llvm/lib/IR/AsmWriter.cpp
Duncan P. N. Exon Smith 6a390dc584 AsmWriter/Bitcode: MDImportedEntity
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229025 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 01:46:02 +00:00

3217 lines
105 KiB
C++

//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/IR/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//
#include "AsmWriter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cctype>
using namespace llvm;
// Make virtual table appear in this compilation unit.
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
namespace {
struct OrderMap {
DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
unsigned size() const { return IDs.size(); }
std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
std::pair<unsigned, bool> lookup(const Value *V) const {
return IDs.lookup(V);
}
void index(const Value *V) {
// Explicitly sequence get-size and insert-value operations to avoid UB.
unsigned ID = IDs.size() + 1;
IDs[V].first = ID;
}
};
}
static void orderValue(const Value *V, OrderMap &OM) {
if (OM.lookup(V).first)
return;
if (const Constant *C = dyn_cast<Constant>(V))
if (C->getNumOperands() && !isa<GlobalValue>(C))
for (const Value *Op : C->operands())
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
orderValue(Op, OM);
// Note: we cannot cache this lookup above, since inserting into the map
// changes the map's size, and thus affects the other IDs.
OM.index(V);
}
static OrderMap orderModule(const Module *M) {
// This needs to match the order used by ValueEnumerator::ValueEnumerator()
// and ValueEnumerator::incorporateFunction().
OrderMap OM;
for (const GlobalVariable &G : M->globals()) {
if (G.hasInitializer())
if (!isa<GlobalValue>(G.getInitializer()))
orderValue(G.getInitializer(), OM);
orderValue(&G, OM);
}
for (const GlobalAlias &A : M->aliases()) {
if (!isa<GlobalValue>(A.getAliasee()))
orderValue(A.getAliasee(), OM);
orderValue(&A, OM);
}
for (const Function &F : *M) {
if (F.hasPrefixData())
if (!isa<GlobalValue>(F.getPrefixData()))
orderValue(F.getPrefixData(), OM);
if (F.hasPrologueData())
if (!isa<GlobalValue>(F.getPrologueData()))
orderValue(F.getPrologueData(), OM);
orderValue(&F, OM);
if (F.isDeclaration())
continue;
for (const Argument &A : F.args())
orderValue(&A, OM);
for (const BasicBlock &BB : F) {
orderValue(&BB, OM);
for (const Instruction &I : BB) {
for (const Value *Op : I.operands())
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
isa<InlineAsm>(*Op))
orderValue(Op, OM);
orderValue(&I, OM);
}
}
}
return OM;
}
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
unsigned ID, const OrderMap &OM,
UseListOrderStack &Stack) {
// Predict use-list order for this one.
typedef std::pair<const Use *, unsigned> Entry;
SmallVector<Entry, 64> List;
for (const Use &U : V->uses())
// Check if this user will be serialized.
if (OM.lookup(U.getUser()).first)
List.push_back(std::make_pair(&U, List.size()));
if (List.size() < 2)
// We may have lost some users.
return;
bool GetsReversed =
!isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
if (auto *BA = dyn_cast<BlockAddress>(V))
ID = OM.lookup(BA->getBasicBlock()).first;
std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
const Use *LU = L.first;
const Use *RU = R.first;
if (LU == RU)
return false;
auto LID = OM.lookup(LU->getUser()).first;
auto RID = OM.lookup(RU->getUser()).first;
// If ID is 4, then expect: 7 6 5 1 2 3.
if (LID < RID) {
if (GetsReversed)
if (RID <= ID)
return true;
return false;
}
if (RID < LID) {
if (GetsReversed)
if (LID <= ID)
return false;
return true;
}
// LID and RID are equal, so we have different operands of the same user.
// Assume operands are added in order for all instructions.
if (GetsReversed)
if (LID <= ID)
return LU->getOperandNo() < RU->getOperandNo();
return LU->getOperandNo() > RU->getOperandNo();
});
if (std::is_sorted(
List.begin(), List.end(),
[](const Entry &L, const Entry &R) { return L.second < R.second; }))
// Order is already correct.
return;
// Store the shuffle.
Stack.emplace_back(V, F, List.size());
assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
for (size_t I = 0, E = List.size(); I != E; ++I)
Stack.back().Shuffle[I] = List[I].second;
}
static void predictValueUseListOrder(const Value *V, const Function *F,
OrderMap &OM, UseListOrderStack &Stack) {
auto &IDPair = OM[V];
assert(IDPair.first && "Unmapped value");
if (IDPair.second)
// Already predicted.
return;
// Do the actual prediction.
IDPair.second = true;
if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
// Recursive descent into constants.
if (const Constant *C = dyn_cast<Constant>(V))
if (C->getNumOperands()) // Visit GlobalValues.
for (const Value *Op : C->operands())
if (isa<Constant>(Op)) // Visit GlobalValues.
predictValueUseListOrder(Op, F, OM, Stack);
}
static UseListOrderStack predictUseListOrder(const Module *M) {
OrderMap OM = orderModule(M);
// Use-list orders need to be serialized after all the users have been added
// to a value, or else the shuffles will be incomplete. Store them per
// function in a stack.
//
// Aside from function order, the order of values doesn't matter much here.
UseListOrderStack Stack;
// We want to visit the functions backward now so we can list function-local
// constants in the last Function they're used in. Module-level constants
// have already been visited above.
for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
const Function &F = *I;
if (F.isDeclaration())
continue;
for (const BasicBlock &BB : F)
predictValueUseListOrder(&BB, &F, OM, Stack);
for (const Argument &A : F.args())
predictValueUseListOrder(&A, &F, OM, Stack);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
for (const Value *Op : I.operands())
if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
predictValueUseListOrder(Op, &F, OM, Stack);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
predictValueUseListOrder(&I, &F, OM, Stack);
}
// Visit globals last.
for (const GlobalVariable &G : M->globals())
predictValueUseListOrder(&G, nullptr, OM, Stack);
for (const Function &F : *M)
predictValueUseListOrder(&F, nullptr, OM, Stack);
for (const GlobalAlias &A : M->aliases())
predictValueUseListOrder(&A, nullptr, OM, Stack);
for (const GlobalVariable &G : M->globals())
if (G.hasInitializer())
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
for (const GlobalAlias &A : M->aliases())
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
for (const Function &F : *M)
if (F.hasPrefixData())
predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
return Stack;
}
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : nullptr;
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : nullptr;
if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
return M ? M->getParent() : nullptr;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
return nullptr;
}
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
switch (cc) {
default: Out << "cc" << cc; break;
case CallingConv::Fast: Out << "fastcc"; break;
case CallingConv::Cold: Out << "coldcc"; break;
case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
case CallingConv::AnyReg: Out << "anyregcc"; break;
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
case CallingConv::GHC: Out << "ghccc"; break;
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
case CallingConv::PTX_Device: Out << "ptx_device"; break;
case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
}
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
unsigned char C = Name[i];
if (isprint(C) && C != '\\' && C != '"')
Out << C;
else
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
enum PrefixType {
GlobalPrefix,
ComdatPrefix,
LabelPrefix,
LocalPrefix,
NoPrefix
};
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
assert(!Name.empty() && "Cannot get empty name!");
switch (Prefix) {
case NoPrefix: break;
case GlobalPrefix: OS << '@'; break;
case ComdatPrefix: OS << '$'; break;
case LabelPrefix: break;
case LocalPrefix: OS << '%'; break;
}
// Scan the name to see if it needs quotes first.
bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
if (!NeedsQuotes) {
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
// By making this unsigned, the value passed in to isalnum will always be
// in the range 0-255. This is important when building with MSVC because
// its implementation will assert. This situation can arise when dealing
// with UTF-8 multibyte characters.
unsigned char C = Name[i];
if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
C != '_') {
NeedsQuotes = true;
break;
}
}
}
// If we didn't need any quotes, just write out the name in one blast.
if (!NeedsQuotes) {
OS << Name;
return;
}
// Okay, we need quotes. Output the quotes and escape any scary characters as
// needed.
OS << '"';
PrintEscapedString(Name, OS);
OS << '"';
}
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
PrintLLVMName(OS, V->getName(),
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
}
namespace llvm {
void TypePrinting::incorporateTypes(const Module &M) {
NamedTypes.run(M, false);
// The list of struct types we got back includes all the struct types, split
// the unnamed ones out to a numbering and remove the anonymous structs.
unsigned NextNumber = 0;
std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
StructType *STy = *I;
// Ignore anonymous types.
if (STy->isLiteral())
continue;
if (STy->getName().empty())
NumberedTypes[STy] = NextNumber++;
else
*NextToUse++ = STy;
}
NamedTypes.erase(NextToUse, NamedTypes.end());
}
/// CalcTypeName - Write the specified type to the specified raw_ostream, making
/// use of type names or up references to shorten the type name where possible.
