mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-10 06:00:30 +00:00
c6bd195336
hot 164.gzip loop. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11702 91177308-0d34-0410-b5e6-96231b3b80d8
371 lines
16 KiB
C++
371 lines
16 KiB
C++
//===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs a limited form of tail duplication, intended to simplify
|
|
// CFGs by removing some unconditional branches. This pass is necessary to
|
|
// straighten out loops created by the C front-end, but also is capable of
|
|
// making other code nicer. After this pass is run, the CFG simplify pass
|
|
// should be run to clean up the mess.
|
|
//
|
|
// This pass could be enhanced in the future to use profile information to be
|
|
// more aggressive.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/ValueHolder.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumEliminated("tailduplicate",
|
|
"Number of unconditional branches eliminated");
|
|
Statistic<> NumPHINodes("tailduplicate", "Number of phi nodes inserted");
|
|
|
|
class TailDup : public FunctionPass {
|
|
bool runOnFunction(Function &F);
|
|
private:
|
|
inline bool shouldEliminateUnconditionalBranch(TerminatorInst *TI);
|
|
inline bool canEliminateUnconditionalBranch(TerminatorInst *TI);
|
|
inline void eliminateUnconditionalBranch(BranchInst *BI);
|
|
inline void InsertPHINodesIfNecessary(Instruction *OrigInst, Value *NewInst,
|
|
BasicBlock *NewBlock);
|
|
inline Value *GetValueInBlock(BasicBlock *BB, Value *OrigVal,
|
|
std::map<BasicBlock*, ValueHolder> &ValueMap,
|
|
std::map<BasicBlock*, ValueHolder> &OutValueMap);
|
|
inline Value *GetValueOutBlock(BasicBlock *BB, Value *OrigVal,
|
|
std::map<BasicBlock*, ValueHolder> &ValueMap,
|
|
std::map<BasicBlock*, ValueHolder> &OutValueMap);
|
|
};
|
|
RegisterOpt<TailDup> X("tailduplicate", "Tail Duplication");
|
|
}
|
|
|
|
// Public interface to the Tail Duplication pass
|
|
Pass *llvm::createTailDuplicationPass() { return new TailDup(); }
|
|
|
|
/// runOnFunction - Top level algorithm - Loop over each unconditional branch in
|
|
/// the function, eliminating it if it looks attractive enough.
|
|
///
|
|
bool TailDup::runOnFunction(Function &F) {
|
|
bool Changed = false;
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; )
|
|
if (shouldEliminateUnconditionalBranch(I->getTerminator()) &&
|
|
canEliminateUnconditionalBranch(I->getTerminator())) {
|
|
eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
|
|
Changed = true;
|
|
} else {
|
|
++I;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// shouldEliminateUnconditionalBranch - Return true if this branch looks
|
|
/// attractive to eliminate. We eliminate the branch if the destination basic
|
|
/// block has <= 5 instructions in it, not counting PHI nodes. In practice,
|
|
/// since one of these is a terminator instruction, this means that we will add
|
|
/// up to 4 instructions to the new block.
|
|
///
|
|
/// We don't count PHI nodes in the count since they will be removed when the
|
|
/// contents of the block are copied over.
|
|
///
|
|
bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI) {
|
|
BranchInst *BI = dyn_cast<BranchInst>(TI);
|
|
if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch!
|
|
|
|
BasicBlock *Dest = BI->getSuccessor(0);
|
|
if (Dest == BI->getParent()) return false; // Do not loop infinitely!
|
|
|
|
// Do not inline a block if we will just get another branch to the same block!
|
|
if (BranchInst *DBI = dyn_cast<BranchInst>(Dest->getTerminator()))
|
|
if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest)
|
|
return false; // Do not loop infinitely!
|
|
|
|
// Do not bother working on dead blocks...
|
|
pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
|
|
if (PI == PE && Dest != Dest->getParent()->begin())
|
|
return false; // It's just a dead block, ignore it...
|
|
|
|
// Also, do not bother with blocks with only a single predecessor: simplify
|
|
// CFG will fold these two blocks together!
|
|
++PI;
|
|
if (PI == PE) return false; // Exactly one predecessor!
