llvm/lib/CodeGen/LiveIntervalAnalysis.cpp

869 lines
33 KiB
C++

//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace llvm;
namespace {
RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
Statistic<> numIntervals
("liveintervals", "Number of original intervals");
Statistic<> numIntervalsAfter
("liveintervals", "Number of intervals after coalescing");
Statistic<> numJoins
("liveintervals", "Number of interval joins performed");
Statistic<> numPeep
("liveintervals", "Number of identity moves eliminated after coalescing");
Statistic<> numFolded
("liveintervals", "Number of loads/stores folded into instructions");
cl::opt<bool>
EnableJoining("join-liveintervals",
cl::desc("Join compatible live intervals"),
cl::init(true));
};
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
{
AU.addRequired<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addRequired<LoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void LiveIntervals::releaseMemory()
{
mi2iMap_.clear();
i2miMap_.clear();
r2iMap_.clear();
r2rMap_.clear();
}
static bool isZeroLengthInterval(LiveInterval *li) {
for (LiveInterval::Ranges::const_iterator
i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
return false;
return true;
}
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
lv_ = &getAnalysis<LiveVariables>();
allocatableRegs_ = mri_->getAllocatableSet(fn);
r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
// If this function has any live ins, insert a dummy instruction at the
// beginning of the function that we will pretend "defines" the values. This
// is to make the interval analysis simpler by providing a number.
if (fn.livein_begin() != fn.livein_end()) {
unsigned FirstLiveIn = fn.livein_begin()->first;
// Find a reg class that contains this live in.
const TargetRegisterClass *RC = 0;
for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
E = mri_->regclass_end(); RCI != E; ++RCI)
if ((*RCI)->contains(FirstLiveIn)) {
RC = *RCI;
break;
}
MachineInstr *OldFirstMI = fn.begin()->begin();
mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
FirstLiveIn, FirstLiveIn, RC);
assert(OldFirstMI != fn.begin()->begin() &&
"copyRetToReg didn't insert anything!");
}
// number MachineInstrs
unsigned miIndex = 0;
for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
mbb != mbbEnd; ++mbb)
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
i2miMap_.push_back(mi);
miIndex += InstrSlots::NUM;
}
// Note intervals due to live-in values.
if (fn.livein_begin() != fn.livein_end()) {
MachineBasicBlock *Entry = fn.begin();
for (MachineFunction::livein_iterator I = fn.livein_begin(),
E = fn.livein_end(); I != E; ++I) {
handlePhysicalRegisterDef(Entry, Entry->begin(),
getOrCreateInterval(I->first), 0, 0, true);
for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
handlePhysicalRegisterDef(Entry, Entry->begin(),
getOrCreateInterval(*AS), 0, 0, true);
}
}
computeIntervals();
numIntervals += getNumIntervals();
DEBUG(std::cerr << "********** INTERVALS **********\n";
for (iterator I = begin(), E = end(); I != E; ++I) {
I->second.print(std::cerr, mri_);
std::cerr << "\n";
});
// join intervals if requested
if (EnableJoining) joinIntervals();
numIntervalsAfter += getNumIntervals();
// perform a final pass over the instructions and compute spill
// weights, coalesce virtual registers and remove identity moves
const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
mii != mie; ) {
// if the move will be an identity move delete it
unsigned srcReg, dstReg, RegRep;
if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
(RegRep = rep(srcReg)) == rep(dstReg)) {
// remove from def list
LiveInterval &interval = getOrCreateInterval(RegRep);
// remove index -> MachineInstr and
// MachineInstr -> index mappings
Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
if (mi2i != mi2iMap_.end()) {
i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
mi2iMap_.erase(mi2i);
}
mii = mbbi->erase(mii);
++numPeep;
}
else {
for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
const MachineOperand& mop = mii->getOperand(i);
if (mop.isRegister() && mop.getReg() &&
MRegisterInfo::isVirtualRegister(mop.getReg())) {
// replace register with representative register
unsigned reg = rep(mop.getReg());
mii->getOperand(i).setReg(reg);
LiveInterval &RegInt = getInterval(reg);
RegInt.weight +=
(mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
}
}
++mii;
}
}
}
for (iterator I = begin(), E = end(); I != E; ++I) {
LiveInterval &li = I->second;
if (MRegisterInfo::isVirtualRegister(li.reg))
// If the live interval legnth is essentially zero, i.e. in every live
// range the use follows def immediately, it doesn't make sense to spill
// it and hope it will be easier to allocate for this li.