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: OS << "void"; return;
case Type::HalfTyID: OS << "half"; return;
case Type::FloatTyID: OS << "float"; return;
case Type::DoubleTyID: OS << "double"; return;
case Type::X86_FP80TyID: OS << "x86_fp80"; return;
case Type::FP128TyID: OS << "fp128"; return;
case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
case Type::LabelTyID: OS << "label"; return;
case Type::MetadataTyID: OS << "metadata"; return;
case Type::X86_MMXTyID: OS << "x86_mmx"; return;
case Type::IntegerTyID:
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
return;
case Type::FunctionTyID: {
FunctionType *FTy = cast<FunctionType>(Ty);
print(FTy->getReturnType(), OS);
OS << " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
OS << ", ";
print(*I, OS);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) OS << ", ";
OS << "...";
}
OS << ')';
return;
}
case Type::StructTyID: {
StructType *STy = cast<StructType>(Ty);
if (STy->isLiteral())
return printStructBody(STy, OS);
if (!STy->getName().empty())
return PrintLLVMName(OS, STy->getName(), LocalPrefix);
DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
if (I != NumberedTypes.end())
OS << '%' << I->second;
else // Not enumerated, print the hex address.
OS << "%\"type " << STy << '\"';
return;
}
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(Ty);
print(PTy->getElementType(), OS);
if (unsigned AddressSpace = PTy->getAddressSpace())
OS << " addrspace(" << AddressSpace << ')';
OS << '*';
return;
}
case Type::ArrayTyID: {
ArrayType *ATy = cast<ArrayType>(Ty);
OS << '[' << ATy->getNumElements() << " x ";
print(ATy->getElementType(), OS);
OS << ']';
return;
}
case Type::VectorTyID: {
VectorType *PTy = cast<VectorType>(Ty);
OS << "<" << PTy->getNumElements() << " x ";
print(PTy->getElementType(), OS);
OS << '>';
return;
}
}
llvm_unreachable("Invalid TypeID");
}
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
if (STy->isOpaque()) {
OS << "opaque";
return;
}
if (STy->isPacked())
OS << '<';
if (STy->getNumElements() == 0) {
OS << "{}";
} else {
StructType::element_iterator I = STy->element_begin();
OS << "{ ";
print(*I++, OS);
for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
OS << ", ";
print(*I, OS);
}
OS << " }";
}
if (STy->isPacked())
OS << '>';
}
//===----------------------------------------------------------------------===//
// SlotTracker Class: Enumerate slot numbers for unnamed values
//===----------------------------------------------------------------------===//
/// This class provides computation of slot numbers for LLVM Assembly writing.
///
class SlotTracker {
public:
/// ValueMap - A mapping of Values to slot numbers.
typedef DenseMap<const Value*, unsigned> ValueMap;
private:
/// TheModule - The module for which we are holding slot numbers.
const Module* TheModule;
/// TheFunction - The function for which we are holding slot numbers.
const Function* TheFunction;
bool FunctionProcessed;
/// mMap - The slot map for the module level data.
ValueMap mMap;
unsigned mNext;
/// fMap - The slot map for the function level data.
ValueMap fMap;
unsigned fNext;
/// mdnMap - Map for MDNodes.
DenseMap<const MDNode*, unsigned> mdnMap;
unsigned mdnNext;
/// asMap - The slot map for attribute sets.
DenseMap<AttributeSet, unsigned> asMap;
unsigned asNext;
public:
/// Construct from a module
explicit SlotTracker(const Module *M);
/// Construct from a function, starting out in incorp state.
explicit SlotTracker(const Function *F);
/// Return the slot number of the specified value in it's type
/// plane. If something is not in the SlotTracker, return -1.
int getLocalSlot(const Value *V);
int getGlobalSlot(const GlobalValue *V);
int getMetadataSlot(const MDNode *N);
int getAttributeGroupSlot(AttributeSet AS);
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotTracker.
void incorporateFunction(const Function *F) {
TheFunction = F;
FunctionProcessed = false;
}
const Function *getFunction() const { return TheFunction; }
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotTracker. This
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
/// MDNode map iterators.
typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_iterator mdn_end() { return mdnMap.end(); }
unsigned mdn_size() const { return mdnMap.size(); }
bool mdn_empty() const { return mdnMap.empty(); }
/// AttributeSet map iterators.
typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
as_iterator as_begin() { return asMap.begin(); }
as_iterator as_end() { return asMap.end(); }
unsigned as_size() const { return asMap.size(); }
bool as_empty() const { return asMap.empty(); }
/// This function does the actual initialization.
inline void initialize();
// Implementation Details
private:
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void CreateModuleSlot(const GlobalValue *V);
/// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
void CreateMetadataSlot(const MDNode *N);
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
void CreateFunctionSlot(const Value *V);
/// \brief Insert the specified AttributeSet into the slot table.
void CreateAttributeSetSlot(AttributeSet AS);
/// Add all of the module level global variables (and their initializers)
/// and function declarations, but not the contents of those functions.
void processModule();
/// Add all of the functions arguments, basic blocks, and instructions.
void processFunction();
SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
};
SlotTracker *createSlotTracker(const Module *M) {
return new SlotTracker(M);
}
static SlotTracker *createSlotTracker(const Value *V) {
if (const Argument *FA = dyn_cast<Argument>(V))
return new SlotTracker(FA->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V))
if (I->getParent())
return new SlotTracker(I->getParent()->getParent());
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return new SlotTracker(BB->getParent());
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return new SlotTracker(GV->getParent());
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return new SlotTracker(GA->getParent());
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
return nullptr;
}
#if 0
#define ST_DEBUG(X) dbgs() << X
#else
#define ST_DEBUG(X)
#endif
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M)
: TheModule(M), TheFunction(nullptr), FunctionProcessed(false), mNext(0),
fNext(0), mdnNext(0), asNext(0) {}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F)
: TheModule(F ? F->getParent() : nullptr), TheFunction(F),
FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0), asNext(0) {}
inline void SlotTracker::initialize() {
if (TheModule) {
processModule();
TheModule = nullptr; ///< Prevent re-processing next time we're called.
}
if (TheFunction && !FunctionProcessed)
processFunction();
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotTracker::processModule() {
ST_DEBUG("begin processModule!\n");
// Add all of the unnamed global variables to the value table.
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I) {
if (!I->hasName())
CreateModuleSlot(I);
}
// Add metadata used by named metadata.
for (Module::const_named_metadata_iterator
I = TheModule->named_metadata_begin(),
E = TheModule->named_metadata_end(); I != E; ++I) {
const NamedMDNode *NMD = I;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
CreateMetadataSlot(NMD->getOperand(i));
}
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I) {
if (!I->hasName())
// Add all the unnamed functions to the table.
CreateModuleSlot(I);
// Add all the function attributes to the table.
// FIXME: Add attributes of other objects?
AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
CreateAttributeSetSlot(FnAttrs);
}
ST_DEBUG("end processModule!\n");
}
// Process the arguments, basic blocks, and instructions of a function.
void SlotTracker::processFunction() {
ST_DEBUG("begin processFunction!\n");
fNext = 0;
// Add all the function arguments with no names.
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
AE = TheFunction->arg_end(); AI != AE; ++AI)
if (!AI->hasName())
CreateFunctionSlot(AI);
ST_DEBUG("Inserting Instructions:\n");
SmallVector<std::pair<unsigned, MDNode *>, 4> MDForInst;
// Add all of the basic blocks and instructions with no names.
for (Function::const_iterator BB = TheFunction->begin(),
E = TheFunction->end(); BB != E; ++BB) {
if (!BB->hasName())
CreateFunctionSlot(BB);
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
++I) {
if (!I->getType()->isVoidTy() && !I->hasName())
CreateFunctionSlot(I);
// Intrinsics can directly use metadata. We allow direct calls to any
// llvm.foo function here, because the target may not be linked into the
// optimizer.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
if (Function *F = CI->getCalledFunction())
if (F->isIntrinsic())
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (auto *V = dyn_cast_or_null<MetadataAsValue>(I->getOperand(i)))
if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
CreateMetadataSlot(N);
// Add all the call attributes to the table.
AttributeSet Attrs = CI->getAttributes().getFnAttributes();
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
CreateAttributeSetSlot(Attrs);
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
// Add all the call attributes to the table.
AttributeSet Attrs = II->getAttributes().getFnAttributes();
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
CreateAttributeSetSlot(Attrs);
}
// Process metadata attached with this instruction.
I->getAllMetadata(MDForInst);
for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
CreateMetadataSlot(MDForInst[i].second);
MDForInst.clear();
}
}
FunctionProcessed = true;
ST_DEBUG("end processFunction!\n");
}
/// Clean up after incorporating a function. This is the only way to get out of
/// the function incorporation state that affects get*Slot/Create*Slot. Function
/// incorporation state is indicated by TheFunction != 0.
void SlotTracker::purgeFunction() {
ST_DEBUG("begin purgeFunction!\n");
fMap.clear(); // Simply discard the function level map
TheFunction = nullptr;
FunctionProcessed = false;
ST_DEBUG("end purgeFunction!\n");
}
/// getGlobalSlot - Get the slot number of a global value.
