mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-08 04:52:50 +00:00
2b6c01b40b
Switch from isWeakForLinker to mayBeOverridden which is more accurate. Add more statistics and debugging info. Add comments. Move static function outside anonymous namespace. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113190 91177308-0d34-0410-b5e6-96231b3b80d8
786 lines
27 KiB
C++
786 lines
27 KiB
C++
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass looks for equivalent functions that are mergable and folds them.
|
|
//
|
|
// A hash is computed from the function, based on its type and number of
|
|
// basic blocks.
|
|
//
|
|
// Once all hashes are computed, we perform an expensive equality comparison
|
|
// on each function pair. This takes n^2/2 comparisons per bucket, so it's
|
|
// important that the hash function be high quality. The equality comparison
|
|
// iterates through each instruction in each basic block.
|
|
//
|
|
// When a match is found the functions are folded. If both functions are
|
|
// overridable, we move the functionality into a new internal function and
|
|
// leave two overridable thunks to it.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Future work:
|
|
//
|
|
// * virtual functions.
|
|
//
|
|
// Many functions have their address taken by the virtual function table for
|
|
// the object they belong to. However, as long as it's only used for a lookup
|
|
// and call, this is irrelevant, and we'd like to fold such functions.
|
|
//
|
|
// * switch from n^2 pair-wise comparisons to an n-way comparison for each
|
|
// bucket.
|
|
//
|
|
// * be smarter about bitcasts.
|
|
//
|
|
// In order to fold functions, we will sometimes add either bitcast instructions
|
|
// or bitcast constant expressions. Unfortunately, this can confound further
|
|
// analysis since the two functions differ where one has a bitcast and the
|
|
// other doesn't. We should learn to look through bitcasts.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mergefunc"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/IRBuilder.h"
|
|
#include "llvm/Support/ValueHandle.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFunctionsMerged, "Number of functions merged");
|
|
STATISTIC(NumThunksWritten, "Number of thunks generated");
|
|
STATISTIC(NumDoubleWeak, "Number of new functions created");
|
|
|
|
/// ProfileFunction - Creates a hash-code for the function which is the same
|
|
/// for any two functions that will compare equal, without looking at the
|
|
/// instructions inside the function.
|
|
static unsigned ProfileFunction(const Function *F) {
|
|
const FunctionType *FTy = F->getFunctionType();
|
|
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(F->size());
|
|
ID.AddInteger(F->getCallingConv());
|
|
ID.AddBoolean(F->hasGC());
|
|
ID.AddBoolean(FTy->isVarArg());
|
|
ID.AddInteger(FTy->getReturnType()->getTypeID());
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
ID.AddInteger(FTy->getParamType(i)->getTypeID());
|
|
return ID.ComputeHash();
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ComparableFunction {
|
|
public:
|
|
static const ComparableFunction EmptyKey;
|
|
static const ComparableFunction TombstoneKey;
|
|
|
|
ComparableFunction(Function *Func, TargetData *TD)
|
|
: Func(Func), Hash(ProfileFunction(Func)), TD(TD) {}
|
|
|
|
Function *getFunc() const { return Func; }
|
|
unsigned getHash() const { return Hash; }
|
|
TargetData *getTD() const { return TD; }
|
|
|
|
// Drops AssertingVH reference to the function. Outside of debug mode, this
|
|
// does nothing.
|
|
void release() {
|
|
assert(Func &&
|
|
"Attempted to release function twice, or release empty/tombstone!");
|
|
Func = NULL;
|
|
}
|
|
|
|
private:
|
|
explicit ComparableFunction(unsigned Hash)
|
|
: Func(NULL), Hash(Hash), TD(NULL) {}
|
|
|
|
AssertingVH<Function> Func;
|
|
unsigned Hash;
|
|
TargetData *TD;
|
|
};
|
|
|
|
const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
|
|
const ComparableFunction ComparableFunction::TombstoneKey =
|
|
ComparableFunction(1);
|
|
|
|
}
|
|
|
|
namespace llvm {
|
|
template <>
|
|
struct DenseMapInfo<ComparableFunction> {
|
|
static ComparableFunction getEmptyKey() {
|
|
return ComparableFunction::EmptyKey;
|
|
}
|
|
static ComparableFunction getTombstoneKey() {
|
|
return ComparableFunction::TombstoneKey;
|
|
}
|
|
static unsigned getHashValue(const ComparableFunction &CF) {
|
|
return CF.getHash();
|
|
}
|
|
static bool isEqual(const ComparableFunction &LHS,
|
|
const ComparableFunction &RHS);
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// MergeFunctions finds functions which will generate identical machine code,
|
|
/// by considering all pointer types to be equivalent. Once identified,
|
|
/// MergeFunctions will fold them by replacing a call to one to a call to a
|
|
/// bitcast of the other.