|
|
|
|
BasicBlock::iterator I = Dest->begin();
|
|
while (isa<PHINode>(*I)) ++I;
|
|
|
|
for (unsigned Size = 0; I != Dest->end(); ++Size, ++I)
|
|
if (Size == 6) return false; // The block is too large...
|
|
return true;
|
|
}
|
|
|
|
/// canEliminateUnconditionalBranch - Unfortunately, the general form of tail
|
|
/// duplication can do very bad things to SSA form, by destroying arbitrary
|
|
/// relationships between dominators and dominator frontiers as it processes the
|
|
/// program. The right solution for this is to have an incrementally updating
|
|
/// dominator data structure, which can gracefully react to arbitrary
|
|
/// "addEdge/removeEdge" changes to the CFG. Implementing this is nontrivial,
|
|
/// however, so we just disable the transformation in cases where it is not
|
|
/// currently safe.
|
|
///
|
|
bool TailDup::canEliminateUnconditionalBranch(TerminatorInst *TI) {
|
|
// Basically, we refuse to make the transformation if any of the values
|
|
// computed in the 'tail' are used in any other basic blocks.
|
|
BasicBlock *Tail = TI->getSuccessor(0);
|
|
assert(isa<BranchInst>(TI) && cast<BranchInst>(TI)->isUnconditional());
|
|
|
|
for (BasicBlock::iterator I = Tail->begin(), E = Tail->end(); I != E; ++I)
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
|
|
++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
if (User->getParent() != Tail || isa<PHINode>(User))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// eliminateUnconditionalBranch - Clone the instructions from the destination
|
|
/// block into the source block, eliminating the specified unconditional branch.
|
|
/// If the destination block defines values used by successors of the dest
|
|
/// block, we may need to insert PHI nodes.
|
|
///
|
|
void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
|
|
BasicBlock *SourceBlock = Branch->getParent();
|
|
BasicBlock *DestBlock = Branch->getSuccessor(0);
|
|
assert(SourceBlock != DestBlock && "Our predicate is broken!");
|
|
|
|
DEBUG(std::cerr << "TailDuplication[" << SourceBlock->getParent()->getName()
|
|
<< "]: Eliminating branch: " << *Branch);
|
|
|
|
// We are going to have to map operands from the original block B to the new
|
|
// copy of the block B'. If there are PHI nodes in the DestBlock, these PHI
|
|
// nodes also define part of this mapping. Loop over these PHI nodes, adding
|
|
// them to our mapping.
|
|
//
|
|
std::map<Value*, Value*> ValueMapping;
|
|
|
|
BasicBlock::iterator BI = DestBlock->begin();
|
|
bool HadPHINodes = isa<PHINode>(BI);
|
|
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
|
ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
|
|
|
|
// Clone the non-phi instructions of the dest block into the source block,
|
|
// keeping track of the mapping...
|
|
//
|
|
for (; BI != DestBlock->end(); ++BI) {
|
|
Instruction *New = BI->clone();
|
|
New->setName(BI->getName());
|
|
SourceBlock->getInstList().push_back(New);
|
|
ValueMapping[BI] = New;
|
|
}
|
|
|
|
// Now that we have built the mapping information and cloned all of the
|
|
// instructions (giving us a new terminator, among other things), walk the new
|
|
// instructions, rewriting references of old instructions to use new
|
|
// instructions.
|
|
//
|
|
BI = Branch; ++BI; // Get an iterator to the first new instruction
|
|
for (; BI != SourceBlock->end(); ++BI)
|
|
for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i)
|
|
if (Value *Remapped = ValueMapping[BI->getOperand(i)])
|
|
BI->setOperand(i, Remapped);
|
|
|
|
// Next we check to see if any of the successors of DestBlock had PHI nodes.
|
|
// If so, we need to add entries to the PHI nodes for SourceBlock now.
|
|
for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
|
|
SI != SE; ++SI) {
|
|
BasicBlock *Succ = *SI;
|
|
for (BasicBlock::iterator PNI = Succ->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
|
|
// Ok, we have a PHI node. Figure out what the incoming value was for the
|
|
// DestBlock.
|
|
Value *IV = PN->getIncomingValueForBlock(DestBlock);
|
|
|
|
// Remap the value if necessary...