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
// Check for uninitialized state and do lazy initialization.
initialize();
// Find the value in the module map
ValueMap::iterator MI = mMap.find(V);
return MI == mMap.end() ? -1 : (int)MI->second;
}
/// getMetadataSlot - Get the slot number of a MDNode.
int SlotTracker::getMetadataSlot(const MDNode *N) {
// Check for uninitialized state and do lazy initialization.
initialize();
// Find the MDNode in the module map
mdn_iterator MI = mdnMap.find(N);
return MI == mdnMap.end() ? -1 : (int)MI->second;
}
/// getLocalSlot - Get the slot number for a value that is local to a function.
int SlotTracker::getLocalSlot(const Value *V) {
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
// Check for uninitialized state and do lazy initialization.
initialize();
ValueMap::iterator FI = fMap.find(V);
return FI == fMap.end() ? -1 : (int)FI->second;
}
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
// Check for uninitialized state and do lazy initialization.
initialize();
// Find the AttributeSet in the module map.
as_iterator AI = asMap.find(AS);
return AI == asMap.end() ? -1 : (int)AI->second;
}
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
assert(V && "Can't insert a null Value into SlotTracker!");
assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
assert(!V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = mNext++;
mMap[V] = DestSlot;
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, F = Function, A = Alias, o = other
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
(isa<Function>(V) ? 'F' :
(isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
}
/// CreateSlot - Create a new slot for the specified value if it has no name.
void SlotTracker::CreateFunctionSlot(const Value *V) {
assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = fNext++;
fMap[V] = DestSlot;
// G = Global, F = Function, o = other
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [o]\n");
}
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
assert(N && "Can't insert a null Value into SlotTracker!");
unsigned DestSlot = mdnNext;
if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
return;
++mdnNext;
// Recursively add any MDNodes referenced by operands.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
CreateMetadataSlot(Op);
}
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
"Doesn't need a slot!");
as_iterator I = asMap.find(AS);
if (I != asMap.end())
return;
unsigned DestSlot = asNext++;
asMap[AS] = DestSlot;
}
//===----------------------------------------------------------------------===//
// AsmWriter Implementation
//===----------------------------------------------------------------------===//
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context);
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context,
bool FromValue = false);
static const char *getPredicateText(unsigned predicate) {
const char * pred = "unknown";
switch (predicate) {
case FCmpInst::FCMP_FALSE: pred = "false"; break;
case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
case FCmpInst::FCMP_OGT: pred = "ogt"; break;
case FCmpInst::FCMP_OGE: pred = "oge"; break;
case FCmpInst::FCMP_OLT: pred = "olt"; break;
case FCmpInst::FCMP_OLE: pred = "ole"; break;
case FCmpInst::FCMP_ONE: pred = "one"; break;
case FCmpInst::FCMP_ORD: pred = "ord"; break;
case FCmpInst::FCMP_UNO: pred = "uno"; break;
case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
case FCmpInst::FCMP_UGT: pred = "ugt"; break;
case FCmpInst::FCMP_UGE: pred = "uge"; break;
case FCmpInst::FCMP_ULT: pred = "ult"; break;
case FCmpInst::FCMP_ULE: pred = "ule"; break;
case FCmpInst::FCMP_UNE: pred = "une"; break;
case FCmpInst::FCMP_TRUE: pred = "true"; break;
case ICmpInst::ICMP_EQ: pred = "eq"; break;
case ICmpInst::ICMP_NE: pred = "ne"; break;
case ICmpInst::ICMP_SGT: pred = "sgt"; break;
case ICmpInst::ICMP_SGE: pred = "sge"; break;
case ICmpInst::ICMP_SLT: pred = "slt"; break;
case ICmpInst::ICMP_SLE: pred = "sle"; break;
case ICmpInst::ICMP_UGT: pred = "ugt"; break;
case ICmpInst::ICMP_UGE: pred = "uge"; break;
case ICmpInst::ICMP_ULT: pred = "ult"; break;
case ICmpInst::ICMP_ULE: pred = "ule"; break;
}
return pred;
}
static void writeAtomicRMWOperation(raw_ostream &Out,
AtomicRMWInst::BinOp Op) {
switch (Op) {
default: Out << " <unknown operation " << Op << ">"; break;
case AtomicRMWInst::Xchg: Out << " xchg"; break;
case AtomicRMWInst::Add: Out << " add"; break;
case AtomicRMWInst::Sub: Out << " sub"; break;
case AtomicRMWInst::And: Out << " and"; break;
case AtomicRMWInst::Nand: Out << " nand"; break;
case AtomicRMWInst::Or: Out << " or"; break;
case AtomicRMWInst::Xor: Out << " xor"; break;
case AtomicRMWInst::Max: Out << " max"; break;
case AtomicRMWInst::Min: Out << " min"; break;
case AtomicRMWInst::UMax: Out << " umax"; break;
case AtomicRMWInst::UMin: Out << " umin"; break;
}
}
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
// Unsafe algebra implies all the others, no need to write them all out
if (FPO->hasUnsafeAlgebra())
Out << " fast";
else {
if (FPO->hasNoNaNs())
Out << " nnan";
if (FPO->hasNoInfs())
Out << " ninf";
if (FPO->hasNoSignedZeros())
Out << " nsz";
if (FPO->hasAllowReciprocal())
Out << " arcp";
}
}
if (const OverflowingBinaryOperator *OBO =
dyn_cast<OverflowingBinaryOperator>(U)) {
if (OBO->hasNoUnsignedWrap())
Out << " nuw";
if (OBO->hasNoSignedWrap())
Out << " nsw";
} else if (const PossiblyExactOperator *Div =
dyn_cast<PossiblyExactOperator>(U)) {
if (Div->isExact())
Out << " exact";
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
if (GEP->isInBounds())
Out << " inbounds";
}
}
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
TypePrinting &TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType()->isIntegerTy(1)) {
Out << (CI->getZExtValue() ? "true" : "false");
return;
}
Out << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
bool ignored;
bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
bool isInf = CFP->getValueAPF().isInfinity();
bool isNaN = CFP->getValueAPF().isNaN();
if (!isHalf && !isInf && !isNaN) {
double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
CFP->getValueAPF().convertToFloat();
SmallString<128> StrVal;
raw_svector_ostream(StrVal) << Val;
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) {
// Reparse stringized version!
if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
Out << StrVal.str();
return;
}
}
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format! Note that loading and storing
// floating point types changes the bits of NaNs on some hosts, notably
// x86, so we must not use these types.
static_assert(sizeof(double) == sizeof(uint64_t),
"assuming that double is 64 bits!");
char Buffer[40];
APFloat apf = CFP->getValueAPF();
// Halves and floats are represented in ASCII IR as double, convert.
if (!isDouble)
apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
Out << "0x" <<
utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
Buffer+40);
return;
}
// Either half, or some form of long double.
// These appear as a magic letter identifying the type, then a
// fixed number of hex digits.
Out << "0x";
// Bit position, in the current word, of the next nibble to print.
int shiftcount;
if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
Out << 'K';
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t* p = api.getRawData();
uint64_t word = p[1];
shiftcount = 12;
int width = api.getBitWidth();
for (int j=0; j<width; j+=4, shiftcount-=4) {
unsigned int nibble = (word>>shiftcount) & 15;
if (nibble < 10)
Out << (unsigned char)(nibble + '0');
else
Out << (unsigned char)(nibble - 10 + 'A');
if (shiftcount == 0 && j+4 < width) {
word = *p;
shiftcount = 64;
if (width-j-4 < 64)
shiftcount = width-j-4;
}
}
return;
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
shiftcount = 60;
Out << 'L';
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
shiftcount = 60;
Out << 'M';
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
shiftcount = 12;
Out << 'H';
} else
llvm_unreachable("Unsupported floating point type");
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t* p = api.getRawData();
uint64_t word = *p;
int width = api.getBitWidth();
for (int j=0; j<width; j+=4, shiftcount-=4) {
unsigned int nibble = (word>>shiftcount) & 15;
if (nibble < 10)
Out << (unsigned char)(nibble + '0');
else
Out << (unsigned char)(nibble - 10 + 'A');
if (shiftcount == 0 && j+4 < width) {
word = *(++p);
shiftcount = 64;
if (width-j-4 < 64)
shiftcount = width-j-4;
}
}
return;
}
if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
return;
}
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
Out << "blockaddress(";
WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
Context);
Out << ", ";
WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
Context);
Out << ")";
return;
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
Type *ETy = CA->getType()->getElementType();
Out << '[';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(0),
&TypePrinter, Machine,
Context);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
Context);
}
Out << ']';
return;
}
if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// i8 with ConstantInt values.