|
|
///
|
|
class MergeFunctions : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
MergeFunctions() : ModulePass(ID) {}
|
|
|
|
bool runOnModule(Module &M);
|
|
|
|
private:
|
|
typedef DenseSet<ComparableFunction> FnSetType;
|
|
|
|
|
|
/// Insert a ComparableFunction into the FnSet, or merge it away if it's
|
|
/// equal to one that's already present.
|
|
bool Insert(FnSetType &FnSet, ComparableFunction &NewF);
|
|
|
|
/// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G
|
|
/// may be deleted, or may be converted into a thunk. In either case, it
|
|
/// should never be visited again.
|
|
void MergeTwoFunctions(Function *F, Function *G) const;
|
|
|
|
/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
|
|
/// replace direct uses of G with bitcast(F). Deletes G.
|
|
void WriteThunk(Function *F, Function *G) const;
|
|
|
|
TargetData *TD;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char MergeFunctions::ID = 0;
|
|
INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
|
|
|
|
ModulePass *llvm::createMergeFunctionsPass() {
|
|
return new MergeFunctions();
|
|
}
|
|
|
|
namespace {
|
|
/// FunctionComparator - Compares two functions to determine whether or not
|
|
/// they will generate machine code with the same behaviour. TargetData is
|
|
/// used if available. The comparator always fails conservatively (erring on the
|
|
/// side of claiming that two functions are different).
|
|
class FunctionComparator {
|
|
public:
|
|
FunctionComparator(const TargetData *TD, const Function *F1,
|
|
const Function *F2)
|
|
: F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
|
|
|
|
/// Compare - test whether the two functions have equivalent behaviour.
|
|
bool Compare();
|
|
|
|
private:
|
|
/// Compare - test whether two basic blocks have equivalent behaviour.
|
|
bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
|
|
|
|
/// Enumerate - Assign or look up previously assigned numbers for the two
|
|
/// values, and return whether the numbers are equal. Numbers are assigned in
|
|
/// the order visited.
|
|
bool Enumerate(const Value *V1, const Value *V2);
|
|
|
|
/// isEquivalentOperation - Compare two Instructions for equivalence, similar
|
|
/// to Instruction::isSameOperationAs but with modifications to the type
|
|
/// comparison.
|
|
bool isEquivalentOperation(const Instruction *I1,
|
|
const Instruction *I2) const;
|
|
|
|
/// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
|
|
bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
|
|
bool isEquivalentGEP(const GetElementPtrInst *GEP1,
|
|
const GetElementPtrInst *GEP2) {
|
|
return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
|
|
}
|
|
|
|
/// isEquivalentType - Compare two Types, treating all pointer types as equal.
|
|
bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
|
|
|
|
// The two functions undergoing comparison.
|
|
const Function *F1, *F2;
|
|
|
|
const TargetData *TD;
|
|
|
|
typedef DenseMap<const Value *, unsigned long> IDMap;
|
|
IDMap Map1, Map2;
|
|
unsigned long IDMap1Count, IDMap2Count;
|
|
};
|
|
}
|
|
|
|
/// isEquivalentType - any two pointers in the same address space are
|
|
/// equivalent. Otherwise, standard type equivalence rules apply.
|
|
bool FunctionComparator::isEquivalentType(const Type *Ty1,
|
|
const Type *Ty2) const {
|
|
if (Ty1 == Ty2)
|
|
return true;
|
|
if (Ty1->getTypeID() != Ty2->getTypeID())
|
|
return false;
|
|
|
|
switch(Ty1->getTypeID()) {
|
|
default:
|
|
llvm_unreachable("Unknown type!");
|
|
// Fall through in Release mode.
|
|
case Type::IntegerTyID:
|
|
case Type::OpaqueTyID:
|
|
// Ty1 == Ty2 would have returned true earlier.
