0<<count).
if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
return false;
}
RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
RxSBG.Input = N.getOperand(0);
return true;
}
case ISD::SRL:
case ISD::SRA: {
auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!CountNode)
return false;
uint64_t Count = CountNode->getZExtValue();
unsigned BitSize = N.getValueSizeInBits();
if (Count < 1 || Count >= BitSize)
return false;
if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
// Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
// count bits from RxSBG.Input are ignored.
if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
return false;
} else {
// Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
// which is similar to SLL above.
if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
return false;
}
RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
RxSBG.Input = N.getOperand(0);
return true;
}
default:
return false;
}
}
SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
return SDValue(N, 0);
}
SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
SDValue N) const {
if (N.getValueType() == MVT::i32 && VT == MVT::i64)
return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
DL, VT, getUNDEF(DL, MVT::i64), N);
if (N.getValueType() == MVT::i64 && VT == MVT::i32)
return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
assert(N.getValueType() == VT && "Unexpected value types");
return N;
}
bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
if (!VT.isInteger() || VT.getSizeInBits() > 64)
return false;
RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
unsigned Count = 0;
while (expandRxSBG(RISBG))
// The widening or narrowing is expected to be free.
// Counting widening or narrowing as a saved operation will result in
// preferring an R*SBG over a simple shift/logical instruction.
if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
RISBG.Input.getOpcode() != ISD::TRUNCATE)
Count += 1;
if (Count == 0)
return false;
// Prefer to use normal shift instructions over RISBG, since they can handle
// all cases and are sometimes shorter.
if (Count == 1 && N->getOpcode() != ISD::AND)
return false;
// Prefer register extensions like LLC over RISBG. Also prefer to start
// out with normal ANDs if one instruction would be enough. We can convert
// these ANDs into an RISBG later if a three-address instruction is useful.
if (RISBG.Rotate == 0) {
bool PreferAnd = false;
// Prefer AND for any 32-bit and-immediate operation.
if (VT == MVT::i32)
PreferAnd = true;
// As well as for any 64-bit operation that can be implemented via LLC(R),
// LLH(R), LLGT(R), or one of the and-immediate instructions.
else if (RISBG.Mask == 0xff ||
RISBG.Mask == 0xffff ||
RISBG.Mask == 0x7fffffff ||
SystemZ::isImmLF(~RISBG.Mask) ||
SystemZ::isImmHF(~RISBG.Mask))
PreferAnd = true;
// And likewise for the LLZRGF instruction, which doesn't have a register
// to register version.
else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
if (Load->getMemoryVT() == MVT::i32 &&
(Load->getExtensionType() == ISD::EXTLOAD ||
Load->getExtensionType() == ISD::ZEXTLOAD) &&
RISBG.Mask == 0xffffff00 &&
Subtarget->hasLoadAndZeroRightmostByte())
PreferAnd = true;
}
if (PreferAnd) {
// Replace the current node with an AND. Note that the current node
// might already be that same AND, in which case it is already CSE'd
// with it, and we must not call ReplaceNode.
SDValue In = convertTo(DL, VT, RISBG.Input);
SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
if (N != New.getNode()) {
insertDAGNode(CurDAG, N, Mask);
insertDAGNode(CurDAG, N, New);
ReplaceNode(N, New.getNode());
N = New.getNode();
}
// Now, select the machine opcode to implement this operation.
SelectCode(N);
return true;
}
}
unsigned Opcode = SystemZ::RISBG;
// Prefer RISBGN if available, since it does not clobber CC.
if (Subtarget->hasMiscellaneousExtensions())
Opcode = SystemZ::RISBGN;
EVT OpcodeVT = MVT::i64;
if (VT == MVT::i32 && Subtarget->hasHighWord()) {
Opcode = SystemZ::RISBMux;
OpcodeVT = MVT::i32;
RISBG.Start &= 31;
RISBG.End &= 31;
}
SDValue Ops[5] = {
getUNDEF(DL, OpcodeVT),
convertTo(DL, OpcodeVT, RISBG.Input),
CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
};
SDValue New = convertTo(
DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
ReplaceUses(N, New.getNode());
CurDAG->RemoveDeadNode(N);
return true;
}
bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
if (!VT.isInteger() || VT.getSizeInBits() > 64)
return false;
// Try treating each operand of N as the second operand of the RxSBG
// and see which goes deepest.
RxSBGOperands RxSBG[] = {
RxSBGOperands(Opcode, N->getOperand(0)),
RxSBGOperands(Opcode, N->getOperand(1))
};
unsigned Count[] = { 0, 0 };
for (unsigned I = 0; I < 2; ++I)
while (expandRxSBG(RxSBG[I]))
// The widening or narrowing is expected to be free.