if (CA->isString()) {
Out << "c\"";
PrintEscapedString(CA->getAsString(), Out);
Out << '"';
return;
}
Type *ETy = CA->getType()->getElementType();
Out << '[';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
&TypePrinter, Machine,
Context);
for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
Machine, Context);
}
Out << ']';
return;
}
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
if (CS->getType()->isPacked())
Out << '<';
Out << '{';
unsigned N = CS->getNumOperands();
if (N) {
Out << ' ';
TypePrinter.print(CS->getOperand(0)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
Context);
for (unsigned i = 1; i < N; i++) {
Out << ", ";
TypePrinter.print(CS->getOperand(i)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
Context);
}
Out << ' ';
}
Out << '}';
if (CS->getType()->isPacked())
Out << '>';
return;
}
if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
Type *ETy = CV->getType()->getVectorElementType();
Out << '<';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
Machine, Context);
for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
Machine, Context);
}
Out << '>';
return;
}
if (isa<ConstantPointerNull>(CV)) {
Out << "null";
return;
}
if (isa<UndefValue>(CV)) {
Out << "undef";
return;
}
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName();
WriteOptimizationInfo(Out, CE);
if (CE->isCompare())
Out << ' ' << getPredicateText(CE->getPredicate());
Out << " (";
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
TypePrinter.print((*OI)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
if (OI+1 != CE->op_end())
Out << ", ";
}
if (CE->hasIndices()) {
ArrayRef<unsigned> Indices = CE->getIndices();
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
Out << ", " << Indices[i];
}
if (CE->isCast()) {
Out << " to ";
TypePrinter.print(CE->getType(), Out);
}
Out << ')';
return;
}
Out << "<placeholder or erroneous Constant>";
}
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!{";
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
const Metadata *MD = Node->getOperand(mi);
if (!MD)
Out << "null";
else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
Value *V = MDV->getValue();
TypePrinter->print(V->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
} else {
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
if (mi + 1 != me)
Out << ", ";
}
Out << "}";
}
namespace {
struct FieldSeparator {
bool Skip;
FieldSeparator() : Skip(true) {}
};
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
if (FS.Skip) {
FS.Skip = false;
return OS;
}
return OS << ", ";
}
} // end namespace
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (!MD) {
Out << "null";
return;
}
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
static void writeTag(raw_ostream &Out, FieldSeparator &FS, const DebugNode *N) {
Out << FS << "tag: ";
if (const char *Tag = dwarf::TagString(N->getTag()))
Out << Tag;
else
Out << N->getTag();
}
static void writeGenericDebugNode(raw_ostream &Out, const GenericDebugNode *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!GenericDebugNode(";
FieldSeparator FS;
writeTag(Out, FS, N);
if (!N->getHeader().empty()) {
Out << FS << "header: \"";
PrintEscapedString(N->getHeader(), Out);
Out << "\"";
}
if (N->getNumDwarfOperands()) {
Out << FS << "operands: {";
FieldSeparator IFS;
for (auto &I : N->dwarf_operands()) {
Out << IFS;
writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
}
Out << "}";
}
Out << ")";
}
static void writeMDLocation(raw_ostream &Out, const MDLocation *DL,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!MDLocation(";
FieldSeparator FS;
// Always output the line, since 0 is a relevant and important value for it.
Out << FS << "line: " << DL->getLine();
if (DL->getColumn())
Out << FS << "column: " << DL->getColumn();
Out << FS << "scope: ";
WriteAsOperandInternal(Out, DL->getScope(), TypePrinter, Machine, Context);
if (DL->getInlinedAt()) {
Out << FS << "inlinedAt: ";
WriteAsOperandInternal(Out, DL->getInlinedAt(), TypePrinter, Machine,
Context);
}
Out << ")";
}
static void writeMDSubrange(raw_ostream &Out, const MDSubrange *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!MDSubrange(";
FieldSeparator FS;
Out << FS << "count: " << N->getCount();
if (N->getLo())
Out << FS << "lowerBound: " << N->getLo();
Out << ")";
}
static void writeMDEnumerator(raw_ostream &Out, const MDEnumerator *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!MDEnumerator(";
FieldSeparator FS;
Out << FS << "value: " << N->getValue();
Out << FS << "name: \"" << N->getName() << "\"";
Out << ")";
}
static void writeMDBasicType(raw_ostream &Out, const MDBasicType *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!MDBasicType(";
FieldSeparator FS;
writeTag(Out, FS, N);
if (!N->getName().empty())
Out << FS << "name: \"" << N->getName() << "\"";
if (N->getSizeInBits())
Out << FS << "size: " << N->getSizeInBits();
if (N->getAlignInBits())
Out << FS << "align: " << N->getAlignInBits();
if (unsigned Encoding = N->getEncoding()) {
Out << FS << "encoding: ";
if (const char *S = dwarf::AttributeEncodingString(Encoding))
Out << S;
else
Out << Encoding;
}
Out << ")";
}
static void writeMDDerivedType(raw_ostream &Out, const MDDerivedType *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!MDDerivedType(";
FieldSeparator FS;
writeTag(Out, FS, N);
if (!N->getName().empty())
Out << FS << "name: \"" << N->getName() << "\"";
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine,
Context);
}
if (N->getLine())
Out << FS << "line: " << N->getLine();
if (N->getScope()) {
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
}
Out << FS << "baseType: ";
writeMetadataAsOperand(Out, N->getBaseType(), TypePrinter, Machine, Context);
if (N->getSizeInBits())
Out << FS << "size: " << N->getSizeInBits();
if (N->getAlignInBits())
Out << FS << "align: " << N->getAlignInBits();
if (N->getOffsetInBits())
Out << FS << "offset: " << N->getOffsetInBits();
if (N->getFlags())
Out << FS << "flags: " << N->getFlags();
if (N->getExtraData()) {
Out << FS << "extraData: ";
writeMetadataAsOperand(Out, N->getExtraData(), TypePrinter, Machine,
Context);
}
Out << ")";
}
static void writeMDCompositeType(raw_ostream &Out, const MDCompositeType *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!MDCompositeType(";
FieldSeparator FS;
writeTag(Out, FS, N);
if (!N->getName().empty())
Out << FS << "name: \"" << N->getName() << "\"";
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine,
Context);
}
if (N->getLine())
Out << FS << "line: " << N->getLine();
if (N->getScope()) {
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
}
if (N->getBaseType()) {
Out << FS << "baseType: ";
writeMetadataAsOperand(Out, N->getBaseType(), TypePrinter, Machine,
Context);
}
if (N->getSizeInBits())
Out << FS << "size: " << N->getSizeInBits();
if (N->getAlignInBits())
Out << FS << "align: " << N->getAlignInBits();
if (N->getOffsetInBits())
Out << FS << "offset: " << N->getOffsetInBits();
if (N->getFlags())
Out << FS << "flags: " << N->getFlags();
if (N->getElements()) {
Out << FS << "elements: ";
writeMetadataAsOperand(Out, N->getElements(), TypePrinter, Machine,
Context);
}
if (unsigned Lang = N->getRuntimeLang()) {
Out << FS << "runtimeLang: ";
if (const char *S = dwarf::LanguageString(Lang))
Out << S;
else
Out << Lang;
}
if (N->getVTableHolder()) {
Out << FS << "vtableHolder: ";
writeMetadataAsOperand(Out, N->getVTableHolder(), TypePrinter, Machine,
Context);
}
if (N->getTemplateParams()) {
Out << FS << "templateParams: ";
writeMetadataAsOperand(Out, N->getTemplateParams(), TypePrinter, Machine,
Context);
}
if (!N->getIdentifier().empty())
Out << FS << "identifier: \"" << N->getIdentifier() << "\"";
Out << ")";
}
static void writeMDSubroutineType(raw_ostream &Out, const MDSubroutineType *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!MDSubroutineType(";
FieldSeparator FS;
if (N->getFlags())
Out << FS << "flags: " << N->getFlags();
Out << FS << "types: ";
writeMetadataAsOperand(Out, N->getTypeArray(), TypePrinter, Machine, Context);
Out << ")";
}
static void writeMDFile(raw_ostream &Out, const MDFile *N, TypePrinting *,
SlotTracker *, const Module *) {
Out << "!MDFile(";
FieldSeparator FS;
Out << FS << "filename: \"" << N->getFilename() << "\"";
Out << FS << "directory: \"" << N->getDirectory() << "\"";
Out << ")";
}
static void writeMDCompileUnit(raw_ostream &Out, const MDCompileUnit *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!MDCompileUnit(";
FieldSeparator FS;
Out << FS << "language: ";
if (const char *Lang = dwarf::LanguageString(N->getSourceLanguage()))
Out << Lang;
else
Out << N->getSourceLanguage();
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine,
Context);
}
if (!N->getProducer().empty())
Out << FS << "producer: \"" << N->getProducer() << "\"";
Out << FS << "isOptimized: " << (N->isOptimized() ? "true" : "false");
if (!N->getFlags().empty())
Out << FS << "flags: \"" << N->getFlags() << "\"";
Out << FS << "runtimeVersion: " << N->getRuntimeVersion();
if (!N->getSplitDebugFilename().empty())
Out << FS << "splitDebugFilename: \"" << N->getSplitDebugFilename() << "\"";
Out << FS << "emissionKind: " << N->getEmissionKind();
if (N->getEnumTypes()) {
Out << FS << "enums: ";
writeMetadataAsOperand(Out, N->getEnumTypes(), TypePrinter, Machine,
Context);
}
if (N->getRetainedTypes()) {
Out << FS << "retainedTypes: ";
writeMetadataAsOperand(Out, N->getRetainedTypes(), TypePrinter, Machine,
Context);
}
if (N->getSubprograms()) {
Out << FS << "subprograms: ";
writeMetadataAsOperand(Out, N->getSubprograms(), TypePrinter, Machine,
Context);
}
if (N->getGlobalVariables()) {
Out << FS << "globals: ";
writeMetadataAsOperand(Out, N->getGlobalVariables(), TypePrinter, Machine,
Context);
}
if (N->getImportedEntities()) {
Out << FS << "imports: ";
writeMetadataAsOperand(Out, N->getImportedEntities(), TypePrinter, Machine,
Context);
}
Out << ")";
}