|
|
return false;
|
|
|
|
case Type::VoidTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
case Type::LabelTyID:
|
|
case Type::MetadataTyID:
|
|
return true;
|
|
|
|
case Type::PointerTyID: {
|
|
const PointerType *PTy1 = cast<PointerType>(Ty1);
|
|
const PointerType *PTy2 = cast<PointerType>(Ty2);
|
|
return PTy1->getAddressSpace() == PTy2->getAddressSpace();
|
|
}
|
|
|
|
case Type::StructTyID: {
|
|
const StructType *STy1 = cast<StructType>(Ty1);
|
|
const StructType *STy2 = cast<StructType>(Ty2);
|
|
if (STy1->getNumElements() != STy2->getNumElements())
|
|
return false;
|
|
|
|
if (STy1->isPacked() != STy2->isPacked())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
|
|
if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *FTy1 = cast<FunctionType>(Ty1);
|
|
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
|
|
if (FTy1->getNumParams() != FTy2->getNumParams() ||
|
|
FTy1->isVarArg() != FTy2->isVarArg())
|
|
return false;
|
|
|
|
if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
|
|
if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy1 = cast<ArrayType>(Ty1);
|
|
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
|
|
return ATy1->getNumElements() == ATy2->getNumElements() &&
|
|
isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
|
|
}
|
|
|
|
case Type::VectorTyID: {
|
|
const VectorType *VTy1 = cast<VectorType>(Ty1);
|
|
const VectorType *VTy2 = cast<VectorType>(Ty2);
|
|
return VTy1->getNumElements() == VTy2->getNumElements() &&
|
|
isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isEquivalentOperation - determine whether the two operations are the same
|
|
/// except that pointer-to-A and pointer-to-B are equivalent. This should be
|
|
/// kept in sync with Instruction::isSameOperationAs.
|
|
bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
|
|
const Instruction *I2) const {
|
|
if (I1->getOpcode() != I2->getOpcode() ||
|
|
I1->getNumOperands() != I2->getNumOperands() ||
|
|
!isEquivalentType(I1->getType(), I2->getType()) ||
|
|
!I1->hasSameSubclassOptionalData(I2))
|
|
return false;
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same type
|
|
for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
|
|
if (!isEquivalentType(I1->getOperand(i)->getType(),
|
|
I2->getOperand(i)->getType()))
|
|
return false;
|
|
|
|
// Check special state that is a part of some instructions.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
|
|
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
|
|
LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
|
|
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
|
|
SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
|
|
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I1))
|
|
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
|
|
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes().getRawPointer() ==
|
|
cast<CallInst>(I2)->getAttributes().getRawPointer();
|
|
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
|
|
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes().getRawPointer() ==
|
|
cast<InvokeInst>(I2)->getAttributes().getRawPointer();
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
|
|
if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
|
|
return false;
|
|
for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
|
|
if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
|
|
if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
|
|
return false;
|
|
for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
|
|
if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isEquivalentGEP - determine whether two GEP operations perform the same
|
|
/// underlying arithmetic.
|
|
bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
|
|
const GEPOperator *GEP2) {
|
|
// When we have target data, we can reduce the GEP down to the value in bytes
|
|
// added to the address.
|
|
if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
|
|
SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
|
|
SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
|
|
uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
|
|
Indices1.data(), Indices1.size());
|
|
uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
|
|
Indices2.data(), Indices2.size());
|
|
return Offset1 == Offset2;
|
|
}
|
|
|
|
if (GEP1->getPointerOperand()->getType() !=
|
|
GEP2->getPointerOperand()->getType())
|
|
return false;
|
|
|
|
if (GEP1->getNumOperands() != GEP2->getNumOperands())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
|
|
if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Enumerate - Compare two values used by the two functions under pair-wise
|
|
/// comparison. If this is the first time the values are seen, they're added to
|
|
/// the mapping so that we will detect mismatches on next use.
|
|
bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
|
|
// Check for function @f1 referring to itself and function @f2 referring to
|
|
// itself, or referring to each other, or both referring to either of them.
|
|
// They're all equivalent if the two functions are otherwise equivalent.
|
|
if (V1 == F1 && V2 == F2)
|
|
return true;
|
|
if (V1 == F2 && V2 == F1)
|
|
return true;
|
|
|
|
// TODO: constant expressions with GEP or references to F1 or F2.