if (isZeroLengthInterval(&li))
li.weight = float(HUGE_VAL);
}
DEBUG(dump());
return true;
}
/// print - Implement the dump method.
void LiveIntervals::print(std::ostream &O, const Module* ) const {
O << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
I->second.print(std::cerr, mri_);
std::cerr << "\n";
}
O << "********** MACHINEINSTRS **********\n";
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
for (MachineBasicBlock::iterator mii = mbbi->begin(),
mie = mbbi->end(); mii != mie; ++mii) {
O << getInstructionIndex(mii) << '\t' << *mii;
}
}
}
std::vector<LiveInterval*> LiveIntervals::
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
// since this is called after the analysis is done we don't know if
// LiveVariables is available
lv_ = getAnalysisToUpdate<LiveVariables>();
std::vector<LiveInterval*> added;
assert(li.weight != HUGE_VAL &&
"attempt to spill already spilled interval!");
DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
<< li << '\n');
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
for (LiveInterval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
unsigned index = getBaseIndex(i->start);
unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
for (; index != end; index += InstrSlots::NUM) {
// skip deleted instructions
while (index != end && !getInstructionFromIndex(index))
index += InstrSlots::NUM;
if (index == end) break;
MachineInstr *MI = getInstructionFromIndex(index);
// NewRegLiveIn - This instruction might have multiple uses of the spilled
// register. In this case, for the first use, keep track of the new vreg
// that we reload it into. If we see a second use, reuse this vreg
// instead of creating live ranges for two reloads.
unsigned NewRegLiveIn = 0;
for_operand:
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& mop = MI->getOperand(i);
if (mop.isRegister() && mop.getReg() == li.reg) {
if (NewRegLiveIn && mop.isUse()) {
// We already emitted a reload of this value, reuse it for
// subsequent operands.
MI->getOperand(i).setReg(NewRegLiveIn);
DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
<< " for operand #" << i << '\n');
} else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
// Attempt to fold the memory reference into the instruction. If we
// can do this, we don't need to insert spill code.
if (lv_)
lv_->instructionChanged(MI, fmi);
MachineBasicBlock &MBB = *MI->getParent();
vrm.virtFolded(li.reg, MI, i, fmi);
mi2iMap_.erase(MI);
i2miMap_[index/InstrSlots::NUM] = fmi;
mi2iMap_[fmi] = index;
MI = MBB.insert(MBB.erase(MI), fmi);
++numFolded;
// Folding the load/store can completely change the instruction in
// unpredictable ways, rescan it from the beginning.
goto for_operand;
} else {
// This is tricky. We need to add information in the interval about
// the spill code so we have to use our extra load/store slots.
//
// If we have a use we are going to have a load so we start the
// interval from the load slot onwards. Otherwise we start from the
// def slot.
unsigned start = (mop.isUse() ?
getLoadIndex(index) :
getDefIndex(index));
// If we have a def we are going to have a store right after it so
// we end the interval after the use of the next
// instruction. Otherwise we end after the use of this instruction.
unsigned end = 1 + (mop.isDef() ?
getStoreIndex(index) :
getUseIndex(index));
// create a new register for this spill
NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
MI->getOperand(i).setReg(NewRegLiveIn);
vrm.grow();
vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
assert(nI.empty());
// the spill weight is now infinity as it
// cannot be spilled again
nI.weight = float(HUGE_VAL);
LiveRange LR(start, end, nI.getNextValue());
DEBUG(std::cerr << " +" << LR);
nI.addRange(LR);
added.push_back(&nI);
// update live variables if it is available
if (lv_)
lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
// If this is a live in, reuse it for subsequent live-ins. If it's
// a def, we can't do this.
if (!mop.isUse()) NewRegLiveIn = 0;
DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
}
}
}
}
}
return added;
}
void LiveIntervals::printRegName(unsigned reg) const
{
if (MRegisterInfo::isPhysicalRegister(reg))
std::cerr << mri_->getName(reg);
else
std::cerr << "%reg" << reg;
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
LiveInterval& interval)
{
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
// time we see a vreg.
if (interval.empty()) {
// Get the Idx of the defining instructions.
unsigned defIndex = getDefIndex(getInstructionIndex(mi));
unsigned ValNum = interval.getNextValue();
assert(ValNum == 0 && "First value in interval is not 0?");
ValNum = 0; // Clue in the optimizer.