static void writeMDSubprogram(raw_ostream &Out, const MDSubprogram *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!MDSubprogram(";
FieldSeparator FS;
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
Out << FS << "name: \"" << N->getName() << "\"";
if (!N->getLinkageName().empty())
Out << FS << "linkageName: \"" << N->getLinkageName() << "\"";
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine,
Context);
}
if (N->getLine())
Out << FS << "line: " << N->getLine();
if (N->getType()) {
Out << FS << "type: ";
writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine,
Context);
}
Out << FS << "isLocal: " << (N->isLocalToUnit() ? "true" : "false");
Out << FS << "isDefinition: " << (N->isDefinition() ? "true" : "false");
if (N->getScopeLine())
Out << FS << "scopeLine: " << N->getScopeLine();
if (N->getContainingType()) {
Out << FS << "containingType: ";
writeMetadataAsOperand(Out, N->getContainingType(), TypePrinter, Machine,
Context);
}
if (unsigned V = N->getVirtuality()) {
Out << FS << "virtuality: ";
if (const char *S = dwarf::VirtualityString(V))
Out << S;
else
Out << V;
}
if (N->getVirtualIndex())
Out << FS << "virtualIndex: " << N->getVirtualIndex();
if (N->getFlags())
Out << FS << "flags: " << N->getFlags();
Out << FS << "isOptimized: " << (N->isOptimized() ? "true" : "false");
if (N->getFunction()) {
Out << FS << "function: ";
writeMetadataAsOperand(Out, N->getFunction(), TypePrinter, Machine,
Context);
}
if (N->getTemplateParams()) {
Out << FS << "templateParams: ";
writeMetadataAsOperand(Out, N->getTemplateParams(), TypePrinter, Machine,
Context);
}
if (N->getDeclaration()) {
Out << FS << "declaration: ";
writeMetadataAsOperand(Out, N->getDeclaration(), TypePrinter, Machine,
Context);
}
if (N->getVariables()) {
Out << FS << "variables: ";
writeMetadataAsOperand(Out, N->getVariables(), TypePrinter, Machine,
Context);
}
Out << ")";
}
static void writeMDLexicalBlock(raw_ostream &Out, const MDLexicalBlock *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!MDLexicalBlock(";
FieldSeparator FS;
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine,
Context);
}
if (N->getLine())
Out << FS << "line: " << N->getLine();
if (N->getColumn())
Out << FS << "column: " << N->getColumn();
Out << ")";
}
static void writeMDLexicalBlockFile(raw_ostream &Out,
const MDLexicalBlockFile *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!MDLexicalBlockFile(";
FieldSeparator FS;
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine,
Context);
}
Out << FS << "discriminator: " << N->getDiscriminator();
Out << ")";
}
static void writeMDNamespace(raw_ostream &Out, const MDNamespace *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!MDNamespace(";
FieldSeparator FS;
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, Context);
}
if (!N->getName().empty())
Out << FS << "name: \"" << N->getName() << "\"";
if (N->getLine())
Out << FS << "line: " << N->getLine();
Out << ")";
}
static void writeMDTemplateTypeParameter(raw_ostream &Out,
const MDTemplateTypeParameter *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!MDTemplateTypeParameter(";
FieldSeparator FS;
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
Out << FS << "name: \"" << N->getName() << "\"";
Out << FS << "type: ";
writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, Context);
Out << ")";
}
static void writeMDTemplateValueParameter(raw_ostream &Out,
const MDTemplateValueParameter *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!MDTemplateValueParameter(";
FieldSeparator FS;
writeTag(Out, FS, N);
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
Out << FS << "name: \"" << N->getName() << "\"";
Out << FS << "type: ";
writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, Context);
Out << FS << "value: ";
writeMetadataAsOperand(Out, N->getValue(), TypePrinter, Machine, Context);
Out << ")";
}
static void writeMDGlobalVariable(raw_ostream &Out, const MDGlobalVariable *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!MDGlobalVariable(";
FieldSeparator FS;
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
Out << FS << "name: \"" << N->getName() << "\"";
if (!N->getLinkageName().empty())
Out << FS << "linkageName: \"" << N->getLinkageName() << "\"";
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine,
Context);
}
if (N->getLine())
Out << FS << "line: " << N->getLine();
if (N->getType()) {
Out << FS << "type: ";
writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine,
Context);
}
Out << FS << "isLocal: " << (N->isLocalToUnit() ? "true" : "false");
Out << FS << "isDefinition: " << (N->isDefinition() ? "true" : "false");
if (N->getVariable()) {
Out << FS << "variable: ";
writeMetadataAsOperand(Out, N->getVariable(), TypePrinter, Machine,
Context);
}
if (N->getStaticDataMemberDeclaration()) {
Out << FS << "declaration: ";
writeMetadataAsOperand(Out, N->getStaticDataMemberDeclaration(),
TypePrinter, Machine, Context);
}
Out << ")";
}
static void writeMDLocalVariable(raw_ostream &Out, const MDLocalVariable *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!MDLocalVariable(";
FieldSeparator FS;
writeTag(Out, FS, N);
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
Out << FS << "name: \"" << N->getName() << "\"";
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine,
Context);
}
if (N->getLine())
Out << FS << "line: " << N->getLine();
if (N->getType()) {
Out << FS << "type: ";
writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine,
Context);
}
if (N->getTag() == dwarf::DW_TAG_arg_variable || N->getArg())
Out << FS << "arg: " << N->getArg();
if (N->getFlags())
Out << FS << "flags: " << N->getFlags();
if (N->getInlinedAt()) {
Out << FS << "inlinedAt: ";
writeMetadataAsOperand(Out, N->getInlinedAt(), TypePrinter, Machine,
Context);
}
Out << ")";
}
static void writeMDExpression(raw_ostream &Out, const MDExpression *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!MDExpression(";
FieldSeparator FS;
if (N->isValid()) {
for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
const char *OpStr = dwarf::OperationEncodingString(I->getOp());
assert(OpStr && "Expected valid opcode");
Out << FS << OpStr;
for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
Out << FS << I->getArg(A);
}
} else {
for (const auto &I : N->getElements())
Out << FS << I;
}
Out << ")";
}
static void writeMDObjCProperty(raw_ostream &Out, const MDObjCProperty *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!MDObjCProperty(";
FieldSeparator FS;
Out << FS << "name: \"" << N->getName() << "\"";
if (N->getFile()) {
Out << FS << "file: ";
writeMetadataAsOperand(Out, N->getFile(), TypePrinter, Machine, Context);
}
if (N->getLine())
Out << FS << "line: " << N->getLine();
if (!N->getSetterName().empty())
Out << FS << "setter: \"" << N->getSetterName() << "\"";
if (!N->getGetterName().empty())
Out << FS << "getter: \"" << N->getGetterName() << "\"";
if (N->getAttributes())
Out << FS << "attributes: " << N->getAttributes();
if (N->getType()) {
Out << FS << "type: ";
writeMetadataAsOperand(Out, N->getType(), TypePrinter, Machine, Context);
}
Out << ")";
}
static void writeMDImportedEntity(raw_ostream &Out, const MDImportedEntity *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!MDImportedEntity(";
FieldSeparator FS;
writeTag(Out, FS, N);
Out << FS << "scope: ";
writeMetadataAsOperand(Out, N->getScope(), TypePrinter, Machine, Context);
if (N->getEntity()) {
Out << FS << "entity: ";
writeMetadataAsOperand(Out, N->getEntity(), TypePrinter, Machine, Context);
}
if (N->getLine())
Out << FS << "line: " << N->getLine();
Out << FS << "name: \"" << N->getName() << "\"";
Out << ")";
}
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
assert(!Node->isTemporary() && "Unexpected forward declaration");
if (Node->isDistinct())
Out << "distinct ";
switch (Node->getMetadataID()) {
default:
llvm_unreachable("Expected uniquable MDNode");
#define HANDLE_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
break;
#include "llvm/IR/Metadata.def"
}
}
// Full implementation of printing a Value as an operand with support for
// TypePrinting, etc.
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (V->hasName()) {
PrintLLVMName(Out, V);
return;
}
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV)) {
assert(TypePrinter && "Constants require TypePrinting!");
WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
return;
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Out << "asm ";
if (IA->hasSideEffects())
Out << "sideeffect ";
if (IA->isAlignStack())
Out << "alignstack ";
// We don't emit the AD_ATT dialect as it's the assumed default.
if (IA->getDialect() == InlineAsm::AD_Intel)
Out << "inteldialect ";
Out << '"';
PrintEscapedString(IA->getAsmString(), Out);
Out << "\", \"";
PrintEscapedString(IA->getConstraintString(), Out);
Out << '"';
return;
}
if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
Context, /* FromValue */ true);
return;
}
char Prefix = '%';
int Slot;
// If we have a SlotTracker, use it.
if (Machine) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
// If the local value didn't succeed, then we may be referring to a value
// from a different function. Translate it, as this can happen when using
// address of blocks.
if (Slot == -1)
if ((Machine = createSlotTracker(V))) {
Slot = Machine->getLocalSlot(V);
delete Machine;
}
}
} else if ((Machine = createSlotTracker(V))) {
// Otherwise, create one to get the # and then destroy it.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
}
delete Machine;
Machine = nullptr;
} else {
Slot = -1;
}
if (Slot != -1)
Out << Prefix << Slot;
else
Out << "<badref>";
}
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context,
bool FromValue) {
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
if (!Machine)
Machine = new SlotTracker(Context);
int Slot = Machine->getMetadataSlot(N);
if (Slot == -1)
// Give the pointer value instead of "badref", since this comes up all
// the time when debugging.