|
|
if (isa<Constant>(V1))
|
|
return V1 == V2;
|
|
|
|
if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
|
|
const InlineAsm *IA1 = cast<InlineAsm>(V1);
|
|
const InlineAsm *IA2 = cast<InlineAsm>(V2);
|
|
return IA1->getAsmString() == IA2->getAsmString() &&
|
|
IA1->getConstraintString() == IA2->getConstraintString();
|
|
}
|
|
|
|
unsigned long &ID1 = Map1[V1];
|
|
if (!ID1)
|
|
ID1 = ++IDMap1Count;
|
|
|
|
unsigned long &ID2 = Map2[V2];
|
|
if (!ID2)
|
|
ID2 = ++IDMap2Count;
|
|
|
|
return ID1 == ID2;
|
|
}
|
|
|
|
/// Compare - test whether two basic blocks have equivalent behaviour.
|
|
bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
|
|
BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
|
|
BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
|
|
|
|
do {
|
|
if (!Enumerate(F1I, F2I))
|
|
return false;
|
|
|
|
if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
|
|
const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
|
|
if (!GEP2)
|
|
return false;
|
|
|
|
if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
|
|
return false;
|
|
|
|
if (!isEquivalentGEP(GEP1, GEP2))
|
|
return false;
|
|
} else {
|
|
if (!isEquivalentOperation(F1I, F2I))
|
|
return false;
|
|
|
|
assert(F1I->getNumOperands() == F2I->getNumOperands());
|
|
for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
|
|
Value *OpF1 = F1I->getOperand(i);
|
|
Value *OpF2 = F2I->getOperand(i);
|
|
|
|
if (!Enumerate(OpF1, OpF2))
|
|
return false;
|
|
|
|
if (OpF1->getValueID() != OpF2->getValueID() ||
|
|
!isEquivalentType(OpF1->getType(), OpF2->getType()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
++F1I, ++F2I;
|
|
} while (F1I != F1E && F2I != F2E);
|
|
|
|
return F1I == F1E && F2I == F2E;
|
|
}
|
|
|
|
/// Compare - test whether the two functions have equivalent behaviour.
|
|
bool FunctionComparator::Compare() {
|
|
// We need to recheck everything, but check the things that weren't included
|
|
// in the hash first.
|
|
|
|
if (F1->getAttributes() != F2->getAttributes())
|
|
return false;
|
|
|
|
if (F1->hasGC() != F2->hasGC())
|
|
return false;
|
|
|
|
if (F1->hasGC() && F1->getGC() != F2->getGC())
|
|
return false;
|
|
|
|
if (F1->hasSection() != F2->hasSection())
|
|
return false;
|
|
|
|
if (F1->hasSection() && F1->getSection() != F2->getSection())
|
|
return false;
|
|
|
|
if (F1->isVarArg() != F2->isVarArg())
|
|
return false;
|
|
|
|
// TODO: if it's internal and only used in direct calls, we could handle this
|
|
// case too.
|
|
if (F1->getCallingConv() != F2->getCallingConv())
|
|
return false;
|
|
|
|
if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
|
|
return false;
|
|
|
|
assert(F1->arg_size() == F2->arg_size() &&
|
|
"Identically typed functions have different numbers of args!");
|
|
|
|
// Visit the arguments so that they get enumerated in the order they're
|
|
// passed in.
|
|
for (Function::const_arg_iterator f1i = F1->arg_begin(),
|
|
f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
|
|
if (!Enumerate(f1i, f2i))
|
|
llvm_unreachable("Arguments repeat!");
|
|
}
|
|
|
|
// We do a CFG-ordered walk since the actual ordering of the blocks in the
|
|
// linked list is immaterial. Our walk starts at the entry block for both
|
|
// functions, then takes each block from each terminator in order. As an
|
|
// artifact, this also means that unreachable blocks are ignored.
|
|
SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
|
|
SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
|
|
|
|
F1BBs.push_back(&F1->getEntryBlock());
|
|
F2BBs.push_back(&F2->getEntryBlock());
|
|
|
|
VisitedBBs.insert(F1BBs[0]);
|
|
while (!F1BBs.empty()) {
|
|
const BasicBlock *F1BB = F1BBs.pop_back_val();
|
|
const BasicBlock *F2BB = F2BBs.pop_back_val();
|
|
|
|
if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
|
|
return false;
|
|
|
|
const TerminatorInst *F1TI = F1BB->getTerminator();
|
|
const TerminatorInst *F2TI = F2BB->getTerminator();
|
|
|
|
assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
|
|
for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
|
|
if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
|
|
continue;
|
|
|
|
F1BBs.push_back(F1TI->getSuccessor(i));
|
|
F2BBs.push_back(F2TI->getSuccessor(i));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
|
|
/// direct uses of G with bitcast(F). Deletes G.