// Loop over all of the blocks that the vreg is defined in. There are
// two cases we have to handle here. The most common case is a vreg
// whose lifetime is contained within a basic block. In this case there
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
unsigned killIdx;
if (vi.Kills[0] != mi)
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
else
killIdx = defIndex+1;
// If the kill happens after the definition, we have an intra-block
// live range.
if (killIdx > defIndex) {
assert(vi.AliveBlocks.empty() &&
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR << "\n");
return;
}
}
// The other case we handle is when a virtual register lives to the end
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex,
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
ValNum);
DEBUG(std::cerr << " +" << NewLR);
interval.addRange(NewLR);
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
if (vi.AliveBlocks[i]) {
MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
if (!mbb->empty()) {
LiveRange LR(getInstructionIndex(&mbb->front()),
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
}
}
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
getUseIndex(getInstructionIndex(Kill))+1,
ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
}
} else {
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination or two addr elimination. If this is
// the result of two address elimination, then the vreg is the first
// operand, and is a def-and-use.
if (mi->getOperand(0).isRegister() &&
mi->getOperand(0).getReg() == interval.reg &&
mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
// If this is a two-address definition, then we have already processed
// the live range. The only problem is that we didn't realize there
// are actually two values in the live interval. Because of this we
// need to take the LiveRegion that defines this register and split it
// into two values.
unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
// Delete the initial value, which should be short and continuous,
// becuase the 2-addr copy must be in the same MBB as the redef.
interval.removeRange(DefIndex, RedefIndex);
LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
DEBUG(std::cerr << " replace range with " << LR);
interval.addRange(LR);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
if (lv_->RegisterDefIsDead(mi, interval.reg))
interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
DEBUG(std::cerr << "RESULT: " << interval);
} else {
// Otherwise, this must be because of phi elimination. If this is the
// first redefinition of the vreg that we have seen, go back and change
// the live range in the PHI block to be a different value number.
if (interval.containsOneValue()) {
assert(vi.Kills.size() == 1 &&
"PHI elimination vreg should have one kill, the PHI itself!");
// Remove the old range that we now know has an incorrect number.
MachineInstr *Killer = vi.Kills[0];
unsigned Start = getInstructionIndex(Killer->getParent()->begin());
unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
<< interval << "\n");
interval.removeRange(Start, End);
DEBUG(std::cerr << "RESULT: " << interval);
// Replace the interval with one of a NEW value number.
LiveRange LR(Start, End, interval.getNextValue());
DEBUG(std::cerr << " replace range with " << LR);
interval.addRange(LR);
DEBUG(std::cerr << "RESULT: " << interval);
}
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
unsigned defIndex = getDefIndex(getInstructionIndex(mi));
LiveRange LR(defIndex,
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
interval.getNextValue());
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
}
}
DEBUG(std::cerr << '\n');
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator mi,
LiveInterval& interval,
unsigned SrcReg, unsigned DestReg,
bool isLiveIn)
{
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
typedef LiveVariables::killed_iterator KillIter;
unsigned baseIndex = getInstructionIndex(mi);
unsigned start = getDefIndex(baseIndex);
unsigned end = start;
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
if (lv_->RegisterDefIsDead(mi, interval.reg)) {
DEBUG(std::cerr << " dead");
end = getDefIndex(start) + 1;
goto exit;
}
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
while (++mi != MBB->end()) {
baseIndex += InstrSlots::NUM;
if (lv_->KillsRegister(mi, interval.reg)) {
DEBUG(std::cerr << " killed");
end = getUseIndex(baseIndex) + 1;
goto exit;
}
}
// The only case we should have a dead physreg here without a killing or
// instruction where we know it's dead is if it is live-in to the function
// and never used.
assert(isLiveIn && "physreg was not killed in defining block!");
end = getDefIndex(start) + 1; // It's dead.
exit:
assert(start < end && "did not find end of interval?");
// Finally, if this is defining a new range for the physical register, and if
// that physreg is just a copy from a vreg, and if THAT vreg was a copy from
// the physreg, then the new fragment has the same value as the one copied
// into the vreg.
if (interval.reg == DestReg && !interval.empty() &&
MRegisterInfo::isVirtualRegister(SrcReg)) {
// Get the live interval for the vreg, see if it is defined by a copy.