Out << "<" << N << ">";
else
Out << '!' << Slot;
return;
}
if (const MDString *MDS = dyn_cast<MDString>(MD)) {
Out << "!\"";
PrintEscapedString(MDS->getString(), Out);
Out << '"';
return;
}
auto *V = cast<ValueAsMetadata>(MD);
assert(TypePrinter && "TypePrinter required for metadata values");
assert((FromValue || !isa<LocalAsMetadata>(V)) &&
"Unexpected function-local metadata outside of value argument");
TypePrinter->print(V->getValue()->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
}
void AssemblyWriter::init() {
if (!TheModule)
return;
TypePrinter.incorporateTypes(*TheModule);
for (const Function &F : *TheModule)
if (const Comdat *C = F.getComdat())
Comdats.insert(C);
for (const GlobalVariable &GV : TheModule->globals())
if (const Comdat *C = GV.getComdat())
Comdats.insert(C);
}
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const Module *M,
AssemblyAnnotationWriter *AAW)
: Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
init();
}
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
AssemblyAnnotationWriter *AAW)
: Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
init();
}
AssemblyWriter::~AssemblyWriter() { }
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
if (!Operand) {
Out << "<null operand!>";
return;
}
if (PrintType) {
TypePrinter.print(Operand->getType(), Out);
Out << ' ';
}
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
if (Ordering == NotAtomic)
return;
switch (SynchScope) {
case SingleThread: Out << " singlethread"; break;
case CrossThread: break;
}
switch (Ordering) {
default: Out << " <bad ordering " << int(Ordering) << ">"; break;
case Unordered: Out << " unordered"; break;
case Monotonic: Out << " monotonic"; break;
case Acquire: Out << " acquire"; break;
case Release: Out << " release"; break;
case AcquireRelease: Out << " acq_rel"; break;
case SequentiallyConsistent: Out << " seq_cst"; break;
}
}
void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope) {
assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
switch (SynchScope) {
case SingleThread: Out << " singlethread"; break;
case CrossThread: break;
}
switch (SuccessOrdering) {
default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
case Unordered: Out << " unordered"; break;
case Monotonic: Out << " monotonic"; break;
case Acquire: Out << " acquire"; break;
case Release: Out << " release"; break;
case AcquireRelease: Out << " acq_rel"; break;
case SequentiallyConsistent: Out << " seq_cst"; break;
}
switch (FailureOrdering) {
default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
case Unordered: Out << " unordered"; break;
case Monotonic: Out << " monotonic"; break;
case Acquire: Out << " acquire"; break;
case Release: Out << " release"; break;
case AcquireRelease: Out << " acq_rel"; break;
case SequentiallyConsistent: Out << " seq_cst"; break;
}
}
void AssemblyWriter::writeParamOperand(const Value *Operand,
AttributeSet Attrs, unsigned Idx) {
if (!Operand) {
Out << "<null operand!>";
return;
}
// Print the type
TypePrinter.print(Operand->getType(), Out);
// Print parameter attributes list
if (Attrs.hasAttributes(Idx))
Out << ' ' << Attrs.getAsString(Idx);
Out << ' ';
// Print the operand
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::printModule(const Module *M) {
Machine.initialize();
if (shouldPreserveAssemblyUseListOrder())
UseListOrders = predictUseListOrder(M);
if (!M->getModuleIdentifier().empty() &&
// Don't print the ID if it will start a new line (which would
// require a comment char before it).
M->getModuleIdentifier().find('\n') == std::string::npos)
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
const std::string &DL = M->getDataLayoutStr();
if (!DL.empty())
Out << "target datalayout = \"" << DL << "\"\n";
if (!M->getTargetTriple().empty())
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
if (!M->getModuleInlineAsm().empty()) {
// Split the string into lines, to make it easier to read the .ll file.
std::string Asm = M->getModuleInlineAsm();
size_t CurPos = 0;
size_t NewLine = Asm.find_first_of('\n', CurPos);
Out << '\n';
while (NewLine != std::string::npos) {
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
Out << "module asm \"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
Out);
Out << "\"\n";
CurPos = NewLine+1;
NewLine = Asm.find_first_of('\n', CurPos);
}
std::string rest(Asm.begin()+CurPos, Asm.end());
if (!rest.empty()) {
Out << "module asm \"";
PrintEscapedString(rest, Out);
Out << "\"\n";
}
}
printTypeIdentities();
// Output all comdats.
if (!Comdats.empty())
Out << '\n';
for (const Comdat *C : Comdats) {
printComdat(C);
if (C != Comdats.back())
Out << '\n';
}
// Output all globals.
if (!M->global_empty()) Out << '\n';
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
printGlobal(I); Out << '\n';
}
// Output all aliases.
if (!M->alias_empty()) Out << "\n";
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
printAlias(I);
// Output global use-lists.
printUseLists(nullptr);
// Output all of the functions.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
assert(UseListOrders.empty() && "All use-lists should have been consumed");
// Output all attribute groups.
if (!Machine.as_empty()) {
Out << '\n';
writeAllAttributeGroups();
}
// Output named metadata.
if (!M->named_metadata_empty()) Out << '\n';
for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
E = M->named_metadata_end(); I != E; ++I)
printNamedMDNode(I);
// Output metadata.
if (!Machine.mdn_empty()) {
Out << '\n';
writeAllMDNodes();
}
}
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
Out << '!';
StringRef Name = NMD->getName();
if (Name.empty()) {
Out << "<empty name> ";
} else {
if (isalpha(static_cast<unsigned char>(Name[0])) ||
Name[0] == '-' || Name[0] == '$' ||
Name[0] == '.' || Name[0] == '_')
Out << Name[0];
else
Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
for (unsigned i = 1, e = Name.size(); i != e; ++i) {
unsigned char C = Name[i];
if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
C == '.' || C == '_')
Out << C;
else
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
Out << " = !{";
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
if (i) Out << ", ";
int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
if (Slot == -1)
Out << "<badref>";
else
Out << '!' << Slot;
}
Out << "}\n";
}
static void PrintLinkage(GlobalValue::LinkageTypes LT,
formatted_raw_ostream &Out) {
switch (LT) {
case GlobalValue::ExternalLinkage: break;
case GlobalValue::PrivateLinkage: Out << "private "; break;
case GlobalValue::InternalLinkage: Out << "internal "; break;
case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
case GlobalValue::CommonLinkage: Out << "common "; break;
case GlobalValue::AppendingLinkage: Out << "appending "; break;
case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
case GlobalValue::AvailableExternallyLinkage:
Out << "available_externally ";
break;
}
}
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
formatted_raw_ostream &Out) {
switch (Vis) {
case GlobalValue::DefaultVisibility: break;
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
}
}
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
formatted_raw_ostream &Out) {
switch (SCT) {
case GlobalValue::DefaultStorageClass: break;
case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
}
}
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
formatted_raw_ostream &Out) {
switch (TLM) {
case GlobalVariable::NotThreadLocal:
break;
case GlobalVariable::GeneralDynamicTLSModel:
Out << "thread_local ";
break;
case GlobalVariable::LocalDynamicTLSModel:
Out << "thread_local(localdynamic) ";
break;
case GlobalVariable::InitialExecTLSModel:
Out << "thread_local(initialexec) ";
break;
case GlobalVariable::LocalExecTLSModel:
Out << "thread_local(localexec) ";
break;
}
}
static void maybePrintComdat(formatted_raw_ostream &Out,
const GlobalObject &GO) {
const Comdat *C = GO.getComdat();
if (!C)
return;
if (isa<GlobalVariable>(GO))
Out << ',';
Out << " comdat";
if (GO.getName() == C->getName())
return;
Out << '(';
PrintLLVMName(Out, C->getName(), ComdatPrefix);
Out << ')';
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->isMaterializable())
Out << "; Materializable\n";
WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
Out << " = ";
if (!GV->hasInitializer() && GV->hasExternalLinkage())
Out << "external ";
PrintLinkage(GV->getLinkage(), Out);
PrintVisibility(GV->getVisibility(), Out);
PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
if (GV->hasUnnamedAddr())
Out << "unnamed_addr ";
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
Out << "addrspace(" << AddressSpace << ") ";
if (GV->isExternallyInitialized()) Out << "externally_initialized ";
Out << (GV->isConstant() ? "constant " : "global ");
TypePrinter.print(GV->getType()->getElementType(), Out);
if (GV->hasInitializer()) {
Out << ' ';
writeOperand(GV->getInitializer(), false);
}
if (GV->hasSection()) {
Out << ", section \"";
PrintEscapedString(GV->getSection(), Out);
Out << '"';
}
maybePrintComdat(Out, *GV);
if (GV->getAlignment())
Out << ", align " << GV->getAlignment();
printInfoComment(*GV);
}
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
if (GA->isMaterializable())
Out << "; Materializable\n";
// Don't crash when dumping partially built GA
if (!GA->hasName())
Out << "<<nameless>> = ";
else {
PrintLLVMName(Out, GA);
Out << " = ";
}
PrintLinkage(GA->getLinkage(), Out);
PrintVisibility(GA->getVisibility(), Out);
PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
if (GA->hasUnnamedAddr())
Out << "unnamed_addr ";
Out << "alias ";
const Constant *Aliasee = GA->getAliasee();
if (!Aliasee) {
TypePrinter.print(GA->getType(), Out);
Out << " <<NULL ALIASEE>>";
} else {
writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
}
printInfoComment(*GA);
Out << '\n';
}
void AssemblyWriter::printComdat(const Comdat *C) {
C->print(Out);
}
void AssemblyWriter::printTypeIdentities() {
if (TypePrinter.NumberedTypes.empty() &&
TypePrinter.NamedTypes.empty())
return;
Out << '\n';
// We know all the numbers that each type is used and we know that it is a
// dense assignment. Convert the map to an index table.
std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
for (DenseMap<StructType*, unsigned>::iterator I =
TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
I != E; ++I) {
assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
NumberedTypes[I->second] = I->first;
}
// Emit all numbered types.
for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
Out << '%' << i << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %2 = type %2
TypePrinter.printStructBody(NumberedTypes[i], Out);
Out << '\n';
}
for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
Out << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
Out << '\n';
}
}
/// printFunction - Print all aspects of a function.