|
|
void MergeFunctions::WriteThunk(Function *F, Function *G) const {
|
|
if (!G->mayBeOverridden()) {
|
|
// Redirect direct callers of G to F.
|
|
Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
|
|
for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
|
|
UI != UE;) {
|
|
Value::use_iterator TheIter = UI;
|
|
++UI;
|
|
CallSite CS(*TheIter);
|
|
if (CS && CS.isCallee(TheIter))
|
|
TheIter.getUse().set(BitcastF);
|
|
}
|
|
}
|
|
|
|
// If G was internal then we may have replaced all uses of G with F. If so,
|
|
// stop here and delete G. There's no need for a thunk.
|
|
if (G->hasLocalLinkage() && G->use_empty()) {
|
|
G->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
|
|
G->getParent());
|
|
BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
|
|
IRBuilder<false> Builder(BB);
|
|
|
|
SmallVector<Value *, 16> Args;
|
|
unsigned i = 0;
|
|
const FunctionType *FFTy = F->getFunctionType();
|
|
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
|
|
AI != AE; ++AI) {
|
|
Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
|
|
++i;
|
|
}
|
|
|
|
CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
|
|
CI->setTailCall();
|
|
CI->setCallingConv(F->getCallingConv());
|
|
if (NewG->getReturnType()->isVoidTy()) {
|
|
Builder.CreateRetVoid();
|
|
} else {
|
|
Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
|
|
}
|
|
|
|
NewG->copyAttributesFrom(G);
|
|
NewG->takeName(G);
|
|
G->replaceAllUsesWith(NewG);
|
|
G->eraseFromParent();
|
|
|
|
DEBUG(dbgs() << "WriteThunk: " << NewG->getName() << '\n');
|
|
++NumThunksWritten;
|
|
}
|
|
|
|
/// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
|
|
/// Function G is deleted.
|
|
void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) const {
|
|
if (F->mayBeOverridden()) {
|
|
assert(G->mayBeOverridden());
|
|
|
|
// Make them both thunks to the same internal function.
|
|
Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
|
|
F->getParent());
|
|
H->copyAttributesFrom(F);
|
|
H->takeName(F);
|
|
F->replaceAllUsesWith(H);
|
|
|
|
unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
|
|
|
|
WriteThunk(F, G);
|
|
WriteThunk(F, H);
|
|
|
|
F->setAlignment(MaxAlignment);
|
|
F->setLinkage(GlobalValue::InternalLinkage);
|
|
|
|
++NumDoubleWeak;
|
|
} else {
|
|
WriteThunk(F, G);
|
|
}
|
|
|
|
++NumFunctionsMerged;
|
|
}
|
|
|
|
// Insert - Insert a ComparableFunction into the FnSet, or merge it away if
|
|
// equal to one that's already inserted.
|
|
bool MergeFunctions::Insert(FnSetType &FnSet, ComparableFunction &NewF) {
|
|
std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
|
|
if (Result.second)
|
|
return false;
|
|
|
|
const ComparableFunction &OldF = *Result.first;
|
|
|
|
// Never thunk a strong function to a weak function.
|
|
assert(!OldF.getFunc()->mayBeOverridden() ||
|
|
NewF.getFunc()->mayBeOverridden());
|
|
|
|
DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
|
|
<< NewF.getFunc()->getName() << '\n');
|
|
|
|
Function *DeleteF = NewF.getFunc();
|
|
NewF.release();
|
|
MergeTwoFunctions(OldF.getFunc(), DeleteF);
|
|
return true;
|
|
}
|
|
|
|
// IsThunk - This method determines whether or not a given Function is a thunk\// like the ones emitted by this pass and therefore not subject to further
|
|
// merging.
|
|
static bool IsThunk(const Function *F) {
|
|
// The safe direction to fail is to return true. In that case, the function
|
|
// will be removed from merging analysis. If we failed to including functions
|
|
// then we may try to merge unmergable thing (ie., identical weak functions)
|
|
// which will push us into an infinite loop.