LiveInterval &SrcInterval = getOrCreateInterval(SrcReg);
if (SrcInterval.containsOneValue()) {
assert(!SrcInterval.empty() && "Can't contain a value and be empty!");
// Get the first index of the first range. Though the interval may have
// multiple liveranges in it, we only check the first.
unsigned StartIdx = SrcInterval.begin()->start;
MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx);
// Check to see if the vreg was defined by a copy instruction, and that
// the source was this physreg.
unsigned VRegSrcSrc, VRegSrcDest;
if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) &&
SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) {
// Okay, now we know that the vreg was defined by a copy from this
// physreg. Find the value number being copied and use it as the value
// for this range.
const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1);
if (DefRange) {
LiveRange LR(start, end, DefRange->ValId);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR << '\n');
return;
}
}
}
}
LiveRange LR(start, end, interval.getNextValue());
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR << '\n');
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
unsigned reg) {
if (MRegisterInfo::isVirtualRegister(reg))
handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
else if (allocatableRegs_[reg]) {
unsigned SrcReg = 0, DestReg = 0;
if (!tii_->isMoveInstr(*MI, SrcReg, DestReg))
SrcReg = DestReg = 0;
handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg),
SrcReg, DestReg);
for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS),
SrcReg, DestReg);
}
}
/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals()
{
DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
DEBUG(std::cerr << "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I) {
MachineBasicBlock* mbb = I;
DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
for (; mi != miEnd; ++mi) {
const TargetInstrDescriptor& tid =
tm_->getInstrInfo()->get(mi->getOpcode());
DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
// handle implicit defs
for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
handleRegisterDef(mbb, mi, *id);
// handle explicit defs
for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
MachineOperand& mop = mi->getOperand(i);
// handle register defs - build intervals
if (mop.isRegister() && mop.getReg() && mop.isDef())
handleRegisterDef(mbb, mi, mop.getReg());
}
}
}
}
/// IntA is defined as a copy from IntB and we know it only has one value
/// number. If all of the places that IntA and IntB overlap are defined by
/// copies from IntA to IntB, we know that these two ranges can really be
/// merged if we adjust the value numbers. If it is safe, adjust the value
/// numbers and return true, allowing coalescing to occur.
bool LiveIntervals::
AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA,
LiveInterval &IntB,
unsigned CopyIdx) {
std::vector<LiveRange*> Ranges;
IntA.getOverlapingRanges(IntB, CopyIdx, Ranges);
assert(!Ranges.empty() && "Why didn't we do a simple join of this?");
unsigned IntBRep = rep(IntB.reg);
// Check to see if all of the overlaps (entries in Ranges) are defined by a
// copy from IntA. If not, exit.
for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
unsigned Idx = Ranges[i]->start;
MachineInstr *MI = getInstructionFromIndex(Idx);
unsigned SrcReg, DestReg;
if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false;
// If this copy isn't actually defining this range, it must be a live
// range spanning basic blocks or something.
if (rep(DestReg) != rep(IntA.reg)) return false;
// Check to see if this is coming from IntB. If not, bail out.
if (rep(SrcReg) != IntBRep) return false;
}
// Okay, we can change this one. Get the IntB value number that IntA is
// copied from.
unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId;
// Change all of the value numbers to the same as what we IntA is copied from.
for (unsigned i = 0, e = Ranges.size(); i != e; ++i)
Ranges[i]->ValId = ActualValNo;
return true;
}
void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
mi != mie; ++mi) {
DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
// we only join virtual registers with allocatable
// physical registers since we do not have liveness information
// on not allocatable physical registers
unsigned SrcReg, DestReg;
if (tii_->isMoveInstr(*mi, SrcReg, DestReg) &&
(MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&&
(MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){
// Get representative registers.