///
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name.
Out << '\n';
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
if (F->isMaterializable())
Out << "; Materializable\n";
const AttributeSet &Attrs = F->getAttributes();
if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
AttributeSet AS = Attrs.getFnAttributes();
std::string AttrStr;
unsigned Idx = 0;
for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
break;
for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
I != E; ++I) {
Attribute Attr = *I;
if (!Attr.isStringAttribute()) {
if (!AttrStr.empty()) AttrStr += ' ';
AttrStr += Attr.getAsString();
}
}
if (!AttrStr.empty())
Out << "; Function Attrs: " << AttrStr << '\n';
}
if (F->isDeclaration())
Out << "declare ";
else
Out << "define ";
PrintLinkage(F->getLinkage(), Out);
PrintVisibility(F->getVisibility(), Out);
PrintDLLStorageClass(F->getDLLStorageClass(), Out);
// Print the calling convention.
if (F->getCallingConv() != CallingConv::C) {
PrintCallingConv(F->getCallingConv(), Out);
Out << " ";
}
FunctionType *FT = F->getFunctionType();
if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
TypePrinter.print(F->getReturnType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
Out << '(';
Machine.incorporateFunction(F);
// Loop over the arguments, printing them...
unsigned Idx = 1;
if (!F->isDeclaration()) {
// If this isn't a declaration, print the argument names as well.
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I) {
// Insert commas as we go... the first arg doesn't get a comma
if (I != F->arg_begin()) Out << ", ";
printArgument(I, Attrs, Idx);
Idx++;
}
} else {
// Otherwise, print the types from the function type.
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
// Insert commas as we go... the first arg doesn't get a comma
if (i) Out << ", ";
// Output type...
TypePrinter.print(FT->getParamType(i), Out);
if (Attrs.hasAttributes(i+1))
Out << ' ' << Attrs.getAsString(i+1);
}
}
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getNumParams()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ')';
if (F->hasUnnamedAddr())
Out << " unnamed_addr";
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
if (F->hasSection()) {
Out << " section \"";
PrintEscapedString(F->getSection(), Out);
Out << '"';
}
maybePrintComdat(Out, *F);
if (F->getAlignment())
Out << " align " << F->getAlignment();
if (F->hasGC())
Out << " gc \"" << F->getGC() << '"';
if (F->hasPrefixData()) {
Out << " prefix ";
writeOperand(F->getPrefixData(), true);
}
if (F->hasPrologueData()) {
Out << " prologue ";
writeOperand(F->getPrologueData(), true);
}
if (F->isDeclaration()) {
Out << '\n';
} else {
Out << " {";
// Output all of the function's basic blocks.
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
printBasicBlock(I);
// Output the function's use-lists.
printUseLists(F);
Out << "}\n";
}
Machine.purgeFunction();
}
/// printArgument - This member is called for every argument that is passed into
/// the function. Simply print it out
///
void AssemblyWriter::printArgument(const Argument *Arg,
AttributeSet Attrs, unsigned Idx) {
// Output type...
TypePrinter.print(Arg->getType(), Out);
// Output parameter attributes list
if (Attrs.hasAttributes(Idx))
Out << ' ' << Attrs.getAsString(Idx);
// Output name, if available...
if (Arg->hasName()) {
Out << ' ';
PrintLLVMName(Out, Arg);
}
}
/// printBasicBlock - This member is called for each basic block in a method.
///
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n";
PrintLLVMName(Out, BB->getName(), LabelPrefix);
Out << ':';
} else if (!BB->use_empty()) { // Don't print block # of no uses...
Out << "\n; <label>:";
int Slot = Machine.getLocalSlot(BB);
if (Slot != -1)
Out << Slot;
else
Out << "<badref>";
}
if (!BB->getParent()) {
Out.PadToColumn(50);
Out << "; Error: Block without parent!";
} else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
// Output predecessors for the block.
Out.PadToColumn(50);
Out << ";";
const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) {
Out << " No predecessors!";
} else {
Out << " preds = ";
writeOperand(*PI, false);
for (++PI; PI != PE; ++PI) {
Out << ", ";
writeOperand(*PI, false);
}
}
}
Out << "\n";
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
printInstructionLine(*I);
}
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}
/// printInstructionLine - Print an instruction and a newline character.
void AssemblyWriter::printInstructionLine(const Instruction &I) {
printInstruction(I);
Out << '\n';
}
/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
///
void AssemblyWriter::printInfoComment(const Value &V) {
if (AnnotationWriter)
AnnotationWriter->printInfoComment(V, Out);
}
// This member is called for each Instruction in a function..
void AssemblyWriter::printInstruction(const Instruction &I) {
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
// Print out indentation for an instruction.
Out << " ";
// Print out name if it exists...
if (I.hasName()) {
PrintLLVMName(Out, &I);
Out << " = ";
} else if (!I.getType()->isVoidTy()) {
// Print out the def slot taken.
int SlotNum = Machine.getLocalSlot(&I);
if (SlotNum == -1)
Out << "<badref> = ";
else
Out << '%' << SlotNum << " = ";
}
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
if (CI->isMustTailCall())
Out << "musttail ";
else if (CI->isTailCall())
Out << "tail ";
}
// Print out the opcode...
Out << I.getOpcodeName();
// If this is an atomic load or store, print out the atomic marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
Out << " atomic";
if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
Out << " weak";
// If this is a volatile operation, print out the volatile marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
(isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
(isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
Out << " volatile";
// Print out optimization information.
WriteOptimizationInfo(Out, &I);
// Print out the compare instruction predicates
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
Out << ' ' << getPredicateText(CI->getPredicate());
// Print out the atomicrmw operation
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
writeAtomicRMWOperation(Out, RMWI->getOperation());
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
const BranchInst &BI(cast<BranchInst>(I));
Out << ' ';
writeOperand(BI.getCondition(), true);
Out << ", ";
writeOperand(BI.getSuccessor(0), true);
Out << ", ";
writeOperand(BI.getSuccessor(1), true);
} else if (isa<SwitchInst>(I)) {
const SwitchInst& SI(cast<SwitchInst>(I));
// Special case switch instruction to get formatting nice and correct.
Out << ' ';
writeOperand(SI.getCondition(), true);
Out << ", ";
writeOperand(SI.getDefaultDest(), true);
Out << " [";
for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
i != e; ++i) {
Out << "\n ";
writeOperand(i.getCaseValue(), true);
Out << ", ";
writeOperand(i.getCaseSuccessor(), true);
}
Out << "\n ]";
} else if (isa<IndirectBrInst>(I)) {
// Special case indirectbr instruction to get formatting nice and correct.
Out << ' ';
writeOperand(Operand, true);
Out << ", [";
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
if (i != 1)
Out << ", ";
writeOperand(I.getOperand(i), true);
}
Out << ']';
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
Out << ' ';
for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
if (op) Out << ", ";
Out << "[ ";
writeOperand(PN->getIncomingValue(op), false); Out << ", ";
writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
}
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true);
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true); Out << ", ";
writeOperand(I.getOperand(1), true);
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
Out << " personality ";
writeOperand(I.getOperand(0), true); Out << '\n';
if (LPI->isCleanup())
Out << " cleanup";
for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
if (i != 0 || LPI->isCleanup()) Out << "\n";
if (LPI->isCatch(i))
Out << " catch ";
else
Out << " filter ";
writeOperand(LPI->getClause(i), true);
}
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Print the calling convention being used.
if (CI->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(CI->getCallingConv(), Out);
}
Operand = CI->getCalledValue();
PointerType *PTy = cast<PointerType>(Operand->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Type *RetTy = FTy->getReturnType();
const AttributeSet &PAL = CI->getAttributes();
if (PAL.hasAttributes(AttributeSet::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
if (!FTy->isVarArg() &&
(!RetTy->isPointerTy() ||
!cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
TypePrinter.print(RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
if (op > 0)
Out << ", ";
writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
}
// Emit an ellipsis if this is a musttail call in a vararg function. This
// is only to aid readability, musttail calls forward varargs by default.