|
|
if (Value *MappedIV = ValueMapping[IV])
|
|
IV = MappedIV;
|
|
PN->addIncoming(IV, SourceBlock);
|
|
}
|
|
}
|
|
|
|
// Now that all of the instructions are correctly copied into the SourceBlock,
|
|
// we have one more minor problem: the successors of the original DestBB may
|
|
// use the values computed in DestBB either directly (if DestBB dominated the
|
|
// block), or through a PHI node. In either case, we need to insert PHI nodes
|
|
// into any successors of DestBB (which are now our successors) for each value
|
|
// that is computed in DestBB, but is used outside of it. All of these uses
|
|
// we have to rewrite with the new PHI node.
|
|
//
|
|
if (succ_begin(SourceBlock) != succ_end(SourceBlock)) // Avoid wasting time...
|
|
for (BI = DestBlock->begin(); BI != DestBlock->end(); ++BI)
|
|
if (BI->getType() != Type::VoidTy)
|
|
InsertPHINodesIfNecessary(BI, ValueMapping[BI], SourceBlock);
|
|
|
|
// Final step: now that we have finished everything up, walk the cloned
|
|
// instructions one last time, constant propagating and DCE'ing them, because
|
|
// they may not be needed anymore.
|
|
//
|
|
BI = Branch; ++BI; // Get an iterator to the first new instruction
|
|
if (HadPHINodes)
|
|
while (BI != SourceBlock->end())
|
|
if (!dceInstruction(BI) && !doConstantPropagation(BI))
|
|
++BI;
|
|
|
|
DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
|
|
SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch...
|
|
|
|
++NumEliminated; // We just killed a branch!
|
|
}
|
|
|
|
/// InsertPHINodesIfNecessary - So at this point, we cloned the OrigInst
|
|
/// instruction into the NewBlock with the value of NewInst. If OrigInst was
|
|
/// used outside of its defining basic block, we need to insert a PHI nodes into
|
|
/// the successors.
|
|
///
|
|
void TailDup::InsertPHINodesIfNecessary(Instruction *OrigInst, Value *NewInst,
|
|
BasicBlock *NewBlock) {
|
|
// Loop over all of the uses of OrigInst, rewriting them to be newly inserted
|
|
// PHI nodes, unless they are in the same basic block as OrigInst.
|
|
BasicBlock *OrigBlock = OrigInst->getParent();
|
|
std::vector<Instruction*> Users;
|
|
Users.reserve(OrigInst->use_size());
|
|
for (Value::use_iterator I = OrigInst->use_begin(), E = OrigInst->use_end();
|
|
I != E; ++I) {
|
|
Instruction *In = cast<Instruction>(*I);
|
|
if (In->getParent() != OrigBlock || // Don't modify uses in the orig block!
|
|
isa<PHINode>(In))
|
|
Users.push_back(In);
|
|
}
|
|
|
|
// The common case is that the instruction is only used within the block that
|
|
// defines it. If we have this case, quick exit.
|
|
//
|
|
if (Users.empty()) return;
|
|
|
|
// Otherwise, we have a more complex case, handle it now. This requires the
|
|
// construction of a mapping between a basic block and the value to use when
|
|
// in the scope of that basic block. This map will map to the original and
|
|
// new values when in the original or new block, but will map to inserted PHI
|
|
// nodes when in other blocks.
|
|
//
|
|
std::map<BasicBlock*, ValueHolder> ValueMap;
|
|
std::map<BasicBlock*, ValueHolder> OutValueMap; // The outgoing value map
|
|
OutValueMap[OrigBlock] = OrigInst;
|
|
OutValueMap[NewBlock ] = NewInst; // Seed the initial values...
|
|
|
|
DEBUG(std::cerr << " ** Inserting PHI nodes for " << OrigInst);
|
|
while (!Users.empty()) {
|
|
Instruction *User = Users.back(); Users.pop_back();
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(User)) {
|
|
// PHI nodes must be handled specially here, because their operands are
|
|
// actually defined in predecessor basic blocks, NOT in the block that the
|
|
// PHI node lives in. Note that we have already added entries to PHI nods
|
|
// which are in blocks that are immediate successors of OrigBlock, so
|
|
// don't modify them again.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == OrigInst &&
|
|
PN->getIncomingBlock(i) != OrigBlock) {
|
|
Value *V = GetValueOutBlock(PN->getIncomingBlock(i), OrigInst,
|
|
ValueMap, OutValueMap);
|
|
PN->setIncomingValue(i, V);
|
|
}
|
|
|
|
} else {
|
|
// Any other user of the instruction can just replace any uses with the
|
|
// new value defined in the block it resides in.