SrcReg = rep(SrcReg);
DestReg = rep(DestReg);
// If they are already joined we continue.
if (SrcReg == DestReg)
continue;
// If they are both physical registers, we cannot join them.
if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
MRegisterInfo::isPhysicalRegister(DestReg))
continue;
// If they are not of the same register class, we cannot join them.
if (differingRegisterClasses(SrcReg, DestReg))
continue;
LiveInterval &SrcInt = getInterval(SrcReg);
LiveInterval &DestInt = getInterval(DestReg);
assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg &&
"Register mapping is horribly broken!");
DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt
<< ": ");
// If two intervals contain a single value and are joined by a copy, it
// does not matter if the intervals overlap, they can always be joined.
bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue();
unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
// If the intervals think that this is joinable, do so now.
if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx))
Joinable = true;
// If DestInt is actually a copy from SrcInt (which we know) that is used
// to define another value of SrcInt, we can change the other range of
// SrcInt to be the value of the range that defines DestInt, allowing a
// coalesce.
if (!Joinable && DestInt.containsOneValue() &&
AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx))
Joinable = true;
if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) {
DEBUG(std::cerr << "Interference!\n");
} else {
DestInt.join(SrcInt, MIDefIdx);
DEBUG(std::cerr << "Joined. Result = " << DestInt << "\n");
if (!MRegisterInfo::isPhysicalRegister(SrcReg)) {
r2iMap_.erase(SrcReg);
r2rMap_[SrcReg] = DestReg;
} else {
// Otherwise merge the data structures the other way so we don't lose
// the physreg information.
r2rMap_[DestReg] = SrcReg;
DestInt.reg = SrcReg;
SrcInt.swap(DestInt);
r2iMap_.erase(DestReg);
}
++numJoins;
}
}
}
}
namespace {
// DepthMBBCompare - Comparison predicate that sort first based on the loop
// depth of the basic block (the unsigned), and then on the MBB number.
struct DepthMBBCompare {
typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
if (LHS.first > RHS.first) return true; // Deeper loops first
return LHS.first == RHS.first &&
LHS.second->getNumber() < RHS.second->getNumber();
}
};
}
void LiveIntervals::joinIntervals() {
DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
const LoopInfo &LI = getAnalysis<LoopInfo>();
if (LI.begin() == LI.end()) {
// If there are no loops in the function, join intervals in function order.
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I)
joinIntervalsInMachineBB(I);
} else {
// Otherwise, join intervals in inner loops before other intervals.
// Unfortunately we can't just iterate over loop hierarchy here because
// there may be more MBB's than BB's. Collect MBB's for sorting.
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I)
MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
// Sort by loop depth.
std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
// Finally, join intervals in loop nest order.
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
joinIntervalsInMachineBB(MBBs[i].second);
}
DEBUG(std::cerr << "*** Register mapping ***\n");
DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
if (r2rMap_[i])
std::cerr << " reg " << i << " -> reg " << r2rMap_[i] << "\n");
}
/// Return true if the two specified registers belong to different register
/// classes. The registers may be either phys or virt regs.
bool LiveIntervals::differingRegisterClasses(unsigned RegA,
unsigned RegB) const {
// Get the register classes for the first reg.
if (MRegisterInfo::isPhysicalRegister(RegA)) {
assert(MRegisterInfo::isVirtualRegister(RegB) &&
"Shouldn't consider two physregs!");
return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
}
// Compare against the regclass for the second reg.
const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
if (MRegisterInfo::isVirtualRegister(RegB))
return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
else
return !RegClass->contains(RegB);
}
bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
const LiveInterval *RHS) const {
if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
return false; // vreg-vreg merge has no aliases!
std::swap(LHS, RHS);
}
assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
MRegisterInfo::isVirtualRegister(RHS->reg) &&
"first interval must describe a physical register");
for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
if (RHS->overlaps(getInterval(*AS)))
return true;
return false;
}
LiveInterval LiveIntervals::createInterval(unsigned reg) {
float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
(float)HUGE_VAL :0.0F;
return LiveInterval(reg, Weight);
}