if (CI->isMustTailCall() && CI->getParent() &&
CI->getParent()->getParent() &&
CI->getParent()->getParent()->isVarArg())
Out << ", ...";
Out << ')';
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
Operand = II->getCalledValue();
PointerType *PTy = cast<PointerType>(Operand->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Type *RetTy = FTy->getReturnType();
const AttributeSet &PAL = II->getAttributes();
// Print the calling convention being used.
if (II->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(II->getCallingConv(), Out);
}
if (PAL.hasAttributes(AttributeSet::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
if (!FTy->isVarArg() &&
(!RetTy->isPointerTy() ||
!cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
TypePrinter.print(RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
if (op)
Out << ", ";
writeParamOperand(II->getArgOperand(op), PAL, op + 1);
}
Out << ')';
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
Out << "\n to ";
writeOperand(II->getNormalDest(), true);
Out << " unwind ";
writeOperand(II->getUnwindDest(), true);
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
Out << ' ';
if (AI->isUsedWithInAlloca())
Out << "inalloca ";
TypePrinter.print(AI->getAllocatedType(), Out);
if (!AI->getArraySize() || AI->isArrayAllocation()) {
Out << ", ";
writeOperand(AI->getArraySize(), true);
}
if (AI->getAlignment()) {
Out << ", align " << AI->getAlignment();
}
} else if (isa<CastInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << " to ";
TypePrinter.print(I.getType(), Out);
} else if (isa<VAArgInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << ", ";
TypePrinter.print(I.getType(), Out);
} else if (Operand) { // Print the normal way.
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
Type *TheType = Operand->getType();
// Select, Store and ShuffleVector always print all types.
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|| isa<ReturnInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
// note that Operand shouldn't be null, but the test helps make dump()
// more tolerant of malformed IR
if (Operand && Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
TypePrinter.print(TheType, Out);
}
Out << ' ';
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ", ";
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
// Print atomic ordering/alignment for memory operations
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (LI->isAtomic())
writeAtomic(LI->getOrdering(), LI->getSynchScope());
if (LI->getAlignment())
Out << ", align " << LI->getAlignment();
} else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
if (SI->isAtomic())
writeAtomic(SI->getOrdering(), SI->getSynchScope());
if (SI->getAlignment())
Out << ", align " << SI->getAlignment();
} else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
CXI->getSynchScope());
} else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
} else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
writeAtomic(FI->getOrdering(), FI->getSynchScope());
}
// Print Metadata info.
SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
I.getAllMetadata(InstMD);
if (!InstMD.empty()) {
SmallVector<StringRef, 8> MDNames;
I.getType()->getContext().getMDKindNames(MDNames);
for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
unsigned Kind = InstMD[i].first;
if (Kind < MDNames.size()) {
Out << ", !" << MDNames[Kind];
} else {
Out << ", !<unknown kind #" << Kind << ">";
}
Out << ' ';
WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
TheModule);
}
}
printInfoComment(I);
}
static void WriteMDNodeComment(const MDNode *Node,
formatted_raw_ostream &Out) {
if (Node->getNumOperands() < 1)
return;
Metadata *Op = Node->getOperand(0);
if (!Op || !isa<MDString>(Op))
return;
DIDescriptor Desc(Node);
if (!Desc.Verify())
return;
unsigned Tag = Desc.getTag();
Out.PadToColumn(50);
if (dwarf::TagString(Tag)) {
Out << "; ";
Desc.print(Out);
} else if (Tag == dwarf::DW_TAG_user_base) {
Out << "; [ DW_TAG_user_base ]";
}
}
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
Out << '!' << Slot << " = ";
printMDNodeBody(Node);
}
void AssemblyWriter::writeAllMDNodes() {
SmallVector<const MDNode *, 16> Nodes;
Nodes.resize(Machine.mdn_size());
for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
I != E; ++I)
Nodes[I->second] = cast<MDNode>(I->first);
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
writeMDNode(i, Nodes[i]);
}
}
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
WriteMDNodeComment(Node, Out);
Out << "\n";
}
void AssemblyWriter::writeAllAttributeGroups() {
std::vector<std::pair<AttributeSet, unsigned> > asVec;
asVec.resize(Machine.as_size());
for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
I != E; ++I)
asVec[I->second] = *I;
for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
I = asVec.begin(), E = asVec.end(); I != E; ++I)
Out << "attributes #" << I->second << " = { "
<< I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
}
} // namespace llvm
void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
bool IsInFunction = Machine.getFunction();
if (IsInFunction)
Out << " ";
Out << "uselistorder";
if (const BasicBlock *BB =
IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
Out << "_bb ";
writeOperand(BB->getParent(), false);
Out << ", ";
writeOperand(BB, false);
} else {
Out << " ";
writeOperand(Order.V, true);
}
Out << ", { ";
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
Out << Order.Shuffle[0];
for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
Out << ", " << Order.Shuffle[I];
Out << " }\n";
}
void AssemblyWriter::printUseLists(const Function *F) {
auto hasMore =
[&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
if (!hasMore())
// Nothing to do.
return;
Out << "\n; uselistorder directives\n";
while (hasMore()) {
printUseListOrder(UseListOrders.back());
UseListOrders.pop_back();
}
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
SlotTracker SlotTable(this);
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this, AAW);
W.printModule(this);
}
void NamedMDNode::print(raw_ostream &ROS) const {
SlotTracker SlotTable(getParent());
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, getParent(), nullptr);
W.printNamedMDNode(this);
}
void Comdat::print(raw_ostream &ROS) const {
PrintLLVMName(ROS, getName(), ComdatPrefix);
ROS << " = comdat ";
switch (getSelectionKind()) {
case Comdat::Any:
ROS << "any";
break;
case Comdat::ExactMatch:
ROS << "exactmatch";
break;
case Comdat::Largest:
ROS << "largest";
break;
case Comdat::NoDuplicates:
ROS << "noduplicates";
break;
case Comdat::SameSize:
ROS << "samesize";
break;
}
ROS << '\n';
}
void Type::print(raw_ostream &OS) const {
TypePrinting TP;
TP.print(const_cast<Type*>(this), OS);
// If the type is a named struct type, print the body as well.
if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
if (!STy->isLiteral()) {
OS << " = type ";
TP.printStructBody(STy, OS);
}
}
void Value::print(raw_ostream &ROS) const {
formatted_raw_ostream OS(ROS);
if (const Instruction *I = dyn_cast<Instruction>(this)) {
const Function *F = I->getParent() ? I->getParent()->getParent() : nullptr;
SlotTracker SlotTable(F);
AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr);
W.printInstruction(*I);
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
SlotTracker SlotTable(BB->getParent());
AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr);
W.printBasicBlock(BB);
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
SlotTracker SlotTable(GV->getParent());
AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr);
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
W.printGlobal(V);
else if (const Function *F = dyn_cast<Function>(GV))
W.printFunction(F);
else
W.printAlias(cast<GlobalAlias>(GV));
} else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
V->getMetadata()->print(ROS);
} else if (const Constant *C = dyn_cast<Constant>(this)) {
TypePrinting TypePrinter;
TypePrinter.print(C->getType(), OS);
OS << ' ';
WriteConstantInternal(OS, C, TypePrinter, nullptr, nullptr);
} else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
this->printAsOperand(OS);
} else {
llvm_unreachable("Unknown value to print out!");
}
}
void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) const {
// Fast path: Don't construct and populate a TypePrinting object if we
// won't be needing any types printed.
if (!PrintType && ((!isa<Constant>(this) && !isa<MetadataAsValue>(this)) ||
hasName() || isa<GlobalValue>(this))) {
WriteAsOperandInternal(O, this, nullptr, nullptr, M);
return;
}
if (!M)
M = getModuleFromVal(this);
TypePrinting TypePrinter;
if (M)
TypePrinter.incorporateTypes(*M);
if (PrintType) {
TypePrinter.print(getType(), O);
O << ' ';
}
WriteAsOperandInternal(O, this, &TypePrinter, nullptr, M);
}
void Metadata::print(raw_ostream &ROS) const {
formatted_raw_ostream OS(ROS);
if (auto *N = dyn_cast<MDNode>(this)) {
SlotTracker SlotTable(static_cast<Function *>(nullptr));
AssemblyWriter W(OS, SlotTable, nullptr, nullptr);
W.printMDNodeBody(N);
return;
}
printAsOperand(OS);
}
void Metadata::printAsOperand(raw_ostream &ROS, bool PrintType,
const Module *M) const {
formatted_raw_ostream OS(ROS);
std::unique_ptr<TypePrinting> TypePrinter;
if (PrintType) {
TypePrinter.reset(new TypePrinting);
if (M)
TypePrinter->incorporateTypes(*M);
}
WriteAsOperandInternal(OS, this, TypePrinter.get(), nullptr, M,
/* FromValue */ true);
}
// Value::dump - allow easy printing of Values from the debugger.
void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
// Type::dump - allow easy printing of Types from the debugger.
void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
// Module::dump() - Allow printing of Modules from the debugger.
void Module::dump() const { print(dbgs(), nullptr); }
// \brief Allow printing of Comdats from the debugger.
void Comdat::dump() const { print(dbgs()); }
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
void NamedMDNode::dump() const { print(dbgs()); }
void Metadata::dump() const {
print(dbgs());
dbgs() << '\n';
}