|
|
Value *V = GetValueInBlock(User->getParent(), OrigInst, ValueMap,
|
|
OutValueMap);
|
|
User->replaceUsesOfWith(OrigInst, V);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// GetValueInBlock - This is a recursive method which inserts PHI nodes into
|
|
/// the function until there is a value available in basic block BB.
|
|
///
|
|
Value *TailDup::GetValueInBlock(BasicBlock *BB, Value *OrigVal,
|
|
std::map<BasicBlock*, ValueHolder> &ValueMap,
|
|
std::map<BasicBlock*,ValueHolder> &OutValueMap){
|
|
ValueHolder &BBVal = ValueMap[BB];
|
|
if (BBVal) return BBVal; // Value already computed for this block?
|
|
|
|
// If this block has no predecessors, then it must be unreachable, thus, it
|
|
// doesn't matter which value we use.
|
|
if (pred_begin(BB) == pred_end(BB))
|
|
return BBVal = Constant::getNullValue(OrigVal->getType());
|
|
|
|
// If there is no value already available in this basic block, we need to
|
|
// either reuse a value from an incoming, dominating, basic block, or we need
|
|
// to create a new PHI node to merge in different incoming values. Because we
|
|
// don't know if we're part of a loop at this point or not, we create a PHI
|
|
// node, even if we will ultimately eliminate it.
|
|
PHINode *PN = new PHINode(OrigVal->getType(), OrigVal->getName()+".pn",
|
|
BB->begin());
|
|
BBVal = PN; // Insert this into the BBVal slot in case of cycles...
|
|
|
|
ValueHolder &BBOutVal = OutValueMap[BB];
|
|
if (BBOutVal == 0) BBOutVal = PN;
|
|
|
|
// Now that we have created the PHI node, loop over all of the predecessors of
|
|
// this block, computing an incoming value for the predecessor.
|
|
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
|
|
PN->addIncoming(GetValueOutBlock(Preds[i], OrigVal, ValueMap, OutValueMap),
|
|
Preds[i]);
|
|
|
|
// The PHI node is complete. In many cases, however the PHI node was
|
|
// ultimately unnecessary: we could have just reused a dominating incoming
|
|
// value. If this is the case, nuke the PHI node and replace the map entry
|
|
// with the dominating value.
|
|
//
|
|
assert(PN->getNumIncomingValues() > 0 && "No predecessors?");
|
|
|
|
// Check to see if all of the elements in the PHI node are either the PHI node
|
|
// itself or ONE particular value.
|
|
unsigned i = 0;
|
|
Value *ReplVal = PN->getIncomingValue(i);
|
|
for (; ReplVal == PN && i != PN->getNumIncomingValues(); ++i)
|
|
ReplVal = PN->getIncomingValue(i); // Skip values equal to the PN
|
|
|
|
for (; i != PN->getNumIncomingValues(); ++i)
|
|
if (PN->getIncomingValue(i) != PN && PN->getIncomingValue(i) != ReplVal) {
|
|
ReplVal = 0;
|
|
break;
|
|
}
|
|
|
|
// Found a value to replace the PHI node with?
|
|
if (ReplVal && ReplVal != PN) {
|
|
PN->replaceAllUsesWith(ReplVal);
|
|
BB->getInstList().erase(PN); // Erase the PHI node...
|
|
} else {
|
|
++NumPHINodes;
|
|
}
|
|
|
|
return BBVal;
|
|
}
|
|
|
|
Value *TailDup::GetValueOutBlock(BasicBlock *BB, Value *OrigVal,
|
|
std::map<BasicBlock*, ValueHolder> &ValueMap,
|
|
std::map<BasicBlock*, ValueHolder> &OutValueMap) {
|
|
ValueHolder &BBVal = OutValueMap[BB];
|
|
if (BBVal) return BBVal; // Value already computed for this block?
|
|
|
|
return GetValueInBlock(BB, OrigVal, ValueMap, OutValueMap);
|
|
}
|