// Counting widening or narrowing as a saved operation will result in
// preferring an R*SBG over a simple shift/logical instruction.
if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
Count[I] += 1;
// Do nothing if neither operand is suitable.
if (Count[0] == 0 && Count[1] == 0)
return false;
// Pick the deepest second operand.
unsigned I = Count[0] > Count[1] ? 0 : 1;
SDValue Op0 = N->getOperand(I ^ 1);
// Prefer IC for character insertions from memory.
if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
if (Load->getMemoryVT() == MVT::i8)
return false;
// See whether we can avoid an AND in the first operand by converting
// ROSBG to RISBG.
if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
Opcode = SystemZ::RISBG;
// Prefer RISBGN if available, since it does not clobber CC.
if (Subtarget->hasMiscellaneousExtensions())
Opcode = SystemZ::RISBGN;
}
SDValue Ops[5] = {
convertTo(DL, MVT::i64, Op0),
convertTo(DL, MVT::i64, RxSBG[I].Input),
CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
};
SDValue New = convertTo(
DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
ReplaceNode(N, New.getNode());
return true;
}
void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
SDValue Op0, uint64_t UpperVal,
uint64_t LowerVal) {
EVT VT = Node->getValueType(0);
SDLoc DL(Node);
SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
if (Op0.getNode())
Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
{
// When we haven't passed in Op0, Upper will be a constant. In order to
// prevent folding back to the large immediate in `Or = getNode(...)` we run
// SelectCode first and end up with an opaque machine node. This means that
// we need to use a handle to keep track of Upper in case it gets CSE'd by
// SelectCode.
//
// Note that in the case where Op0 is passed in we could just call
// SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
// the handle at all, but it's fine to do it here.
//
// TODO: This is a pretty hacky way to do this. Can we do something that
// doesn't require a two paragraph explanation?
HandleSDNode Handle(Upper);
SelectCode(Upper.getNode());
Upper = Handle.getValue();
}
SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
ReplaceUses(Node, Or.getNode());
CurDAG->RemoveDeadNode(Node);
SelectCode(Or.getNode());
}
bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
SDValue ElemV = N->getOperand(2);
auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
if (!ElemN)
return false;
unsigned Elem = ElemN->getZExtValue();
EVT VT = N->getValueType(0);
if (Elem >= VT.getVectorNumElements())
return false;
auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
if (!Load || !Load->hasOneUse())
return false;
if (Load->getMemoryVT().getSizeInBits() !=
Load->getValueType(0).getSizeInBits())
return false;
SDValue Base, Disp, Index;
if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
Index.getValueType() != VT.changeVectorElementTypeToInteger())
return false;
SDLoc DL(Load);
SDValue Ops[] = {
N->getOperand(0), Base, Disp, Index,
CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
};
SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
ReplaceNode(N, Res);
return true;
}
bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
SDValue Value = Store->getValue();
if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return false;
if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
return false;
SDValue ElemV = Value.getOperand(1);
auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
if (!ElemN)
return false;
SDValue Vec = Value.getOperand(0);
EVT VT = Vec.getValueType();
unsigned Elem = ElemN->getZExtValue();
if (Elem >= VT.getVectorNumElements())
return false;
SDValue Base, Disp, Index;
if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
Index.getValueType() != VT.changeVectorElementTypeToInteger())
return false;
SDLoc DL(Store);
SDValue Ops[] = {
Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
Store->getChain()
};
ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
return true;
}
bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
LoadSDNode *Load) const {
// Check that the two memory operands have the same size.
if (Load->getMemoryVT() != Store->getMemoryVT())
return false;
// Volatility stops an access from being decomposed.
if (Load->isVolatile() || Store->isVolatile())
return false;
// There's no chance of overlap if the load is invariant.
if (Load->isInvariant() && Load->isDereferenceable())
return true;
// Otherwise we need to check whether there's an alias.
const Value *V1 = Load->getMemOperand()->getValue();
const Value *V2 = Store->getMemOperand()->getValue();
if (!V1 || !V2)
return false;
// Reject equality.
uint64_t Size = Load->getMemoryVT().getStoreSize();
int64_t End1 = Load->getSrcValueOffset() + Size;
int64_t End2 = Store->getSrcValueOffset() + Size;
if (V1 == V2 && End1 == End2)
return false;
return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
MemoryLocation(V2, End2, Store->getAAInfo()));
}
bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
auto *Store = cast<StoreSDNode>(N);
auto *Load = cast<LoadSDNode>(Store->getValue());
// Prefer not to use MVC if either address can use ... RELATIVE LONG
// instructions.
uint64_t Size = Load->getMemoryVT().getStoreSize();
if (Size > 1 && Size <= 8) {
// Prefer LHRL, LRL and LGRL.
if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
return false;
// Prefer STHRL, STRL and STGRL.
if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
return false;
}
return canUseBlockOperation(Store, Load);
}
bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
unsigned I) const {
auto *StoreA = cast<StoreSDNode>(N);
auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
}
void SystemZDAGToDAGISel::Select(SDNode *Node) {
// Dump information about the Node being selected
DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
// If we have a custom node, we already have selected!