|
|
|
|
assert(!F->isDeclaration() && "Expected a function definition.");
|
|
|
|
const BasicBlock *BB = &F->front();
|
|
// A thunk is:
|
|
// bitcast-inst*
|
|
// optional-reg tail call @thunkee(args...*)
|
|
// ret void|optional-reg
|
|
// where the args are in the same order as the arguments.
|
|
|
|
// Put this at the top since it triggers most often.
|
|
const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
|
|
if (!RI) return false;
|
|
|
|
// Verify that the sequence of bitcast-inst's are all casts of arguments and
|
|
// that there aren't any extras (ie. no repeated casts).
|
|
int LastArgNo = -1;
|
|
BasicBlock::const_iterator I = BB->begin();
|
|
while (const BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
|
|
const Argument *A = dyn_cast<Argument>(BCI->getOperand(0));
|
|
if (!A) return false;
|
|
if ((int)A->getArgNo() <= LastArgNo) return false;
|
|
LastArgNo = A->getArgNo();
|
|
++I;
|
|
}
|
|
|
|
// Verify that we have a direct tail call and that the calling conventions
|
|
// and number of arguments match.
|
|
const CallInst *CI = dyn_cast<CallInst>(I++);
|
|
if (!CI || !CI->isTailCall() || !CI->getCalledFunction() ||
|
|
CI->getCallingConv() != CI->getCalledFunction()->getCallingConv() ||
|
|
CI->getNumArgOperands() != F->arg_size())
|
|
return false;
|
|
|
|
// Verify that the call instruction has the same arguments as this function
|
|
// and that they're all either the incoming argument or a cast of the right
|
|
// argument.
|
|
for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
|
|
const Value *V = CI->getArgOperand(i);
|
|
const Argument *A = dyn_cast<Argument>(V);
|
|
if (!A) {
|
|
const BitCastInst *BCI = dyn_cast<BitCastInst>(V);
|
|
if (!BCI) return false;
|
|
A = cast<Argument>(BCI->getOperand(0));
|
|
}
|
|
if (A->getArgNo() != i) return false;
|
|
}
|
|
|
|
// Verify that the terminator is a ret void (if we're void) or a ret of the
|
|
// call's return, or a ret of a bitcast of the call's return.
|
|
const Value *RetOp = CI;
|
|
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
|
|
++I;
|
|
if (BCI->getOperand(0) != CI) return false;
|
|
RetOp = BCI;
|
|
}
|
|
if (RI != I) return false;
|
|
if (RI->getNumOperands() == 0)
|
|
return CI->getType()->isVoidTy();
|
|
return RI->getReturnValue() == CI;
|
|
}
|
|
|
|
bool MergeFunctions::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
TD = getAnalysisIfAvailable<TargetData>();
|
|
|
|
bool LocalChanged;
|
|
do {
|
|
DEBUG(dbgs() << "size of module: " << M.size() << '\n');
|
|
LocalChanged = false;
|
|
FnSetType FnSet;
|
|
|
|
// Insert only strong functions and merge them. Strong function merging
|
|
// always deletes one of them.
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
|
|
Function *F = I++;
|
|
if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
|
|
!F->mayBeOverridden() && !IsThunk(F)) {
|
|
ComparableFunction CF = ComparableFunction(F, TD);
|
|
LocalChanged |= Insert(FnSet, CF);
|
|
}
|
|
}
|
|
|
|
// Insert only weak functions and merge them. By doing these second we
|
|
// create thunks to the strong function when possible. When two weak
|
|
// functions are identical, we create a new strong function with two weak
|
|
// weak thunks to it which are identical but not mergable.
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
|
|
Function *F = I++;
|
|
if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
|
|
F->mayBeOverridden() && !IsThunk(F)) {
|
|
ComparableFunction CF = ComparableFunction(F, TD);
|
|
LocalChanged |= Insert(FnSet, CF);
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
|
|
Changed |= LocalChanged;
|
|
} while (LocalChanged);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
|
|
const ComparableFunction &RHS) {
|
|
if (LHS.getFunc() == RHS.getFunc() &&
|
|
LHS.getHash() == RHS.getHash())
|
|
return true;
|
|
if (!LHS.getFunc() || !RHS.getFunc())
|
|
return false;
|
|
assert(LHS.getTD() == RHS.getTD() &&
|
|
"Comparing functions for different targets");
|
|
return FunctionComparator(LHS.getTD(),
|
|
LHS.getFunc(), RHS.getFunc()).Compare();
|
|
}
|