if (Node->isMachineOpcode()) {
DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
Node->setNodeId(-1);
return;
}
unsigned Opcode = Node->getOpcode();
switch (Opcode) {
case ISD::OR:
if (Node->getOperand(1).getOpcode() != ISD::Constant)
if (tryRxSBG(Node, SystemZ::ROSBG))
return;
goto or_xor;
case ISD::XOR:
if (Node->getOperand(1).getOpcode() != ISD::Constant)
if (tryRxSBG(Node, SystemZ::RXSBG))
return;
// Fall through.
or_xor:
// If this is a 64-bit operation in which both 32-bit halves are nonzero,
// split the operation into two.
if (Node->getValueType(0) == MVT::i64)
if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
uint64_t Val = Op1->getZExtValue();
if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
splitLargeImmediate(Opcode, Node, Node->getOperand(0),
Val - uint32_t(Val), uint32_t(Val));
return;
}
}
break;
case ISD::AND:
if (Node->getOperand(1).getOpcode() != ISD::Constant)
if (tryRxSBG(Node, SystemZ::RNSBG))
return;
LLVM_FALLTHROUGH;
case ISD::ROTL:
case ISD::SHL:
case ISD::SRL:
case ISD::ZERO_EXTEND:
if (tryRISBGZero(Node))
return;
break;
case ISD::Constant:
// If this is a 64-bit constant that is out of the range of LLILF,
// LLIHF and LGFI, split it into two 32-bit pieces.
if (Node->getValueType(0) == MVT::i64) {
uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
uint32_t(Val));
return;
}
}
break;
case SystemZISD::SELECT_CCMASK: {
SDValue Op0 = Node->getOperand(0);
SDValue Op1 = Node->getOperand(1);
// Prefer to put any load first, so that it can be matched as a
// conditional load. Likewise for constants in range for LOCHI.
if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
(Subtarget->hasLoadStoreOnCond2() &&
Node->getValueType(0).isInteger() &&
Op1.getOpcode() == ISD::Constant &&
isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
!(Op0.getOpcode() == ISD::Constant &&
isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
SDValue CCValid = Node->getOperand(2);
SDValue CCMask = Node->getOperand(3);
uint64_t ConstCCValid =
cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
uint64_t ConstCCMask =
cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
// Invert the condition.
CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
CCMask.getValueType());
SDValue Op4 = Node->getOperand(4);
Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
}
break;
}
case ISD::INSERT_VECTOR_ELT: {
EVT VT = Node->getValueType(0);
unsigned ElemBitSize = VT.getScalarSizeInBits();
if (ElemBitSize == 32) {
if (tryGather(Node, SystemZ::VGEF))
return;
} else if (ElemBitSize == 64) {
if (tryGather(Node, SystemZ::VGEG))
return;
}
break;
}
case ISD::STORE: {
auto *Store = cast<StoreSDNode>(Node);
unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
if (ElemBitSize == 32) {
if (tryScatter(Store, SystemZ::VSCEF))
return;
} else if (ElemBitSize == 64) {
if (tryScatter(Store, SystemZ::VSCEG))
return;
}
break;
}
}
SelectCode(Node);
}
bool SystemZDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
std::vector<SDValue> &OutOps) {
SystemZAddressingMode::AddrForm Form;
SystemZAddressingMode::DispRange DispRange;
SDValue Base, Disp, Index;
switch(ConstraintID) {
default:
llvm_unreachable("Unexpected asm memory constraint");
case InlineAsm::Constraint_i:
case InlineAsm::Constraint_Q:
// Accept an address with a short displacement, but no index.
Form = SystemZAddressingMode::FormBD;
DispRange = SystemZAddressingMode::Disp12Only;
break;
case InlineAsm::Constraint_R:
// Accept an address with a short displacement and an index.
Form = SystemZAddressingMode::FormBDXNormal;
DispRange = SystemZAddressingMode::Disp12Only;
break;
case InlineAsm::Constraint_S:
// Accept an address with a long displacement, but no index.
Form = SystemZAddressingMode::FormBD;
DispRange = SystemZAddressingMode::Disp20Only;
break;
case InlineAsm::Constraint_T:
case InlineAsm::Constraint_m:
// Accept an address with a long displacement and an index.
// m works the same as T, as this is the most general case.
Form = SystemZAddressingMode::FormBDXNormal;
DispRange = SystemZAddressingMode::Disp20Only;
break;
}
if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
const TargetRegisterClass *TRC =
Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
SDLoc DL(Base);
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
// Make sure that the base address doesn't go into %r0.
// If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
if (Base.getOpcode() != ISD::TargetFrameIndex &&
Base.getOpcode() != ISD::Register) {
Base =
SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
DL, Base.getValueType(),
Base, RC), 0);
}
// Make sure that the index register isn't assigned to %r0 either.
if (Index.getOpcode() != ISD::Register) {
Index =
SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
DL, Index.getValueType(),
Index, RC), 0);
}
OutOps.push_back(Base);
OutOps.push_back(Disp);
OutOps.push_back(Index);
return false;
}
return true;
}